Prevalence of Suboptimal Health Status and the Relationships between Suboptimal Health Status and Lifestyle Factors among Chinese Adults Using a Multi-Level Generalized Estimating Equation Model
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample and Participants
2.2. Suboptimal Health Assessment
2.3. Definition of Covariates
2.4. Quality Control
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grad, F.P. The preamble of the constitution of the World Health Organization. Bull. World Health Organ. 2002, 80, 981–984. [Google Scholar] [PubMed]
- Medicine CAOC. The TCM Clinical Guidelines of Suboptimal Health Status; China Press TCM: Beijing, China, 2006. [Google Scholar]
- Wang, W.; Yan, Y. Suboptimal health: A new health dimension for translational medicine. Clin. Transl. Med. 2012, 1, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ke, B.; Liang, Y. Anti-aging and complete sub-health checkup. Clin. Funct. Nutr. 2011, 3, 137–140. [Google Scholar]
- Dunstan, R.H.; Sparkes, D.L.; Roberts, T.K.; Crompton, M.J.; Gottfries, J.; Dascombe, B.J. Development of a complex amino acid supplement, fatigue Reviva, for oral ingestion: Initial evaluations of product concept and impact on symptoms of sub-health in a group of males. Nutr. J. 2013, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.X.; Zhou, H.L. Healthy, disease and subhealthy. Med. Soc. 2007, 20, 5–8. [Google Scholar]
- Xie, Y.M.; Liu, B.Y.; Piao, H.Y. Exploration on the common characters of sub-healthy people based on clinical epidemiology. J. Chin. Integr. Med. 2006, 26, 612–616. [Google Scholar]
- Sun, T.; Wang, T.F.; Wu, L.X. Sub-Health; China Press of Traditional Chinese Medicine: Beijing, China, 2007; pp. 16–17. [Google Scholar]
- Patel, S.R.; Hu, F.B. Short sleep duration and weight gain: A systematic review. Obesity 2008, 16, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Van Cauter, E.; Spiegel, K.; Tasali, E.; Leproult, R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008, 9 (Suppl. 1), S23–S28. [Google Scholar] [CrossRef] [Green Version]
- Okami, Y.; Kato, T.; Nin, G.; Harada, K.; Aoi, W.; Wada, S.; Higashi, A.; Okuyama, Y.; Takakuwa, S.; Ichikawa, H.; et al. Lifestyle and psychological factors related to irritable bowel syndrome in nursing and medical school students. J. Gastroenterol. 2011, 46, 1403–1410. [Google Scholar] [CrossRef]
- Folsom, A.R.; Yatsuya, H.; Nettleton, J.A.; Lutsey, P.L.; Cushman, M.; Rosamond, W.D.; ARIC Study Investigators. Community prevalence of ideal cardiovascular health, by the American Heart Association definition, and relationship with cardiovascular disease incidence. J. Am. Coll. Cardiol. 2011, 57, 1690–1696. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Li, C.I.; Liu, C.S.; Lin, W.Y.; Fuh, M.M.T.; Yang, S.Y.; Lee, C.C.; Li, T.C. Impact of lifestyle-related factors on all-cause and cause-specific mortality in patients with type 2 diabetes the Taichung Diabetes Study. Diabetes Care 2012, 35, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikorski, C.; Luppa, M.; Weyerer, S.; König, H.-H.; Maier, W.; Schön, G.; Petersen, J.J.; Gensichen, J.; Fuchs, A.; Bickel, H.; et al. Obesity and associated lifestyle in a large sample of Multi- Morbid German primary care attendees. Plos One 2014, 9, e102587. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xiang, H.; Jiang, P.; König, H.-H.; Maier, W.; Schön, G.; Petersen, J.J.; Gensichen, J.; Fuchs, A.; Bickel, H.; et al. The role of healthy lifestyle in the implementation of regressing suboptimal health status among college students in China: A nested case-control study. Int. J. Environ. Res. Public Health 2017, 14, 240. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Wei, M.; Zhu, C.Y. An investigation of suboptimal health status in Guangdong: A cross section study. Shandong Med. J. 2008, 48, 59–60. [Google Scholar]
- Chen, Q.S.; Wang, S.Y.; Jing, C.X.; Dong, X.M.; Chi, G.B. Evaluation on diagnostic criterion of suboptimal health with Delphi method. Chin. J. Public Health 2003, 19, 1467–1468. [Google Scholar]
- Xu, T.; Han, S.M.; Liu, J.T.; Zhu, G.J.; Mao, M. Comparison of suboptimal health status between Tibetan people and Han people. Chin. Med. J. 2009, 89, 2671–2674. [Google Scholar]
- Xu, T.; Liu, J.T.; Han, S.M.; Zhu, G.J.; Mao, M. Analyses for Risk Factors of suboptimal health status with Logistic Model and Binomial Model—Survey in Tibetan People. J. Clin. Rehabil. Tissue Eng. Res. 2009, 13, 6597–6600. [Google Scholar]
- Zhou, B.F. Effect of body mass index on all-cause mortality and incidence of cardiovascular diseases-report for meta-analysis of prospective studies open optimal cut-off points of body mass index in Chinese adults. Biomed. Environ. Sci. 2002, 15, 245–252. [Google Scholar]
- Chinese Guidelines for Hypertension Prevention and Treatment Revision Committee. Chinese Guidelines for Hypertension Prevention and Treatment (Revised Edition 2005); People’s Medical Publishing House: Beijing, China, 2006. [Google Scholar]
- National Institutes of Health; National Heart, Lung, and Blood Institute. National High Blood Pressure Education Program; National Institutes of Health: Bethesda, MD, USA, 2003. [Google Scholar]
- Wang, J.; Xie, H.; Fisher, J.H. Multilevel Models: Applications Using SAS; Higher Education Press: Beijing, China, 2010. [Google Scholar]
- Ma, C.; Xu, W.; Zhou, L.; Ma, S.; Wang, Y. Association between lifestyle factors and suboptimal health status among Chinese college freshmen: A cross-sectional study. BMC Public Health 2018, 18, 105. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Liu, Y.; Li, M.; Hu, P.-F.; Guo, A.-M.; Yang, X.-H.; Qiu, J.-J.; Yang, S.-S.; Shen, J.; Zhang, L.-P.; et al. Development and evaluation of a questionnaire for measuring suboptimal health status in urban Chinese. J. Epidemiol. 2009, 19, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ge, S.; Yan, Y.; Wang, A.; Zhao, Z.; Yu, X.; Qiu, J.; AlZain, M.A.; Wang, H.; Fang, H.; et al. China suboptimal health cohort study: Rationale, design and baseline characteristics. J. Transl. Med. 2016, 14, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambrose, J.A.; Barua, R.S. The pathophysiology of cigarette smoking and cardiovascular disease: An update. J. Am. Coll. Cardiol. 2004, 43, 1731–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasco, A.J.; Secretan, M.B.; Straif, K. Tobacco smoking and cancer: A brief review of recent epidemiological evidence. Lung Cancer 2004, 45 (Suppl. 2), S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Goto, A.; Mizoue, T. Smoking and the risk of type 2 diabetes in Japan: A systematic review and meta-analysis. J. Epidemiol. 2017, 27, 553–561. [Google Scholar] [CrossRef]
- Erol, A.; Karpyak, V.M. Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug Alcohol Depend. 2015, 156, 1–13. [Google Scholar] [CrossRef]
- Cohen, S.M. Alcoholic Liver Disease. Clin. Liver Dis. 2016, 20, xiii–xiv. [Google Scholar] [CrossRef]
- Brown, L.K. Can sleep deprivation studies explain why human adults sleep? Curr. Opin. Pulm. Med. 2012, 18, 541–545. [Google Scholar] [CrossRef]
- Killgore, W.D.S. Effects of sleep deprivation on cognition. Prog. Brain Res. 2010, 185, 105–129. [Google Scholar]
- Covassin, N.; Singh, P. Sleep Duration and Cardiovascular Disease Risk: Epidemiologic and Experimental Evidence. Sleep Med Clin. 2016, 11, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Ge, B.H.; Guo, X.M. Short and long sleep durations are both associated with increased risk of stroke: A meta-analysis of observational studies. Int. J. Stroke 2015, 10, 177–184. [Google Scholar] [CrossRef]
- Ranum, B.M.; Wichstrøm, L.; Pallesen, S.; Falch-Madsen, J.; Halse, M.; Steinsbekk, S. Association Between Objectively Measured Sleep Duration and Symptoms of Psychiatric Disorders in Middle Childhood. JAMA Netw. Open 2019, 2, e1918281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, X.; Lv, J.; Guo, Y.; Bian, Z.; Tan, Y.; Pei, P.; Chen, J.; Yan, S.; Li, H.; Fu, Z.; et al. Association of Sleep Duration with Weight Gain and General and Central Obesity Risk in Chinese Adults: A Prospective Study. Obesity 2019. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xuan, Z.; Li, F.; Xiao, W.; Fu, X.; Jiang, P.; Chen, J.; Xiang, L.; Liu, Y.; Nie, X.; et al. Work-Recreation Balance, Health-Promoting Lifestyles and Suboptimal Health Status in Southern China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2016, 13, E339. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Shao, H.; Zhi, X.; Xu, J.; Xie, J. Sub-health status of middle school teachers and its correlation analysis with occupational stress. Chin. J. Ind. Hyg. Occup. Dis. 2017, 35, 585–588. [Google Scholar]
- Owen, L.; Corfe, B. The role of diet and nutrition on mental health and wellbeing. Proc. Nutr. Soc. 2017, 76, 425–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garfinkle, M.A. Salt and essential hypertension: Pathophysiology and implications for treatment. J Am Soc Hypertens. 2017, 11, 385–391. [Google Scholar] [CrossRef]
- Cordner, Z.A.; Tamashiro, K.L. Effects of high-fat diet exposure on learning & memory. Physiol. Behav. 2015, 152, 363–371. [Google Scholar]
- Lv, J.; Qi, L.; Yu, C.; Yang, L.; Guo, Y.; Chen, Y.; Bian, Z.; Sun, D.; Du, J.; Ge, P.; et al. Consumption of spicy foods and total and cause specific mortality: Population based cohort study. BMJ 2015, 351, h3942. [Google Scholar] [CrossRef] [Green Version]
Items | Total (n = 48,978) | Sex | Age Groups | |||
---|---|---|---|---|---|---|
Men (n = 19,834) | Women (n = 29,144) | 18–34 y (n = 15,430) | 35–59 y (n = 23,372) | ≥60 y (n = 10,176) | ||
Fatigue | 14,300 (29.20%) | 5142 (25.93%) | 9158 (31.42%) | 4261 (27.62%) | 7264 (31.08%) | 2775 (27.27%) |
Headache or dizziness | 14,740 (30.10%) | 4474 (22.56%) | 10,266 (35.23%) | 3135 (20.32%) | 8068 (34.52%) | 3537 (34.76%) |
Tinnitus | 8415 (17.18%) | 3169 (15.98%) | 5246 (18.00%) | 1248 (8.09%) | 4621 (19.77%) | 2546 (25.02%) |
Numbness or stiffness in the shoulders or legs | 10,324 (21.08%) | 3440 (17.34%) | 6884 (23.62%) | 1498 (9.71%) | 5861 (25.08%) | 2965 (29.14%) |
A sense of pharyngeal foreign bodies | 8205 (16.75%) | 3324 (16.76%) | 4881 (16.75%) | 2738 (17.74%) | 4037 (17.27%) | 1430 (14.05%) |
Upset | 10,192 (20.81%) | 3050 (15.38%) | 7142 (24.51%) | 3485 (22.59%) | 4987 (21.34%) | 1720 (16.90%) |
Loneliness | 4238 (8.65%) | 1547 (7.80%) | 2691 (9.23%) | 1890 (12.25%) | 1573 (6.73%) | 775 (7.62%) |
Inattention | 9944 (20.30%) | 3515 (17.72%) | 6429 (22.06%) | 3897 (25.26%) | 4206 (18.00%) | 1841 (18.09%) |
Anxiety | 7064 (14.42%) | 2323 (11.71%) | 4741 (16.27%) | 2513 (16.29%) | 3272 (14.00%) | 1279 (12.57%) |
Dreaminess | 15,131 (30.89%) | 4733 (23.86%) | 10,398 (35.68%) | 4478 (29.02%) | 7544 (32.28%) | 3109 (30.55%) |
Forgetfulness | 18,872 (38.53%) | 6601 (33.28%) | 12,271 (42.10%) | 4579 (29.68%) | 9641 (41.25%) | 4652 (45.72%) |
Decreased vitality | 9872 (20.16%) | 3645 (18.38%) | 6227 (21.37%) | 2366 (15.33%) | 4643 (19.87%) | 2863 (28.13%) |
Disinterest in surroundings | 6514 (13.30%) | 2361 (11.90%) | 4153 (14.25%) | 2248 (14.57%) | 2928 (12.53%) | 1338 (13.15%) |
Moodiness | 7179 (14.66%) | 2388 (12.04%) | 47,911 (16.44%) | 2761 (17.89%) | 3215 (13.76%) | 1203 (11.82%) |
Feeling tired at work | 5279 (10.78%) | 2048 (10.33%) | 3231 (11.09%) | 1753 (11.36%) | 2627 (11.24%) | 899 (8.83%) |
Incompatibility with coworkers | 1588 (3.24%) | 630 (3.18%) | 958 (3.29%) | 523 (3.39%) | 765 (3.27%) | 300 (2.95%) |
Susceptibility to flu or other diseases | 8463 (17.28%) | 2849 (14.36%) | 5614 (19.26%) | 2333 (15.12%) | 4104 (17.56%) | 2026 (19.91%) |
The feeling of suffering from undiagnosed diseases | 7253 (14.81%) | 2580 (13.01%) | 4673 (16.03%) | 2009 (13.02%) | 3743 (16.01%) | 1501 (14.75%) |
Characteristics | Total | Sub-Health | Chi-Square Test | ||
---|---|---|---|---|---|
Yes | No | Chi-Square | p * | ||
All Subjects | 48,978 | 34,021 (59.46%) | 14,957 (30.54%) | ||
Age (years) | 215.8919 | <0.0001 | |||
18–34 | 15,430 | 10,033 (65.02%) | 5397 (34.98%) | ||
35–59 | 23,372 | 16,612 (71.08%) | 6760 (28.92%) | ||
≥60 | 10,176 | 7376 (72.48%) | 2800 (27.52%) | ||
Gender | 349.9880 | <0.0001 | |||
Male | 19,834 | 12,841 (64.74%) | 6993 (35.26%) | ||
Female | 29,144 | 21,180 (72.67%) | 7964 (27.33%) | ||
Occupation | 474.5250 | <0.0001 | |||
Blue-collar worker | 26,101 | 19,238 (73.71%) | 6863 (26.29%) | ||
White-collar worker | 22,877 | 14,783 (64.62%) | 8094 (35.38%) | ||
Marriage status | 288.7890 | <0.0001 | |||
Married | 36,337 | 25,672 (70.65%) | 10,665 (29.35%) | ||
Single | 9972 | 6291 (63.09%) | 3681 (36.91%) | ||
Widowed or divorced | 2669 | 2058 (77.11%) | 611 (22.89%) | ||
Education level | 404.9562 | <0.0001 | |||
Primary school | 10,881 | 7709 (76.47%) | 2372 (23.53%) | ||
Middle school | 22,597 | 15,758 (69.73%) | 6839 (30.27%) | ||
College | 16,300 | 10,554 (64.75%) | 5746 (35.25%) | ||
Smoker | 1.8027 | 0.1794 | |||
No | 37,966 | 26,429 (69.61%) | 11,537 (30.39%) | ||
Yes | 11,012 | 7592 (68.94%) | 3420 (31.06%) | ||
Alcohol drinker | 2.5979 | 0.1070 | |||
No | 38,065 | 26,509 (69.64%) | 11,556 (30.36%) | ||
Yes | 10,913 | 7512 (68.84%) | 3401 (31.16%) | ||
Ethnicity | 436.9001 | <0.0001 | |||
Han | 36,663 | 25,242 (68.85%) | 11,421 (31.15%) | ||
Yi | 2451 | 2136 (87.15%) | 315 (12.85%) | ||
Miao | 675 | 424 (62.81%) | 251 (37.19%) | ||
Mongolia | 1802 | 1260 (69.92%) | 542 (30.08%) | ||
Tibetan | 896 | 600 (66.96%) | 296 (33.04%) | ||
Korean | 1574 | 1089 (69.19%) | 485 (30.81%) | ||
Hui | 2722 | 1865 (68.52%) | 857 (31.48%) | ||
Tujia | 1259 | 758 (60.21%) | 501 (39.79%) | ||
Others | 936 | 647 (69.12%) | 289 (30.88%) | ||
Family history | 364.8801 | <0.0001 | |||
No | 42,354 | 28,754 (67.89%) | 13,600 (32.11%) | ||
Yes | 6624 | 5267 (79.51%) | 1357 (20.49%) | ||
BMI | 5.7840 | 0.0555 | |||
Normal | 27,817 | 19,224 (69.11%) | 8593 (30.89%) | ||
Overweight | 15,284 | 10,645 (69.65%) | 4639 (30.35%) | ||
Obesity | 5877 | 4152 (70.65%) | 1725 (29.35%) | ||
Sleep duration | 624.2102 | <0.0001 | |||
≥6 h | 42,462 | 28,630 (67.42%) | 13,832 (32.58%) | ||
<6 h | 6516 | 5391 (82.73%) | 1125 (17.27%) | ||
Sleep quality | 591.6443 | <0.0001 | |||
Good | 13,874 | 8520 (61.41%) | 5354 (38.59%) | ||
Poor | 35,104 | 25,501 (72.64%) | 9603 (27.36%) | ||
Stress | 114.6625 | <0.0001 | |||
No | 48,196 | 33,341 (69.18%) | 14,855 (30.85%) | ||
Yes | 782 | 680 (86.96%) | 102 (13.04%) | ||
Negative life event | 89.0887 | <0.0001 | |||
No | 47,243 | 32,638 (69.09%) | 14,605 (30.91%) | ||
Yes | 1735 | 1383 (79.71%) | 352 (20.29%) | ||
Positive life event | 15.8650 | <0.0001 | |||
No | 48,523 | 33,666 (69.38%) | 14,857 (30.62%) | ||
Yes | 455 | 355 (78.02%) | 100 (21.98%) | ||
Hypertension | 55.3106 | <0.0001 | |||
No | 34,287 | 23,469 (68.45%) | 10,818 (31.55%) | ||
Yes | 14,691 | 10,552 (71.83%) | 4139 (28.17%) | ||
Regular exercise | 365.9445 | <0.0001 | |||
No | 26,513 | 19,388 (73.13%) | 7125 (26.87%) | ||
Yes | 22,465 | 14,633 (65.14%) | 7832 (34.86%) | ||
Diet choice | 78.194 | <0.0001 | |||
Routine | 15,834 | 10,577 (66.80%) | 5257 (33.20%) | ||
Unhealthy | 33,144 | 23,444 (70.73%) | 9700 (29.27%) | ||
Meal time | 331.9804 | <0.0001 | |||
Regular | 44,157 | 30,119 (68.21%) | 14,038 (31.79%) | ||
Irregular | 4821 | 3902 (80.94%) | 919 (19.06%) |
Characteristics | Bivariate | Multivariate | ||
---|---|---|---|---|
OR | 95% CI | OR | 95% CI | |
Age (years) | ||||
18–34 | 1.000 | - | 1.000 | - |
35–59 | 1.322 | 1.266–1.381 | 1.040 | 0.977–1.108 |
≥60 | 1.417 | 1.342–1.497 | 1.067 | 0.979–1.163 |
Gender | ||||
Male | 1.000 | - | 1.000 | - |
Female | 1.448 | 1.393–1.506 | 1.284 | 1.198–1.377 |
Occupation | ||||
Blue-collar worker | 1.535 | 1.477–1.595 | 1.059 | 1.011–1.109 |
White-collar worker | 1.000 | - | 1.000 | - |
Marriage status | ||||
Married | 1.000 | - | 1.000 | - |
Single | 0.710 | 0.678–0.744 | 1.021 | 0.936–1.113 |
Widowed or divorced | 1.399 | 1.276–1.537 | 1.106 | 1.064–1.149 |
Education level | ||||
Primary school | 1.000 | - | 1.000 | - |
Middle school | 0.709 | 0.672–0.748 | 0.856 | 0.812–0.903 |
College | 0.565 | 0.534–0.598 | 0.791 | 0.730–0.856 |
Smoker | ||||
No | 1.000 | - | 1.000 | - |
Yes | 0.969 | 0.926–1.015 | 1.083 | 1.055–1.111 |
Alcohol drinker | ||||
No | 1.000 | - | 1.000 | - |
Yes | 0.963 | 0.920–1.008 | 1.075 | 1.025–1.127 |
Ethnicity | ||||
Han | 1.000 | - | 1.000 | - |
Yi | 3.068 | 2.725–3.466 | 1.002 | 0.921–1.089 |
Miao | 0.764 | 0.653–0.896 | 0.927 | 0.874–0.983 |
Mongolia | 1.052 | 0.949–1.167 | 0.824 | 0.801–0.847 |
Tibetan | 0.917 | 0.797–1.057 | 0.852 | 0.816–0.890 |
Korean | 1.016 | 0.911–1.134 | 0.981 | 0.929–1.036 |
Hui | 0.985 | 0.906–1.071 | 1.054 | 1.003–1.108 |
Tujia | 0.685 | 0.610–0.768 | 1.029 | 0.950–1.114 |
Others | 1.013 | 0.881–1.167 | 0.966 | 0.915–1.020 |
Family history | ||||
No | 1.000 | - | 1.000 | - |
Yes | 1.836 | 1.724–1.956 | 1.203 | 1.152–1.256 |
BMI | ||||
Normal | 1.000 | - | 1.000 | - |
Overweight | 1.026 | 0.983–1.071 | 0.981 | 0.948–1.014 |
Obesity | 1.076 | 1.012–1.144 | 0.998 | 0.965–1.032 |
Sleep duration | ||||
≥6 h | 1.000 | - | 1.000 | - |
<6 h | 2.315 | 2.165–2.478 | 1.235 | 1.183–1.290 |
Sleep quality | ||||
Good | 1.000 | - | 1.000 | - |
Poor | 1.669 | 1.601–1.739 | 1.594 | 1.516–1.677 |
Stress | ||||
No | 1.000 | - | 1.000 | - |
Yes | 2.970 | 2.422–3.681 | 1.588 | 1.496–1.686 |
Negative life event | ||||
No | 1.000 | - | 1.000 | - |
Yes | 1.758 | 1.563–1.982 | 1.144 | 1.045–1.187 |
Positive life event | ||||
No | 1.000 | - | 1.000 | - |
Yes | 1.566 | 1.259–1.967 | 1.014 | 0.973–1.056 |
Hypertension | ||||
No | 1.000 | - | 1.000 | - |
Yes | 1.175 | 1.126–1.226 | 1.000 | 0.977–1.022 |
Regular exercise | ||||
No | 1.000 | - | 1.000 | - |
Yes | 0.687 | 0.661–0.714 | 0.913 | 0.849–0.983 |
Diet choice | ||||
Routine | 1.000 | - | 1.000 | - |
Unhealthy | 1.201 | 1.153–1.251 | 1.093 | 1.033–1.156 |
Meal time | ||||
Regular | 1.000 | - | 1.000 | - |
Irregular | 1.979 | 1.838–2.133 | 1.231 | 1.105–1.372 |
Characteristics | Physical Symptom | Psychological Symptom | Vigor | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | ||
Age (years) | |||||||
18–34 | 1.000 | - | 1.000 | - | 1.000 | - | |
35–59 | 1.119 | 1.055–1.185 | 1.000 | 0.938–1.065 | 1.004 | 0.917–1.099 | |
≥60 | 1.143 | 1.055–1.238 | 0.996 | 0.912–1.088 | 1.170 | 1.023–1.339 | |
Gender | |||||||
Male | 1.000 | - | 1.000 | - | 1.000 | - | |
Female | 1.260 | 1.175–1.353 | 1.336 | 1.243–1.436 | 1.246 | 1.166–1.331 | |
Occupation | |||||||
Blue-collar worker | 1.086 | 1.040–1.133 | 1.047 | 0.998–1.098 | 1.032 | 0.956–1.114 | |
White-collar worker | 1.000 | - | 1.000 | - | 1.000 | - | |
Marriage status | |||||||
Married | 1.000 | - | 1.000 | - | 1.000 | - | |
ingle | 0.790 | 0.696–0.897 | 1.156 | 1.065–1.256 | 1.167 | 1.045–1.304 | |
Widowed/divorced | 1.056 | 1.021–1.093 | 1.162 | 1.107–1.220 | 1.165 | 1.101–1.232 | |
Education level | |||||||
Primary school | 1.000 | - | 1.000 | - | 1.000 | - | |
Middle school | 0.836 | 0.789–0.887 | 0.913 | 0.866–0.962 | 0.870 | 0.803–0.941 | |
College | 0.746 | 0.681–0.818 | 0.855 | 0.790–0.924 | 0.855 | 0.778–0.940 | |
Smoker | |||||||
No | 1.000 | - | 1.000 | - | 1.000 | - | |
Yes | 1.125 | 1.086–1.165 | 1.038 | 1.011–1.066 | 1.072 | 1.024–1.121 | |
Alcohol drinker | |||||||
No | 1.000 | - | 1.000 | - | 1.000 | - | |
Yes | 1.044 | 1.006–1.083 | 1.095 | 1.040–1.153 | 1.111 | 1.027–1.202 | |
Ethnicity | |||||||
Han | 1.000 | - | 1.000 | - | 1.000 | - | |
Yi | 1.003 | 0.873–1.152 | 1.039 | 0.949–1.138 | 0.901 | 0.832–0.976 | |
Miao | 0.922 | 0.878–0.968 | 0.946 | 0.874–1.025 | 0.880 | 0.814–0.952 | |
Mongolia | 0.904 | 0.881–0.927 | 0.781 | 0.744–0.820 | 0.703 | 0.626–0.790 | |
Tibetan | 0.944 | 0.891–1.000 | 0.722 | 0.683–0.763 | 0.731 | 0.665–0.804 | |
Korean | 0.986 | 0.927–1.050 | 0.915 | 0.876–0.957 | 0.950 | 0.829–1.089 | |
Hui | 1.066 | 0.999–1.137 | 1.046 | 0.997–1.097 | 1.046 | 0.983–1.112 | |
Tujia | 1.015 | 0.978–1.054 | 1.039 | 0.942–1.147 | 1.010 | 0.891–1.145 | |
Others | 0.910 | 0.820–1.011 | 0.986 | 0.942–1.147 | 1.014 | 0.971–1.059 | |
Disease family history | |||||||
No | 1.000 | - | 1.000 | - | 1.000 | - | |
Yes | 1.196 | 1.141–1.255 | 1.196 | 1.152–1.242 | 1.202 | 1.142–1.265 | |
BMI | |||||||
Normal | 1.000 | - | 1.000 | - | 1.000 | - | |
Overweight | 1.001 | 0.965–1.038 | 0.976 | 0.942–1.011 | 0.973 | 0.928–1.021 | |
Obesity | 1.041 | 1.003–1.080 | 0.985 | 0.950–1.020 | 0.969 | 0.917–1.025 | |
Sleep duration | |||||||
≥6 h | 1.000 | - | 1.000 | - | 1.000 | - | |
<6 h | 1.232 | 1.180–1.286 | 1.268 | 1.222–1.315 | 1.204 | 1.150–1.260 | |
Sleep quality | |||||||
Good | 1.000 | - | 1.000 | - | 1.000 | - | |
Poor | 1.398 | 1.332–1.468 | 1.814 | 1.696–1.941 | 1.556 | 1.473–1.643 | |
Stress | |||||||
No | 1.000 | - | 1.000 | - | 1.000 | - | |
Yes | 1.400 | 1.327–1.477 | 1.558 | 1.411–1.721 | 2.033 | 1.830–2.258 | |
Negative life event | |||||||
No | 1.000 | - | 1.000 | - | 1.000 | - | |
Yes | 1.048 | 0.912–1.206 | 1.130 | 1.102–1.158 | 1.180 | 1.091–1.276 | |
Positive life event | |||||||
No | 1.000 | - | 1.000 | - | 1.000 | - | |
Yes | 0.904 | 0.826–0.989 | 1.069 | 1.024–1.114 | 1.109 | 1.024–1.202 | |
Hypertension | |||||||
No | 1.000 | - | 1.000 | - | 1.000 | - | |
Yes | 1.014 | 0.994–1.034 | 0.986 | 0.966–1.006 | 1.014 | 0.971–1.059 | |
Regular exercise | |||||||
No | 1.000 | - | 1.000 | - | 1.000 | - | |
Yes | 0.945 | 0.879–1.015 | 0.925 | 0.867–0.987 | 0.824 | 0.746–0.910 | |
Diet choice | |||||||
Routine | 1.000 | - | 1.000 | - | 1.000 | - | |
Unhealthy | 1.062 | 1.001–1.127 | 1.107 | 1.050–1.167 | 1.145 | 1.064–1.232 | |
Meal time | |||||||
Regular | 1.000 | - | 1.000 | - | 1.000 | - | |
Irregular | 1.130 | 0.896–1.426 | 1.256 | 1.193–1.322 | 1.317 | 1.262–1.375 |
Characteristics | Social Adaptability | Immunity | Immunity andGoing to Hospital | |||
---|---|---|---|---|---|---|
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Age (years) | ||||||
18–34 | 1.000 | - | 1.000 | - | 1.000 | - |
35–59 | 0.950 | 0.863–1.046 | 0.978 | 0.902–1.060 | 1.076 | 0.969–1.194 |
≥60 | 0.757 | 0.635–0.903 | 1.120 | 1.022–1.227 | 1.031 | 0.896–1.186 |
Gender | ||||||
Male | 1.000 | - | 1.000 | - | 1.000 | - |
Female | 1.099 | 1.003–1.205 | 1.306 | 1.216–1.403 | 1.276 | 1.103–1.477 |
Occupation | ||||||
Blue-collar worker | 0.943 | 0.842–1.055 | 1.146 | 1.081–1.215 | 1.119 | 1.038–1.206 |
White-collar worker | 1.000 | - | 1.000 | - | 1.000 | - |
Marriage status | ||||||
Married | 1.000 | - | 1.000 | - | 1.000 | - |
Single | 1.125 | 0.972–1.303 | 0.939 | 0.786–1.123 | 0.947 | 0.826–1.087 |
Widowed/divorced | 1.115 | 1.035–1.202 | 0.989 | 0.911–1.074 | 0.995 | 0.894–1.107 |
Education level | ||||||
Primary school | 1.000 | - | 1.000 | - | 1.000 | - |
Middle school | 0.774 | 0.706–0.849 | 0.740 | 0.661–0.828 | 0.756 | 0.660–0.866 |
College | 0.622 | 0.553–0.700 | 0.655 | 0.544–0.790 | 0.764 | 0.673–0.867 |
Smoker | ||||||
No | 1.000 | - | 1.000 | - | 1.000 | - |
Yes | 1.141 | 1.060–1.228 | 1.113 | 1.046–1.185 | 1.089 | 1.039–1.142 |
Alcohol drinker | ||||||
No | 1.000 | - | 1.000 | - | 1.000 | - |
Yes | 1.034 | 0.950–1.125 | 1.002 | 0.944–1.065 | 1.140 | 1.023–1.270 |
Ethnicity | ||||||
Han | 1.000 | - | 1.000 | - | 1.000 | - |
Yi | 0.898 | 0.702–1.149 | 1.095 | 0.654–1.833 | 1.413 | 1.003–1.992 |
Miao | 0.991 | 0.790–1.243 | 0.963 | 0.793–1.170 | 0.835 | 0.732–0.953 |
Mongolia | 0.835 | 0.668–1.042 | 0.956 | 0.902–1.013 | 0.931 | 0.823–1.053 |
Tibetan | 0.789 | 0.626–0.995 | 1.258 | 1.094–1.446 | 1.187 | 1.042–1.351 |
Korean | 1.280 | 1.046–1.566 | 1.224 | 1.089–1.376 | 1.100 | 0.960–1.261 |
Hui | 0.985 | 0.855–1.135 | 1.056 | 0.977–1.141 | 1.121 | 1.040–1.351 |
Tujia | 0.868 | 0.722–1.042 | 1.001 | 0.807–1.241 | 1.278 | 1.148–1.424 |
Others | 1.035 | 0.885–1.210 | 0.860 | 0.676–1.094 | 1.079 | 0.899–1.293 |
Disease family history | ||||||
No | 1.000 | - | 1.000 | - | 1.000 | - |
Yes | 1.200 | 1.060–1.357 | 1.212 | 1.118–1.315 | 1.308 | 1.229–1.392 |
BMI | ||||||
Normal | 1.000 | - | 1.000 | - | 1.000 | - |
Overweight | 0.976 | 0.919–1.038 | 0.929 | 0.880–0.980 | 0.946 | 0.900–0.993 |
Obesity | 0.948 | 0.850–1.058 | 0.926 | 0.860–0.997 | 0.966 | 0.902–1.033 |
Seep duration | ||||||
≥6 h | 1.000 | - | 1.000 | - | 1.000 | - |
<6 h | 1.194 | 1.068–1.335 | 1.215 | 1.094–1.350 | 1.158 | 0.986–1.359 |
Sleep quality | ||||||
Good | 1.000 | - | 1.000 | - | 1.000 | - |
Poor | 1.534 | 1.357–1.733 | 1.507 | 1.377–1.650 | 1.774 | 1.485–2.120 |
Stress | ||||||
No | 1.000 | - | 1.000 | - | 1.000 | - |
Yes | 2.346 | 2.054–2.681 | 1.284 | 1.240–1329 | 1.459 | 1.378–1.544 |
Negative life event | ||||||
No | 1.000 | - | 1.000 | - | 1.000 | - |
Yes | 1.277 | 1.144–1.425 | 1.104 | 0.885–1.376 | 1.197 | 0.917–1.563 |
Positive life event | ||||||
No | 1.000 | - | 1.000 | - | 1.000 | - |
Yes | 1.257 | 1.133–1.394 | 0.987 | 0.726–1.342 | 0.779 | 0.695–0.874 |
Hypertension | ||||||
No | 1.000 | - | 1.000 | - | 1.000 | - |
Yes | 0.949 | 0.887–1.016 | 1.016 | 0.977–1.057 | 0.978 | 0.932–1.026 |
Regular exercise | ||||||
No | 1.000 | - | 1.000 | - | 1.000 | - |
Yes | 0.873 | 0.720–1.060 | 0.910 | 0.825–1.004 | 0.897 | 0.766–1.049 |
Diet choice | ||||||
Routine | 1.000 | - | 1.000 | - | 1.000 | - |
Unhealthy | 1.037 | 0.927–1.160 | 1.107 | 1.003–1.221 | 1.069 | 0.962–1.187 |
Meal time | ||||||
Regular | 1.000 | - | 1.000 | - | 1.000 | - |
Irregular | 1.505 | 1.404–1.612 | 1.168 | 1.062–1.284 | 1.299 | 1.118–1.509 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Zhu, G.; Han, S. Prevalence of Suboptimal Health Status and the Relationships between Suboptimal Health Status and Lifestyle Factors among Chinese Adults Using a Multi-Level Generalized Estimating Equation Model. Int. J. Environ. Res. Public Health 2020, 17, 763. https://doi.org/10.3390/ijerph17030763
Xu T, Zhu G, Han S. Prevalence of Suboptimal Health Status and the Relationships between Suboptimal Health Status and Lifestyle Factors among Chinese Adults Using a Multi-Level Generalized Estimating Equation Model. International Journal of Environmental Research and Public Health. 2020; 17(3):763. https://doi.org/10.3390/ijerph17030763
Chicago/Turabian StyleXu, Tao, Guangjin Zhu, and Shaomei Han. 2020. "Prevalence of Suboptimal Health Status and the Relationships between Suboptimal Health Status and Lifestyle Factors among Chinese Adults Using a Multi-Level Generalized Estimating Equation Model" International Journal of Environmental Research and Public Health 17, no. 3: 763. https://doi.org/10.3390/ijerph17030763
APA StyleXu, T., Zhu, G., & Han, S. (2020). Prevalence of Suboptimal Health Status and the Relationships between Suboptimal Health Status and Lifestyle Factors among Chinese Adults Using a Multi-Level Generalized Estimating Equation Model. International Journal of Environmental Research and Public Health, 17(3), 763. https://doi.org/10.3390/ijerph17030763