How Birth Season Affects Vulnerability to the Effect of Ambient Ozone Exposure on the Disease Burden of Hypertension in the Elderly Population in a Coastal City in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Data Collection
2.2. Statistical Analysis
3. Results
3.1. Description
3.2. Associations between Ambient Ozone and YLL from Hypertension
3.3. Modification of Birth Season
3.4. Exposure–Response Relationship
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.L.; McDermott, A.; Zeger, S.L.; Samet, J.M.; Dominici, F. Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA 2004, 292, 2372–2378. [Google Scholar] [CrossRef] [Green Version]
- Kan, H.; Chen, R.; Tong, S. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef]
- Huang, J.; Pan, X.; Guo, X.; Li, G. Health impact of China’s Air Pollution Prevention and Control Action Plan: An analysis of national air quality monitoring and mortality data. Lancet Planet Health 2018, 2, e313–e323. [Google Scholar] [CrossRef] [Green Version]
- Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005, 365, 217–223. [Google Scholar] [CrossRef]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.Y.; Qian, Z.M.; Vaughn, M.G.; Nelson, E.J.; Dharmage, S.C.; Heinrich, J.; Lin, S.; Lawrence, W.R.; Ma, H.; Chen, D.H.; et al. Is prehypertension more strongly associated with long-term ambient air pollution exposure than hypertension? Findings from the 33 Communities Chinese Health Study. Environ. Pollut. 2017, 229, 696–704. [Google Scholar] [CrossRef]
- Yin, P.; Chen, R.; Wang, L.; Meng, X.; Liu, C.; Niu, Y.; Lin, Z.; Liu, Y.; Liu, J.; Qi, J.; et al. Ambient Ozone Pollution and Daily Mortality: A Nationwide Study in 272 Chinese Cities. Environ. Health Perspect. 2017, 125, 117006. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.Y.; Qian, Z.; Howard, S.W.; Vaughn, M.G.; Fan, S.J.; Liu, K.K.; Dong, G.H. Global association between ambient air pollution and blood pressure: A systematic review and meta-analysis. Environ. Pollut. 2018, 235, 576–588. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Zhang, B.; Ke, W.X.; Feng, B.X.; Lin, H.L.; Xiao, J.P.; Zeng, W.L.; Li, X.; Tao, J.; Yang, Z.Y.; et al. Associations of Short-Term and Long-Term Exposure to Ambient Air Pollutants With Hypertension: A Systematic Review and Meta-Analysis. Hypertension 2016, 68, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Q.; Ni, Y.; Jiang, G.; Li, G.; Pan, X. The short term burden of ambient particulate matters on non-accidental mortality and years of life lost: A ten-year multi-district study in Tianjin, China. Environ. Pollut. 2017, 220, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Q.; Wang, Q.; Ding, Z.; Sun, H.; Xu, Y. The acute health effects of ozone and PM2.5 on daily cardiovascular disease mortality: A multi-center time series study in China. Ecotoxicol. Environ. Saf. 2019, 174, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Doblhammer, G.; Vaupel, J.W. Lifespan depends on month of birth. Proc. Natl. Acad. Sci. USA 2001, 98, 2934–2939. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Zhou, L.; Xu, Y.; Zheng, T.; Guo, Y.; Wellenius, G.A.; Bassig, B.A.; Chen, X.; Wang, H.; Zheng, X. Short-term effects of air pollution on daily mortality and years of life lost in Nanjing, China. Sci. Total Environ. 2015, 536, 123–129. [Google Scholar] [CrossRef]
- Yang, J.; Ou, C.Q.; Song, Y.F.; Li, L.; Chen, P.Y.; Liu, Q.Y. Estimating years of life lost from cardiovascular mortality related to air pollution in Guangzhou, China. Sci. Total Environ. 2016, 573, 1566–1572. [Google Scholar] [CrossRef]
- Guo, Y.; Barnett, A.G.; Pan, X.; Yu, W.; Tong, S. The Impact of Temperature on Mortality in Tianjin, China: A Case-crossover Design with A Distributed Lag Non-linear Model. Environ. Health Perspect. 2011, 119, 1719–1725. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, G.; Qian, X.; Xu, G.; Zhao, Y.; Huang, J.; Liu, Q.; He, T.; Guo, X. The burden of ischemic heart disease related to ambient air pollution exposure in a coastal city in South China. Environ. Res. 2018, 164, 255–261. [Google Scholar] [CrossRef]
- Chen, R.; Cai, J.; Meng, X.; Kim, H.; Honda, Y.; Guo, Y.L.; Samoli, E.; Yang, X.; Kan, H. Ozone and daily mortality rate in 21 cities of East Asia: How does season modify the association? Am. J. Epidemiol. 2014, 180, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.H.; Chen, B.Y.; Kim, H.; Honda, Y.; Guo, Y.L. Significant effects of exposure to relatively low level ozone on daily mortality in 17 cities from three Eastern Asian Countries. Environ. Res. 2019, 168, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xue, M.; Zeng, Q.; Cai, Y.; Pan, X.; Meng, Q. Association between fine ambient particulate matter and daily total mortality: An analysis from 160 communities of China. Sci. Total Environ. 2017, 599–600, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.E.; Prueitt, R.L.; Sax, S.N.; Pizzurro, D.M.; Lynch, H.N.; Zu, K.; Venditti, F.J. Ozone exposure and systemic biomarkers: Evaluation of evidence for adverse cardiovascular health impacts. Crit. Rev. Toxicol. 2015, 45, 412–452. [Google Scholar] [CrossRef]
- Day, D.B.; Xiang, J.; Mo, J.; Li, F.; Chung, M.; Gong, J.; Weschler, C.J.; Ohman-Strickland, P.A.; Sundell, J.; Weng, W.; et al. Association of Ozone Exposure With Cardiorespiratory Pathophysiologic Mechanisms in Healthy Adults. JAMA. Intern. Med. 2017, 177, 1344–1353. [Google Scholar] [CrossRef]
- Xia, Y.; Niu, Y.; Cai, J.; Lin, Z.; Liu, C.; Li, H.; Chen, C.; Song, W.; Zhao, Z.; Chen, R.; et al. Effects of Personal Short-Term Exposure to Ambient Ozone on Blood Pressure and Vascular Endothelial Function: A Mechanistic Study Based on DNA Methylation and Metabolomics. Environ. Sci. Technol. 2018, 52, 12774–12782. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Zhang, L.; Wang, X.; Hao, G.; Zhang, Z.; Shao, L.; Tian, Y.; Dong, Y.; Zheng, C.; et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012–2015. Circulation 2018, 137, 2344–2356. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, H.; Zeng, X.; Yin, P.; Zhu, J.; Chen, W.; Li, X.; Wang, L.; Wang, L.; Liu, Y.; et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 394, 1145–1158. [Google Scholar] [CrossRef] [Green Version]
- Gluckman, P.D.; Hanson, M.A.; Beedle, A.S. Early life events and their consequences for later disease: A life history and evolutionary perspective. Am. J. Hum. Biol. 2007, 19, 1–19. [Google Scholar] [CrossRef]
- Wilding, S.; Ziauddeen, N.; Smith, D.; Roderick, P.; Alwan, N.A. Maternal and early-life area-level characteristics and childhood adiposity: A systematic review. Obes. Rev. 2019, 20, 1093–1105. [Google Scholar] [CrossRef]
- Chehade, H.; Simeoni, U.; Guignard, J.P.; Boubred, F. Preterm Birth: Long Term Cardiovascular and Renal Consequences. Curr. Pediatr. Rev. 2018, 14, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, D.J.; Gluckman, P.D.; Godfrey, K.M.; Harding, J.E.; Owens, J.A.; Robinson, J.S. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993, 341, 938–941. [Google Scholar] [CrossRef]
- Whalley, L.J.; Dick, F.D.; McNeill, G. A life-course approach to the aetiology of late-onset dementias. Lancet Neurol. 2006, 5, 87–96. [Google Scholar] [CrossRef]
- Barker, D.J. The origins of the developmental origins theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Osmond, C.; Forsen, T.J.; Kajantie, E.; Eriksson, J.G. Maternal and social origins of hypertension. Hypertension 2007, 50, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Duque-Guimaraes, D.E.; Ozanne, S.E. Nutritional programming of insulin resistance: Causes and consequences. Trends Endocrinol. Metab. 2013, 24, 525–535. [Google Scholar] [CrossRef]
Variables | Mean ± SD | Minimum | P25 | Median | P75 | Maximum |
---|---|---|---|---|---|---|
Air pollutants | ||||||
Ozone-8h (μg/m3) | 93.3 ± 37.9 | 6.0 | 65.0 | 90.0 | 117.0 | 242.1 |
PM2.5 (μg/m3) | 45.5 ± 32.0 | 5.9 | 25.6 | 37.6 | 56.0 | 421.7 |
NO2 (μg/m3) | 41.6 ± 18.3 | 7.6 | 28.1 | 38.6 | 52.5 | 121.8 |
SO2 (μg/m3) | 16.9 ± 10.9 | 5.4 | 10.4 | 13.5 | 19.1 | 109.5 |
Meteorological conditions | ||||||
Temperature (°C) | 18.0 ± 8.7 | −4.4 | 10.0 | 18.9 | 25.0 | 34.4 |
Relative humidity (%) | 76.2 ± 11.8 | 36.0 | 68.5 | 76.0 | 85.0 | 100.0 |
Variables | Mean ± SD | Minimum | P25 | Median | P75 | Maximum |
---|---|---|---|---|---|---|
Daily death counts | ||||||
Whole year | 4.5 ± 2.6 | 0.0 | 3.0 | 4.0 | 6.0 | 19.0 |
Male | 1.9 ± 1.5 | 0.0 | 1.0 | 2.0 | 3.0 | 8.0 |
Female | 2.6 ± 1.8 | 0.0 | 1.0 | 2.0 | 4.0 | 12.0 |
Spring-born | 0.9 ± 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 6.0 |
Summer-born | 0.9 ± 1.0 | 0.0 | 0.0 | 1.0 | 1.0 | 5.0 |
Autumn-born | 1.3 ± 1.2 | 0.0 | 0.0 | 1.0 | 2.0 | 8.0 |
Winter-born | 1.4 ± 1.2 | 0.0 | 0.0 | 1.0 | 2.0 | 8.0 |
Daily years of life lost (years) | ||||||
Whole year | 47.9 ± 28.2 | 0.0 | 27.3 | 44.1 | 64.2 | 192.3 |
Male | 21.0 ± 17.4 | 0.0 | 8.8 | 17.8 | 31.0 | 92.8 |
Female | 26.9 ± 18.9 | 0.0 | 13.3 | 24.4 | 37.1 | 130.7 |
Spring-born | 9.2 ± 11.1 | 0.0 | 0.0 | 6.6 | 14.4 | 70.8 |
Summer-born | 9.9 ± 11.3 | 0.0 | 0.0 | 8.2 | 15.2 | 69.1 |
Autumn-born | 14.3 ± 13.9 | 0.0 | 0.0 | 12.1 | 21.8 | 87.4 |
Winter-born | 14.5 ± 13.6 | 0.0 | 0.0 | 12.1 | 22.6 | 88.6 |
Variables | All (95% CI) | Spring-born (95% CI) | Summer-born (95% CI) | Autumn-born (95% CI) | Winter-born (95% CI) |
---|---|---|---|---|---|
Single-pollutant model | 0.89(0.10, 1.68) | 0.06(−0.28, 0.40) * | 0.10(−0.24, 0.46) * | 0.68(0.27, 1.10) | 0.04(−0.37, 0.46) * |
Male | 0.43(−0.07, 0.95) | 0.08(−0.13, 0.30) | 0.00(−0.25, 0.24) | 0.27(0.00, 0.55) | 0.09 (−0.20,0.37) |
Female | 0.46(−0.10, 1.01) | −0.01(−0.26, 0.25) | 0.11(−0.15, 0.36) | 0.41(0.10, 0.71) | −0.04 (−0.33,0.25) |
Two-pollutant model | |||||
+PM2.5 | 1.03(0.16, 1.90) | 0.12(−0.26, 0.50) * | 0.15(−0.24, 0.54) * | 0.74(0.29, 1.19) | 0.02(−0.44, 0.48) * |
+NO2 | 0.98(0.16, 1.80) | 0.08(−0.28, 0.44) * | 0.12(−0.25, 0.49) * | 0.74(0.31, 1.17) | 0.04(−0.40, 0.47) * |
+SO2 | 0.98(0.16, 1.79) | 0.03(−0.33, 0.39) * | 0.11(−0.26, 0.48) * | 0.77(0.34, 1.19) | 0.07(−0.36, 0.50) * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; He, T.; Li, G.; Guo, X. How Birth Season Affects Vulnerability to the Effect of Ambient Ozone Exposure on the Disease Burden of Hypertension in the Elderly Population in a Coastal City in South China. Int. J. Environ. Res. Public Health 2020, 17, 824. https://doi.org/10.3390/ijerph17030824
Huang J, He T, Li G, Guo X. How Birth Season Affects Vulnerability to the Effect of Ambient Ozone Exposure on the Disease Burden of Hypertension in the Elderly Population in a Coastal City in South China. International Journal of Environmental Research and Public Health. 2020; 17(3):824. https://doi.org/10.3390/ijerph17030824
Chicago/Turabian StyleHuang, Jing, Tianfeng He, Guoxing Li, and Xinbiao Guo. 2020. "How Birth Season Affects Vulnerability to the Effect of Ambient Ozone Exposure on the Disease Burden of Hypertension in the Elderly Population in a Coastal City in South China" International Journal of Environmental Research and Public Health 17, no. 3: 824. https://doi.org/10.3390/ijerph17030824
APA StyleHuang, J., He, T., Li, G., & Guo, X. (2020). How Birth Season Affects Vulnerability to the Effect of Ambient Ozone Exposure on the Disease Burden of Hypertension in the Elderly Population in a Coastal City in South China. International Journal of Environmental Research and Public Health, 17(3), 824. https://doi.org/10.3390/ijerph17030824