Spatial Variation and Source of Dissolved Heavy Metals in the Lancangjiang River, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Measurement of Dissolved Heavy Metals
2.4. Statistical Methods and Water Quality Assessment
2.5. Water Quality Index
2.6. Hazard Index and Hazard Quotient
2.7. Dissolved Heavy Metal Fluxes
3. Results
3.1. Physicochemical Parameters
3.2. Concentrations of Dissolved Heavy Metals
4. Discussion
4.1. Correlation Analysis
4.2. Concentrations of Dissolved Heavy Metals
4.3. Water Quality Assessment
4.4. Health Risk Assessment
4.5. Elemental Fluxes to the Mekong River
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gaillardet, J.; Viers, J.; Dupré, B. Trace Elements in River Waters. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 195–235. ISBN 978-0-08-098300-4. [Google Scholar]
- Han, G.; Liu, C.-Q. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chem. Geol. 2004, 204, 1–21. [Google Scholar] [CrossRef]
- Maharana, C.; Srivastava, D.; Tripathi, J.K. Geochemistry of sediments of the Peninsular Rivers of the Ganga basin and its implication to weathering, sedimentary processes and provenance. Chem. Geol. 2018, 483, 1–20. [Google Scholar] [CrossRef]
- Dürr, H.H.; Meybeck, M.; Dürr, S.H. Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Han, G.; Tang, Y.; Xu, Z. Fluvial geochemistry of rivers draining karst terrain in Southwest China. J. Asian Earth Sci. 2010, 38, 65–75. [Google Scholar] [CrossRef]
- Han, G.; Song, Z.; Tang, Y.; Wu, Q.; Wang, Z. Ca and Sr isotope compositions of rainwater from Guiyang city, Southwest China: Implication for the sources of atmospheric aerosols and their seasonal variations. Atmos. Environ. 2019, 214, 116854. [Google Scholar] [CrossRef]
- Liang, B.; Han, G.; Liu, M.; Yang, K.; Li, X.; Liu, J. Distribution, Sources, and Water Quality Assessment of Dissolved Heavy Metals in the Jiulongjiang River Water, Southeast China. Int. J. Environ. Res. Public Health 2018, 15, 2752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, B.; Han, G.; Liu, M.; Li, X.; Song, C.; Zhang, Q.; Yang, K. Spatial and Temporal Variation of Dissolved Heavy Metals in the Mun River, Northeast Thailand. Water 2019, 11, 380. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Han, G. Characteristics of major elements and heavy metals in atmospheric dust in Beijing, China. J. Geochem. Explor. 2017, 176, 114–119. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Liu, H.; Lam, P.K.S. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; Song, X.; Guo, F. Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China. Mar. Pollut. Bull. 2017, 114, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Bu, H.; Wang, W.; Song, X.; Zhang, Q. Characteristics and source identification of dissolved trace elements in the Jinshui River of the South Qinling Mts., China. Environ. Sci. Pollut. Res. 2015, 22, 14248–14257. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.; Shim, M.J.; Howden, S.D.; Shiller, A.M. Temporal and spatial distributions of nutrients and trace elements (Ba, Cs, Cr, Fe, Mn, Mo, U, V and Re) in Mississippi coastal waters: Influence of hypoxia, submarine groundwater discharge, and episodic events. Cont. Shelf Res. 2019, 175, 53–69. [Google Scholar] [CrossRef]
- Franco-Uría, A.; López-Mateo, C.; Roca, E.; Fernández-Marcos, M.L. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J. Hazard. Mater. 2009, 165, 1008–1015. [Google Scholar] [CrossRef]
- Mao, G.; Zhao, Y.; Zhang, F.; Liu, J.; Huang, X. Spatiotemporal variability of heavy metals and identification of potential source tracers in the surface water of the Lhasa River basin. Environ. Sci. Pollut. Res. 2019, 26, 7442–7452. [Google Scholar] [CrossRef]
- Topalián, M.L.; Castañé, P.M. Principal Component Analysis of Dissolved Heavy Metals in Water of the Reconquista River (Buenos Aires, Argentina). Bull. Environ. Contam. Toxicol. 1999, 63, 484–490. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Zuzolo, D.; Cicchella, D.; Catani, V.; Giaccio, L.; Guagliardi, I.; Esposito, L.; De Vivo, B. Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy). Environ. Geochem. Health 2017, 39, 531–548. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Zhang, Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 2020, 288, 106719. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Wu, Q.; Tang, Y. Effects of agricultural alkaline substances on reducing the rainwater acidification: Insight from chemical compositions and calcium isotopes in a karst forests area. Agric. Ecosyst. Environ. 2020, 290, 106782. [Google Scholar] [CrossRef]
- Liu, J.; Han, G.; Liu, M.; Zeng, J.; Liang, B.; Qu, R. Distribution, Sources and Water Quality Evaluation of the Riverine Solutes: A Case Study in the Lancangjiang River Basin, Tibetan Plateau. Int. J. Environ. Res. Public Health 2019, 16, 4670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Han, G.; Zeng, J.; Liang, B.; Qu, R.; Liu, J.; Liu, M. Spatial Variation and Controlling Factors of H and O Isotopes in Lancang River Water, Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 4932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Goswami, R.; Awasthi, N.; Das, R. Provenance and fate of trace and rare earth elements in the sediment-aquifers systems of Majuli River Island, India. Chemosphere 2019, 237, 124477. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xu, S.; Yang, J.; Yin, H. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau. Chem. Geol. 2008, 249, 307–320. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.; Li, G.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Kang, H.; Li, D.; Chen, Y.; Song, L.; Xue, G.; Geng, J.; Xu, B.; Niu, B. Micro-continental blocks in Gondwana assembly: Geological and geochemical evidence of the Indochina block, SE Tibetan Plateau. Lithos 2019, 326–327, 460–475. [Google Scholar] [CrossRef]
- Noh, H.; Huh, Y.; Qin, J.; Ellis, A. Chemical weathering in the Three Rivers region of Eastern Tibet. Geochim. Cosmochim. Acta 2009, 73, 1857–1877. [Google Scholar] [CrossRef]
- Lupker, M.; France-Lanord, C.; Galy, V.; Lavé, J.; Gaillardet, J.; Gajurel, A.P.; Guilmette, C.; Rahman, M.; Singh, S.K.; Sinha, R. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin). Geochim. Cosmochim. Acta 2012, 84, 410–432. [Google Scholar] [CrossRef] [Green Version]
- Raymo, M.E.; Ruddiman, W.F.; Froelich, P.N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 1988, 16, 649–653. [Google Scholar] [CrossRef]
- Raymo, M.E.; Ruddiman, W.F. Tectonic forcing of late Cenozoic climate. Nature 1992, 359, 117–122. [Google Scholar] [CrossRef]
- Ruddiman, W.F. Forcing of Late Cenozoic Northern Hemisphere Climate by Plateau Uplift in Southern Asia and the American West. J. Geophys. Res. Atmos. 1989, 94, 18409–18427. [Google Scholar] [CrossRef]
- Xu, P.; Tang, Y.; Zhang, S.; Liu, D.; Yang, Z.; Ma, Y. An Analysis of Different Water Source in Lancang River Basin Based on Hydrogen-oxygen Stable Isotope. China Rural Water Hydropower 2019, 1, 44–50. [Google Scholar]
- Chen, S.; Li, L.; Li, J.; Liu, J. Analysis of the Temporal and Spatial Variation Characteristics of Precipitation in the Lancang River Basin over the Past 55 Years. J. Geo-Inf. Sci. 2017, 19, 365–373. [Google Scholar]
- Zhong, R.; Zhao, T.; He, Y.; Chen, X. Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong. Energy 2019, 179, 685–696. [Google Scholar] [CrossRef]
- An, Q.; Wu, Y.; Wang, J.; Li, Z. Assessment of dissolved heavy metal in the Yangtze River estuary and its adjacent sea, China. Environ. Monit. Assess 2010, 164, 173–187. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, W.; Lin, X.; Yan, H.; Ma, M.; He, Z. Assessment of heavy metals pollution of soybean grains in North Anhui of China. Sci. Total Environ. 2019, 646, 914–922. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, J.; Zhang, Z.; Wu, T. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): Distribution, sources, and water quality assessment. Environ. Sci. Pollut. Res. 2016, 23, 8091–8103. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X. Spatial distribution of dissolved Pb, Hg, Cd, Cu and as in the Bohai Sea. J. Environ. Sci. 2007, 19, 1061–1066. [Google Scholar] [CrossRef]
- Li, L.; Li, J. Study on Water Resources and Water Environment in the Lancang River Basin; Standard Press of China: Beijing, China, 2016; ISBN 978-7-03-045783-7. [Google Scholar]
- Wang, Z. Analysis of water resources and utilization in Lancang River basin in 2003~2017. Yangtze River 2018, 49, 40–44. [Google Scholar]
- China GB 5749-2006 Environmental Quality. In Standard for Drinking Water Quality; Standard Press of China: Beijing, China, 2006.
- United States Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); Office of Superfund Remediation and Technology Innovation: Washington, DC, USA, 2004. [Google Scholar]
- Shiller, A.M.; Boyle, E. Dissolved zinc in rivers. Nature 1985, 317, 49–52. [Google Scholar] [CrossRef]
- He, L.; Song, Y.; Chen, K.; Hou, Z.; Yu, F.; Yang, Z.; Wei, J.; Li, Z.; Liu, Y. Thrust-controlled, sediment-hosted, Himalayan Zn–Pb–Cu–Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geol. Rev. 2009, 36, 106–132. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Z.; Shan, J.; Chen, J.; Tang, C.; Yi, M.; Zhao, X. Distribution characteristics and sources of trace metals in sediment cores from a trans-boundary watercourse: An example from the Shima River, Pearl River Delta. Ecotoxicol. Environ. Saf. 2016, 134, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
Longitude | Latitude | Temperature | pH | TDS | DO | |
---|---|---|---|---|---|---|
(°E) | (°N) | °C | mg/L | mg/L | ||
LCJ-1 | 94.402991 | 33.456057 | 11.5 | 8.71 | 346.5 | 6.21 |
LCJ-2 | 94.595065 | 33.215437 | 8.6 | 8.74 | 257.4 | 6.90 |
LCJ-3 | 94.591304 | 33.211587 | 8.4 | 8.72 | 1313.0 | 6.87 |
LCJ-4 | 95.091903 | 32.975173 | 9.6 | 8.76 | 487.5 | 6.97 |
LCJ-5 | 95.545432 | 32.858943 | 13.4 | 8.67 | 455.0 | 6.40 |
LCJ-6 | 95.549912 | 32.844761 | 12.5 | 8.63 | 552.5 | 6.76 |
LCJ-7 | 96.150953 | 32.562826 | 12.2 | 8.79 | 507.0 | 6.72 |
LCJ-8 | 96.562116 | 32.140811 | 13.8 | 8.68 | 455.0 | 6.73 |
LCJ-9 | 97.120279 | 31.163799 | 14.0 | 8.78 | 330.9 | 6.49 |
LCJ-10 | 97.070229 | 31.712121 | 15.7 | 8.58 | 360.1 | 6.53 |
LCJ-11 | 97.217497 | 31.371264 | 15.4 | 8.61 | 353.6 | 7.46 |
LCJ-12 | 97.383187 | 30.721746 | 16.0 | 8.53 | 337.4 | 6.91 |
LCJ-13 | 97.353670 | 30.734584 | 15.2 | 8.55 | 194.4 | 6.94 |
LCJ-14 | 98.350127 | 29.639878 | 16.6 | 8.63 | 304.2 | 7.75 |
LCJ-15 | 98.367690 | 29.659875 | 16.2 | 8.38 | 204.8 | 7.11 |
LCJ-16 | 98.609130 | 29.088158 | 17.9 | 8.44 | 297.7 | 7.98 |
LCJ-17 | 98.788479 | 28.553069 | 17.9 | 8.56 | 293.8 | 7.32 |
LCJ-18 | 98.917709 | 28.473685 | 12.3 | 8.49 | 137.8 | 7.73 |
LCJ-19 | 98.921009 | 28.078747 | 16.9 | 8.49 | 267.8 | 8.68 |
LCJ-20 | 99.047241 | 27.709256 | 17.2 | 8.51 | 254.8 | 8.40 |
LCJ-21 | 99.000295 | 27.653755 | 15.9 | 8.62 | 52.7 | 8.31 |
LCJ-22 | 99.088791 | 27.355468 | 17.3 | 8.62 | 250.3 | 8.17 |
LCJ-23 | 99.130126 | 27.348985 | 19.9 | 8.68 | 120.9 | 7.26 |
LCJ-24 | 99.170807 | 27.104086 | 19.7 | 8.46 | 257.4 | 8.11 |
LCJ-25 | 99.188900 | 26.868327 | 24.5 | 8.44 | 251.6 | 7.83 |
LCJ-26 | 99.147854 | 26.476630 | 18.1 | 8.53 | 258.1 | 7.98 |
LCJ-27 | 99.126576 | 26.085784 | 18.4 | 8.47 | 241.8 | 8.38 |
LCJ-28 | 99.236585 | 25.752749 | 18.4 | 8.41 | 232.1 | 8.19 |
LCJ-29 | 99.373223 | 25.630842 | 22.7 | 8.40 | 202.2 | 7.18 |
LCJ-30 | 99.308713 | 25.423561 | 18.8 | 8.47 | 233.4 | 8.84 |
LCJ-31 | 99.866501 | 24.783772 | 23.2 | 8.35 | 234.0 | 9.15 |
LCJ-32 | 100.157401 | 24.826969 | 24.1 | 8.40 | 238.6 | 8.09 |
LCJ-33 | 100.099940 | 24.667684 | 20.0 | 8.24 | 247.7 | 7.68 |
LCJ-34 | 100.486163 | 24.528619 | 25.1 | 8.39 | 98.2 | 6.71 |
LCJ-35 | 100.497481 | 24.533862 | 20.7 | 8.38 | 252.9 | 7.39 |
LCJ-36 | 100.380259 | 23.991530 | 21.6 | 8.40 | 245.7 | 7.03 |
LCJ-37 | 100.103179 | 23.973999 | 22.0 | 8.46 | 129.4 | 6.93 |
LCJ-38 | 100.180689 | 23.544902 | 28.6 | 8.27 | 156.0 | 7.04 |
LCJ-39 | 100.171253 | 23.559853 | 22.4 | 8.18 | 239.9 | 7.15 |
LCJ-40 | 100.118367 | 22.626470 | 24.8 | 8.47 | 100.8 | 7.02 |
LCJ-41 | 100.396296 | 22.667391 | 28.4 | 8.44 | 181.4 | 7.87 |
LCJ-42 | 100.467455 | 22.591897 | 20.6 | 8.21 | 237.3 | 5.66 |
LCJ-43 | 100.580795 | 22.497485 | 20.7 | 8.24 | 241.2 | 5.36 |
LCJ-44 | 100.802062 | 22.015849 | 22.1 | 8.25 | 224.7 | 6.12 |
LCJ-45 | 100.922704 | 21.851740 | 22.2 | 8.38 | 236.0 | 5.92 |
Cr | Ni | Cu | Zn | Mo | Pb | |
---|---|---|---|---|---|---|
μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | |
Upstream | ||||||
LCJ-1 | 0.00 | 0.21 | 1.40 | 0.28 | 0.93 | 0.11 |
LCJ-2 | nd1 | 0.07 | 0.44 | 0.47 | 1.38 | 0.16 |
LCJ-3 | 0.11 | 0.48 | 0.57 | 1.09 | 1.30 | 0.21 |
LCJ-4 | 0.06 | 3.28 | 1.53 | 0.84 | 3.06 | 0.21 |
LCJ-5 | 0.04 | 0.29 | 0.30 | 0.66 | 1.81 | 0.12 |
LCJ-6 | 0.01 | 0.54 | 0.58 | 0.66 | 1.97 | 0.16 |
LCJ-7 | 0.11 | 0.43 | 0.54 | 0.53 | 1.75 | 0.11 |
LCJ-8 | 0.04 | 0.35 | 0.56 | 0.59 | 1.85 | 0.26 |
LCJ-9 | 0.07 | 0.44 | 0.31 | 0.41 | 0.75 | 0.50 |
LCJ-10 | 0.10 | 0.30 | 0.43 | 1.68 | 1.50 | 0.53 |
LCJ-11 | 0.08 | 0.29 | 0.52 | 0.23 | 1.49 | 0.09 |
min | nd | 0.07 | 0.30 | 0.23 | 0.75 | 0.09 |
max | 0.11 | 3.28 | 1.53 | 1.68 | 3.06 | 0.53 |
mean | 0.05 | 0.61 | 0.65 | 0.68 | 1.62 | 0.22 |
SD | 0.04 | 0.90 | 0.42 | 0.41 | 0.61 | 0.15 |
Midstream | Cr | Ni | Cu | Zn | Mo | Pb |
μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | |
LCJ-12 | 0.09 | 0.33 | 0.53 | 0.50 | 1.24 | 0.30 |
LCJ-13 | 0.17 | 0.36 | 0.29 | 0.19 | 0.45 | 0.12 |
LCJ-14 | 0.11 | 0.20 | 0.43 | 0.36 | 1.21 | 0.17 |
LCJ-15 | 0.36 | 0.15 | 0.77 | 0.24 | 1.29 | 0.11 |
LCJ-16 | 0.02 | 0.15 | 0.41 | 0.37 | 1.06 | 0.49 |
LCJ-17 | 0.09 | 0.20 | 0.42 | 0.71 | 1.02 | 0.16 |
LCJ-18 | 0.16 | 0.10 | 0.19 | 3.00 | 0.71 | 0.14 |
LCJ-19 | 0.09 | 0.19 | 0.46 | 1.40 | 0.94 | 0.21 |
LCJ-20 | 0.11 | 0.17 | 0.45 | 0.90 | 0.78 | 0.22 |
LCJ-21 | 0.03 | 0.05 | 0.26 | 0.83 | 0.25 | 0.35 |
LCJ-22 | 0.06 | 0.18 | 0.53 | 0.25 | 0.68 | 0.26 |
LCJ-23 | 0.27 | 0.46 | 0.91 | 0.79 | 0.51 | 0.13 |
LCJ-24 | 0.10 | 0.24 | 0.58 | 0.73 | 0.85 | 0.26 |
LCJ-25 | 0.09 | 0.25 | 0.68 | 0.39 | 0.77 | 0.44 |
LCJ-26 | 0.09 | 0.24 | 0.62 | 0.38 | 0.76 | 0.25 |
LCJ-27 | 0.15 | 0.21 | 0.68 | 0.51 | 0.89 | 0.20 |
LCJ-28 | nd | 0.82 | 0.09 | 0.09 | 0.75 | 0.29 |
min | nd | 0.05 | 0.09 | 0.09 | 0.25 | 0.11 |
max | 0.36 | 0.82 | 0.91 | 3.00 | 1.29 | 0.49 |
mean | 0.12 | 0.25 | 0.49 | 0.69 | 0.83 | 0.24 |
SD | 0.09 | 0.17 | 0.21 | 0.68 | 0.28 | 0.11 |
Downstream | Cr | Ni | Cu | Zn | Mo | Pb |
μg/L | μg/L | μg/L | μg/L | μg/L | μg/L | |
LCJ-29 | 0.07 | 0.42 | 2.80 | 0.88 | 0.74 | 0.21 |
LCJ-30 | 0.06 | 0.30 | 0.90 | 0.66 | 0.83 | 0.18 |
LCJ-31 | 0.03 | 0.18 | 0.84 | 0.71 | 0.89 | 0.14 |
LCJ-32 | 0.01 | 0.23 | 0.80 | 1.21 | 0.97 | 0.18 |
LCJ-33 | 0.02 | 0.25 | 0.79 | 1.41 | 0.86 | 0.15 |
LCJ-34 | 0.49 | 0.23 | 0.83 | 1.06 | 0.52 | 0.14 |
LCJ-35 | 0.07 | 0.28 | 0.71 | 0.72 | 0.95 | 0.11 |
LCJ-36 | 0.11 | 0.19 | 0.62 | 0.54 | 0.97 | 0.40 |
LCJ-37 | 0.69 | 0.37 | 0.61 | 0.82 | 0.54 | 0.25 |
LCJ-38 | 0.08 | 0.22 | 1.01 | 0.56 | 0.45 | 0.30 |
LCJ-39 | 0.08 | 0.23 | 0.70 | 4.81 | 0.97 | 0.33 |
LCJ-40 | 0.26 | 0.22 | 0.49 | 1.83 | 0.26 | 0.15 |
LCJ-41 | 0.03 | 0.07 | 0.69 | 0.51 | 0.80 | 0.32 |
LCJ-42 | 0.04 | 0.19 | 0.53 | 0.40 | 0.99 | 0.17 |
LCJ-43 | 0.04 | 0.22 | 1.33 | 1.53 | 1.02 | 0.12 |
LCJ-44 | 0.12 | 0.23 | 0.66 | 1.20 | 1.01 | 0.31 |
LCJ-45 | 0.07 | 0.25 | 0.51 | 0.76 | 1.00 | 0.34 |
min | 0.01 | 0.07 | 0.49 | 0.40 | 0.26 | 0.11 |
max | 0.69 | 0.42 | 2.80 | 4.81 | 1.02 | 0.40 |
mean | 0.13 | 0.24 | 0.87 | 1.15 | 0.81 | 0.22 |
SD | 0.18 | 0.08 | 0.54 | 1.02 | 0.23 | 0.09 |
Lancangjiang River River | 0.11 | 0.33 | 0.67 | 0.86 | 1.02 | 0.23 |
Yangtze River 2 | nd | 0.2 | 1.7 | 0.1 | nd | 0.1 |
Amazon River 2 | nd | nd | nd | 0.8 | nd | nd |
Yellow River 2 | nd | 0.30–0.59 | 0.96–1.6 | 0.07–0.32 | nd | 0.01–4.1 |
Upper Mississippi 2 | nd | 1.66 | 1.85 | 0.12 | 1.11 | 0.01 |
World Average 2 | 0.70 | 0.80 | 1.48 | 0.04 | 0.42 | 0.08 |
T (°C) | pH | TDS | DO | Cr | Ni | Cu | Zn | Mo | Pb | |
---|---|---|---|---|---|---|---|---|---|---|
T | 1 | |||||||||
pH | −0.750 ** | 1 | ||||||||
TDS | −0.576 ** | 0.446 ** | 1 | |||||||
DO | 0.136 | −0.012 | −0.193 | 1 | ||||||
Cr | 0.184 | −0.058 | −0.249 | −0.102 | 1 | |||||
Ni | −0.312 * | 0.300 * | 0.262 | −0.098 | −0.037 | 1 | ||||
Cu | 0.205 | −0.162 | −0.035 | −0.144 | −0.063 | 0.296 * | 1 | |||
Zn | 0.123 | −0.350 * | −0.070 | −0.054 | 0.040 | −0.053 | 0.017 | 1 | ||
Mo | −0.574 ** | 0.412 ** | 0.552 ** | −0.269 | −0.282 | 0.637 ** | 0.097 | −0.076 | 1 | |
Pb | 0.181 | −0.059 | −0.036 | 0.025 | −0.146 | −0.027 | −0.190 | 0.046 | −0.100 | 1 |
PC | 1 | 2 | 3 |
---|---|---|---|
Eigenvalues | 1.881 | 1.217 | 1.003 |
Variance (%) | 31.342 | 20.277 | 16.723 |
Cumulative (%) | 31.342 | 51.619 | 68.342 |
Ni | 0.880 | 0.089 | 0.039 |
Mo | 0.855 | −0.177 | −0.117 |
Cu | 0.478 | 0.458 | 0.062 |
Pb | −0.128 | −0.753 | 0.173 |
Cr | −0.333 | 0.634 | 0.161 |
Zn | −0.013 | −0.030 | 0.973 |
Eigenvalue (%) | Relative Eigenvalue 1 | Variable | Loading Value | Relative Loading Value 2 | Wi 3 | Guidelines 4 (μg/L) | |
---|---|---|---|---|---|---|---|
PC1 | 1.881 | 0.459 | Ni | 0.880 | 0.398 | 1.153 | 20 |
Mo | 0.855 | 0.386 | 1.187 | 70 | |||
Cu | 0.478 | 0.216 | 2.124 | 1000 | |||
Total | 2.213 | 1.000 | 0.459 | ||||
PC2 | 1.217 | 0.297 | Cu | 0.458 | 0.419 | 0.708 | 1000 |
Cr | 0.634 | 0.581 | 0.511 | 50 | |||
Total | 1.092 | 1.000 | 0.297 | ||||
PC3 | 1.003 | 0.245 | Zn | 0.973 | 1.000 | 0.245 | 1000 |
Total | 0.973 | 1.000 | 0.245 | ||||
Total | 4.101 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, B.; Han, G.; Zeng, J.; Qu, R.; Liu, M.; Liu, J. Spatial Variation and Source of Dissolved Heavy Metals in the Lancangjiang River, Southwest China. Int. J. Environ. Res. Public Health 2020, 17, 732. https://doi.org/10.3390/ijerph17030732
Liang B, Han G, Zeng J, Qu R, Liu M, Liu J. Spatial Variation and Source of Dissolved Heavy Metals in the Lancangjiang River, Southwest China. International Journal of Environmental Research and Public Health. 2020; 17(3):732. https://doi.org/10.3390/ijerph17030732
Chicago/Turabian StyleLiang, Bin, Guilin Han, Jie Zeng, Rui Qu, Man Liu, and Jinke Liu. 2020. "Spatial Variation and Source of Dissolved Heavy Metals in the Lancangjiang River, Southwest China" International Journal of Environmental Research and Public Health 17, no. 3: 732. https://doi.org/10.3390/ijerph17030732
APA StyleLiang, B., Han, G., Zeng, J., Qu, R., Liu, M., & Liu, J. (2020). Spatial Variation and Source of Dissolved Heavy Metals in the Lancangjiang River, Southwest China. International Journal of Environmental Research and Public Health, 17(3), 732. https://doi.org/10.3390/ijerph17030732