Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field and Experimental Design
2.2. Measurements
2.2.1. Plant Height and Stem Diameter
2.2.2. Net Photosynthetic Rate, Leaf Area Index, and Photosynthetic Pigment
2.2.3. Analysis of Dry Matter and Roots
2.2.4. Tomato Yields, Quality, and Nutrient
2.2.5. Soil Bacteria Sequence and Diversity
2.3. Data Analysis
3. Results
3.1. Tomato Growth
3.1.1. Plant Height, Stem Diameter, and Leaf Area Index
3.1.2. Photosynthetic Pigment Contents and Net Photosynthetic Rate (Pn)
3.1.3. Root Growth
3.1.4. Dry Matter Accumulation
3.2. Tomato Fruits Quality, Yield, and IWUE
4. Discussion
4.1. Photosynthetic Efficiency
4.2. ADI with Excessive Drought Stress Limited Tomato Growth
4.3. ADI Optimized Photosynthetic Products Distribution and Enhanced Tomato Yield
4.4. Fruit Quality and IWUE
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nangare, D.; Singh, Y.; Kumar, P.S.; Minhas, P. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 2016, 171, 73–79. [Google Scholar] [CrossRef]
- Sarker, K.K.; Akanda, M.; Biswas, S.; Roy, D.; Khatun, A.; Goffar, M. Field performance of alternate wetting and drying furrow irrigation on tomato crop growth, yield, water use efficiency, quality and profitability. J. Integr. Agric. 2016, 15, 2380–2392. [Google Scholar] [CrossRef]
- Rodriguez-Ortega, W.M.; Martinez, V.; Rivero, R.M.; Camara-Zapata, J.M.; Mestre, T.; Garcia-Sanchez, F. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agric. Water. Manag. 2016, 183, 158–168. [Google Scholar] [CrossRef]
- Barrios-Masias, F.H.; Jackson, L.E. Increasing the effective use of water in processing tomatoes through alternate furrow irrigation without a yield decrease. Agric. Water Manag. 2016, 177, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xiong, Y.; Huang, G.; Xu, X.; Huang, Q. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District. Agric. Water Manag. 2017, 179, 205–214. [Google Scholar] [CrossRef]
- Obreza, T.A.; Pitts, D.J.; McGovern, R.J.; Spreen, T.H. Deficit Irrigation of Micro-Irrigated Tomato Affects Yield, Fruit Quality, and Disease Severity. jpa 1996, 9, 270. [Google Scholar] [CrossRef]
- Liu, X.; Li, F.; Yang, Q.; Wang, X. Effects of alternate drip irrigation and superabsorbent polymers on growth and water use of young coffee tree. J. Environ. Boil. 2016, 37, 485–491. [Google Scholar]
- Casa, R.; Rouphael, Y. Effects of partial root-zone drying irrigation on yield, fruit quality, and water-use efficiency in processing tomato. J. Hortic. Sci. Biotechnol. 2014, 89, 389–396. [Google Scholar] [CrossRef]
- Kennedy, T.L.; Suddick, E.C.; Six, J. Reduced nitrous oxide emissions and increased yields in California tomato cropping systems under drip irrigation and fertigation. Agric. Ecosyst. Environ. 2013, 170, 16–27. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, Z.; Zhang, X.; Liu, X.; Li, Q. Improvement of alternate partial root-zone drip irrigation on photosynthesis and water use efficiency of cucumbers. J. Plant Nutr. Fertilizer 2016, 22, 269–276. [Google Scholar]
- Niu, X.; Hu, T.; Zhang, F.; Feng, P. Severity and duration of osmotic stress on partial root system: Effects on root hydraulic conductance and root growth. Plant. Growth. Regul. 2016, 79, 177–186. [Google Scholar] [CrossRef]
- Luo, H.H.; Zhang, Y.L.; Zhang, W.F. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica 2016, 54, 65–73. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Zhang, J.; Li, F.; Yan, B. Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agric. Water Manag. 2008, 95, 659–668. [Google Scholar] [CrossRef]
- Doraiswamy, P. Crop condition and yield simulations using Landsat and MODIS. Remote Sens. Environ. 2004, 92, 548–559. [Google Scholar] [CrossRef]
- Spreer, W.; Nagle, M.; Neidhart, S.; Carle, R.; Ongprasert, S.; Müller, J. Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. ‘Chok Anan’). Agric. Water Manag. 2007, 88, 173–180. [Google Scholar] [CrossRef]
- Bogale, A.; Nagle, M.; Latif, S.; Aguila, M.; Müller, J. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars. Sci. Hortic-Amsteredam 2016, 213, 115–124. [Google Scholar] [CrossRef]
- Liang, H.; Li, F.; Nong, M. Effects of alternate partial root-zone irrigation on yield and water use of sticky maize with fertigation. Agric. Water Manag. 2013, 116, 242–247. [Google Scholar] [CrossRef]
- Patanè, C.; Saita, A. Biomass, fruit yield, water productivity and quality response of processing tomato to plant density and deficit irrigation under a semi-arid Mediterranean climate. Crop. Pasture Sci. 2015, 66, 224–234. [Google Scholar] [CrossRef]
- Topcu, S.; Kirda, C.; Dasgan, Y.; Kaman, H.; Cetin, M.; Yazici, A.; Bacon, M. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Eur. J. Agron. 2007, 26, 64–70. [Google Scholar] [CrossRef]
- Kuşçu, H.; Turhan, A.; Demir, A.O. The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agric. Water. Manag. 2014, 133, 92–103. [Google Scholar] [CrossRef]
- Yang, H.; Du, T.; Qiu, R.; Chen, J.; Wang, F.; Li, Y.; Wang, C.; Gao, L.; Kang, S. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric. Water Manag. 2017, 179, 193–204. [Google Scholar] [CrossRef]
- Chen, J.X.; Wang, X.F. Plant Physiology Experiment Instruction; Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Simas, F.N.; Schaefer, C.E.G.; Melo, V.F.; Albuquerque-Filho, M.R.; Michel, R.F.; Pereira, V.V.; Gomes, M.R.; Da Costa, L.M. Ornithogenic cryosols from Maritime Antarctica: Phosphatization as a soil forming process. Geoderma 2007, 138, 191–203. [Google Scholar] [CrossRef]
- Laurentin, A.; Edwards, C. A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal. Biochem. 2003, 315, 143–145. [Google Scholar] [CrossRef]
- Qiu, S.W.; Xi, Z.; Cheng, Y.L.; Zhi, Y.L.; Hui, F. Directional transfer of a multiple-allele male sterile line in brassica campestris l. ssp. chinensis (l.) makino var. rosularis tsen et lee. Breeding Sci. 2014, 64, 149–155. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–256. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Huang, C. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma 2009, 150, 141–149. [Google Scholar] [CrossRef]
- Song, H.; Li, Z.; Du, B.; Wang, G.; Ding, Y. Bacterial communities in sediments of the shallow lake dongping in china. J. Appl. Microbiol. 2012, 112, 79–89. [Google Scholar] [CrossRef]
- Wang, J.; Niu, W.; Li, Y.; Lv, W. Subsurface drip irrigation enhances soil nitrogen and phosphorus metabolism in tomato root zones and promotes tomato growth. Appl. Soil Ecol. 2018, 124, 240–251. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, X.; Li, Q.; Liu, B.; Yang, Z. Effects of different drip irrigation methods under plastic film on physiological characteristics and water use efficiency of protected cucumber. Acta Ecol. Sin. 2014, 34, 6597–6605. [Google Scholar]
- Wang, J.H.; Ren, S.F.; Shi, B.S.; Liu, B.X.; Zhou, Y.L. Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Forsythia suspensa. Acta Ecol. Sin. 2011, 31, 1811–1817. [Google Scholar]
- Yao, Y.; Wang, S.; Kong, Y. Characteristics of photosynthesis machinism in different peach species under low light intensity. Sci. Agric. Sin. 2007, 40, 855–863. [Google Scholar]
- Li, F.; Wei, C.; Zhang, F.; Zhang, J.; Nong, M.; Kang, S. Water-use efficiency and physiological responses of maize under partial root-zone irrigation. Agric. Water. Manag. 2010, 97, 1156–1164. [Google Scholar] [CrossRef]
- Abou-Ismail, O. Rice yield estimation by integrating remote sensing with rice growth simulation model. Pedosphere 2004, 14, 519–526. [Google Scholar]
- Wang, J.; Niu, W.; Zhang, M.; Li, Y. Effect of alternate partial root-zone drip irrigation on soil bacterial communities and tomato yield. Appl. Soil Ecol. 2017, 119, 250–259. [Google Scholar] [CrossRef]
- Muler, A.L.; Oliveira, R.S.; Hans, L.; Veneklaas, E.J. Does cluster-root activity benefit nutrient uptake and growth of co-existing species? Oecologia 2014, 174, 23–31. [Google Scholar] [CrossRef]
- Whalley, R.; Binley, A.; Watts, C.; Shanahan, P.; Dodd, I.; Ober, E.; Ashton, R.; Webster, C.; White, R.; Hawkesford, M.J. Methods to estimate changes in soil water for phenotyping root activity in the field. Plant Soil 2017, 415, 407–422. [Google Scholar] [CrossRef] [Green Version]
- Carpentieri-Pipolo, V.; Lopes, K.B.D.A.; Degrassi, G. Phenotypic and genotypic characterization of endophytic bacteria associated with transgenic and non-transgenic soybean plants. Arch. Microbiol. 2019, 201, 1029–1045. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D. Rhizosphere effect on nutrient availability in soil and its uptake by plants: A review. Proc. Natl. Acad. Sci. India B Biol. Sci. 2015, 85, 1–12. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta (BBA) Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Root and shoot responses of summer maize to water logging at different stages. Agron. J. 2016, 108, 1060–1069. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, C.; Tang, X.; Li, H.; Zhang, F.; Rengel, Z.; Whalley, W.R.; Davies, W.J.; Shen, J. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol. 2016, 209, 823–831. [Google Scholar] [CrossRef] [Green Version]
- Parvizi, H.; Sepaskhah, A.R. Effect of drip irrigation and fertilizer regimes on fruit quality of a pomegranate (Punica granatum (L.) cv. Rabab) orchard. Agric. Water Manag. 2015, 156, 70–78. [Google Scholar] [CrossRef]
- Mingo, D.M.; Theobald, J.C.; Bacon, M.A.; Davies, W.J.; Dodd, I.C. Biomass allocation in tomato (Lycopersicon esculentum) plants grown under partial rootzone drying: Enhancement of root growth. Funct. Plant Boil. 2004, 31, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Grossnickle, S.C. Importance of root growth in overcoming planting stress. New For. 2005, 30, 273–294. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, F.; Kang, S.; Jensen, C.R. Alternate partial root-zone drying irrigation improves nitrogen nutrition in maize (Zea mays L.) leaves. Environ. Exp. Bot. 2012, 75, 36–40. [Google Scholar] [CrossRef]
- Dass, A.; Chandra, S.; Choudhary, A.K.; Singh, G.; Sudhishri, S. Influence of field re-ponding pattern and plant spacing on rice root–shoot characteristics, yield, and water productivity of two modern cultivars under SRI management in Indian Mollisols. Paddy. Water. Environ. 2016, 14, 45–59. [Google Scholar] [CrossRef]
- Mudgil, Y.; Karve, A.; Teixeira, P.J.P.L.; Jiang, K.; Tunc-Ozdemir, M.; Jones, A.M. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis. Front. Plant Sci. 2016, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K.; Ikeda, H.; Poudel, P.R.; Goto-Yamamoto, N. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 2012, 78, 54–64. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Schwarz, D.; Franken, P.; Colla, G. Effects of Drought on Nutrient Uptake and Assimilation in Vegetable Crops. In Plant Responses to Drought Stress; Springer Science and Business Media LLC.: Berlin, Germany, 2012; pp. 171–195. [Google Scholar]
- Liu, K.; Zhang, T.Q.; Tan, C.S.; Astatkie, T. Responses of Fruit Yield and Quality of Processing Tomato to Drip-Irrigation and Fertilizers Phosphorus and Potassium. Agron. J. 2011, 103, 1339–1345. [Google Scholar] [CrossRef]
- Elkner, K.; Kaniszewski, S. Effect of drip irrigation and mulching on quality ot tomato fruits. Acta. Hortic. 1995, 379, 175–180. [Google Scholar] [CrossRef]
- Warner, J.; Tan, C.S.; Zhang, T.Q. Effect of Regulated Deficit Drip Irrigation on Processing Tomato Fruit Solids and Yield. In Proceedings of the ASAE Annual International Meeting, Ottawa, ON, Canada, 1–4 August 2004. [Google Scholar]
- Yang, L.; Qu, H.; Zhang, Y.; Li, F. Effects of partial root-zone irrigation on physiology, fruit yield and quality and water use efficiency of tomato under different calcium levels. Agric. Water Manag. 2012, 104, 89–94. [Google Scholar] [CrossRef]
- Ochmian, I.D. The impact of foliar application of calcium fertilizers on the quality of highbush blueberry fruits belonging to the ‘Duke’ cultivar. Not. Bot. Horti. Agrobo. 2012, 40, 163–169. [Google Scholar] [CrossRef] [Green Version]
Treatments | Net Photosynthetic Rate Pn (μmol·m−2·s−1) | |||
---|---|---|---|---|
FP | FFP1 | FFP2 | MP | |
CK | 8.9 b | 10.8c | 13.9a | 12.2a |
A50 | 9.7b | 11.4c | 13.9a | 12.1a |
A60 | 9.8b | 12.8b | 12.2b | 11.0b |
A70 | 11.5a | 13.8a | 15.4a | 11.2b |
Treatments | Root Length (cm) | Root Area (cm2) | Number of Root Forks | Root Volume (cm3) |
---|---|---|---|---|
CK | 1473.7d | 721.0b | 3969c | 29.0b |
A50 | 2524.9a | 1044.6a | 10307ab | 41.1a |
A60 | 2080.0b | 959.3a | 8979b | 37.5ab |
A70 | 1869.3c | 929.8a | 11371a | 39.2a |
Treatments | Soluble Sugar (%) | Total Soluble Solid (%) | Soluble Protein (Mg·g−1) | Vc (Mg·100 g−1) | Organic Acid (%) | Lycopene (Μg·g−1) | Sugar-Acid Ratio |
---|---|---|---|---|---|---|---|
CK | 2.60c | 5.80c | 2.69b | 15.76ab | 0.32a | 61.00c | 8.13c |
A50 | 3.59b | 6.93b | 2.83b | 14.55b | 0.29ab | 79.33b | 12.41bc |
A60 | 5.35a | 7.30a | 4.32a | 18.20a | 0.21ab | 85.38ab | 26.04a |
A70 | 2.60c | 6.03c | 2.57b | 15.32ab | 0.18b | 90.00a | 16.00b |
Treatments | Yield (t· hm−2) | Irrigation Amount (mm) | IWUE (kg·m−3) |
---|---|---|---|
CK | 75.21c | 291.17ab | 44.16c |
A50 | 77.13b | 204.78c | 64.38a |
A60 | 84.75ab | 274.42b | 52.79b |
A70 | 93.71a | 309.89a | 51.69b |
Leaf Area Index in FP | Leaf Area Index in FFP | Leaf Area Index in MP | Soil Bacteria Sequence | Soil Bacteria Diversity | |
---|---|---|---|---|---|
Root activity in FP | 0.317 | ----- | ----- | ----- | ----- |
Root length in FP | −0.634 | ----- | ----- | ----- | ----- |
Root area in FP | −0.648 | ----- | ----- | ----- | ----- |
Root volume in FP | −0.864 | ----- | ----- | ----- | ----- |
Root forks in FP | −0.702 | ----- | ----- | ----- | ----- |
Root activity in FFP | ----- | 0.974 * | ----- | ----- | ----- |
Root length in FFP | ----- | −0.133 | ----- | ----- | ----- |
Root area in FFP | ----- | 0.174 | ----- | ----- | ----- |
Root volume in FFP | ----- | 0.543 | ----- | ----- | ----- |
Root forks in FFP | ----- | −0.743 | ----- | ----- | ----- |
Root activity in MP | ----- | ----- | 0.816 | 0.998 * | 0.267 |
Root length in MP | ----- | ----- | 0.852 | 0.182 | 0.988 * |
Root area in MP | ----- | ----- | 0.962 * | 0.250 | 0.996 * |
Root volume in MP | ----- | ----- | 0.967 ** | 0.903 | 0.610 |
Root forks in MP | ----- | ----- | 0.970* | 0.905 | −0.225 |
Treatments | Soil Available Nitrogen | Soil Available Phosphorus | Total Nitrogen in Root (%) | Total Phosphorus in Root (%) | Total Nitrogen in Stem (%) |
CK | 46.91d | 94.43c | 1.68c | 0.19c | 1.58c |
A50 | 69.27c | 140.75bc | 1.67c | 0.19b | 1.38d |
A60 | 102.55a | 155.71b | 1.80b | 0.36a | 1.91a |
A70 | 89.61a | 274.54a | 1.92a | 0.29a | 1.77b |
Total Phosphorus in Stem (%) | Total Nitrogen in Fruit (%) | Total Phosphorus in Fruit (%) | Organic Carbon in Fruit (%) | ||
CK | 0.089d | 2.22c | 0.37c | 39.58a | |
A50 | 0.092c | 1.81d | 0.35d | 38.55b | |
A60 | 0.156b | 2.90a | 0.51b | 39.39a | |
A70 | 0.253a | 2.83b | 0.53a | 39.20a |
Yield | Leaf Dry Weight | Stem Dry Weight | Root Dry Weight | Total Dry Weight | |
---|---|---|---|---|---|
Yield | 1 | 0.279 | 0.605 * | 0.441 | 0.472 |
Leaf dry weight | 1 | 0.765 ** | 0.616 * | 0.936 ** | |
Stem dry weight | 1 | 0.924 ** | 0.943 ** | ||
Root dry weight | 1 | 0.827 ** | |||
Total dry weight | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, Y.; Niu, W. Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality. Int. J. Environ. Res. Public Health 2020, 17, 781. https://doi.org/10.3390/ijerph17030781
Wang J, Li Y, Niu W. Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality. International Journal of Environmental Research and Public Health. 2020; 17(3):781. https://doi.org/10.3390/ijerph17030781
Chicago/Turabian StyleWang, Jingwei, Yuan Li, and Wenquan Niu. 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality" International Journal of Environmental Research and Public Health 17, no. 3: 781. https://doi.org/10.3390/ijerph17030781
APA StyleWang, J., Li, Y., & Niu, W. (2020). Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality. International Journal of Environmental Research and Public Health, 17(3), 781. https://doi.org/10.3390/ijerph17030781