Effects of a Bout of Intense Exercise on Some Executive Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Exercise
2.4. Blood Lactate
2.5. Simple Reaction Time
2.6. Stroop Colour Word Test
2.7. Trial Making Test
2.8. Statistical Analysis
3. Results
4. Discussion
- 1)
- A significant positive correlation was observed between the levels of lactate in the blood and the levels of RT;
- 2)
- A significant negative relationship was observed between blood lactate levels and the average SCWT score;
- 3)
- No significant correlations between blood lactate levels and TMT scores (time and errors), both A and B were observed;
- 4)
- The comparison between the group YOUNG and the group OLD showed that the variations in blood lactate levels, due to exhaustive exercise, and parallel deterioration in the execution of RT and SCWT are significantly more pronounced in the former than in the latter.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buckley, J.D.; Bourdon, P.C.; Woolford, S.M. Effect of measuring blood lactate concentrations using different automated lactate analysers on blood lactate transition thresholds. J. Sci. Med. Sport 2003, 6, 408–421. [Google Scholar] [CrossRef]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coco, M.; Di Corrado, D.; Calogero, R.A.; Perciavalle, V.; Maci, T.; Perciavalle, V. Attentional processes and blood lactate levels. Brain Res. 2009, 1302, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Coco, M.; Di Corrado, D.; Ramaci, T.; Di Nuovo, S.; Perciavalle, V.; Puglisi, A.; Cavallari, P.; Bellomo, M.; Buscemi, A. Role of lactic acid on cognitive functions. Phys. Sportsmed. 2019, 3, 329–335. [Google Scholar] [CrossRef]
- Coco, M.; Perciavalle, V.; Cavallari, P.; Perciavalle, V. Effects of an Exhaustive Exercise on Motor Skill Learning and on the Excitability of Primary Motor Cortex and Supplementary Motor Area. Medicine (Baltimore) 2016, 95, e2978. [Google Scholar] [CrossRef]
- Dalla Vecchia, L.; Traversi, E.; Porta, A.; Lucini, D.; Pagani, M. On site assessment of cardiac function and neural regulation in amateur half marathon runners. Open Heart 2014, 1, e000005. [Google Scholar] [CrossRef] [Green Version]
- Dalla Vecchia, L.A.; Barbic, F.; De Maria, B.; Cozzolino, D.; Gatti, R.; Dipaola, F.; Brunetta, E.; Zamuner, A.R.; Porta, A.; Furlan, R. Can strenuous exercise harm the heart? Insights from a study of cardiovascular neural regulation in amateur triathletes. PLoS One 2019, 5, e0216567. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Duncan, M.J.; Clarke, N.D.; Cox, M.; Smith, M. The influence of cycling intensity upon cognitive response during inferred practice and competition conditions. J. Sports Sci. 2017, 19, 1865–1871. [Google Scholar] [CrossRef]
- Itagi, A.B.H.; Patil, N.A.; Kotian, R.K.; Reddy, S.K.; Abhyankar, S.; Parveen, R.S. (Accepted/In press). Physical Exhaustion Induced Variations in Event-Related Potentials and Cognitive Task Performance in Young Adults. Ann. Neurosci. 2018, 25, 299–304. [Google Scholar] [CrossRef]
- Kleinloog, J.P.D.; Mensink, R.P.; Ivanov, D.; Adam, J.J.; Uluda, K.; Joris, P.J. Aerobic Exercise Training Improves Cerebral Blood Flow and Executive Function: A Randomized, Controlled Cross-Over Trial in Sedentary Older Men. Front. Aging Neurosci. 2019, 11, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, J.S.; Watts, R.; Adise, S.; Allgaier, N.; Chaarani, B.; Garavan, H.; Potter, A.; Mackey, S. Associations Among Body Mass Index, Cortical Thickness, and Executive Function in Children. JAMA Pediatr. 2019. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed]
- Moghetti, P.; Bacchi, E.; Brangani, C.; Donà, S.; Negri, C. Metabolic Effects of Exercise. Front. Horm. Res. 2016, 47, 44–57. [Google Scholar] [PubMed] [Green Version]
- Moreira, A.; Aoki, M.S.; Franchini, E.; da Silva Machado, D.G.; Paludo, A.C.; Okano, A.H. Mental fatigue impairs technical performance and alters neuroendocrine and autonomic responses in elite young basketball players. Physiol. Behav. 2018, 196, 112–118. [Google Scholar] [CrossRef]
- Morland, C.; Lauritzen, K.H.; Puchades, M.; Holm-Hansen, S.; Andersson, K.; Gjedde, A.; Attramadal, H.; Storm-Mathisen, J.; Bergersen, L.H. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J. Neurosci. Res. 2015, 7, 1045–1055. [Google Scholar] [CrossRef]
- Perciavalle, V.; Alagona, G.; De Maria, G.; Rapisarda, G.; Costanzo, E.; Perciavalle, V.; Coco, M. Somatosensory evoked potentials and blood lactate levels. Neurol. Sci. 2015, 9, 1597–1601. [Google Scholar] [CrossRef]
- Perciavalle, V.; Alagona, G.; Maci, T.; Petralia, M.C.; Costanzo, E.; Perciavalle, V.; Coco, M. Attentional processes during submaximal exercises. Somatosens. Mot. Res. 2014, 1, 1–6. [Google Scholar] [CrossRef]
- Perciavalle, V.; Blandini, M.; Fecarotta, P.; Buscemi, A.; Di Corrado, D.; Bertolo, L.; Fichera, F.; Coco, M. The role of deep breathing on stress. Neurol. Sci. 2017, 3, 451–458. [Google Scholar] [CrossRef]
- Perciavalle, V.; Maci, T.; Perciavalle, V.; Massimino, S.; Coco, M. Working memory and blood lactate levels. Neurol. Sci. 2015, 11, 2129–2136. [Google Scholar] [CrossRef]
- Perciavalle, V.; Marchetta, N.S.; Giustiniani, S.; Borbone, C.; Perciavalle, V.; Petralia, M.C.; Buscemi, A.; Coco, M. Attentive processes, blood lactate and CrossFit®. Phys. Sportsmed. 2016, 4, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Praß, M.; de Haan, B. Multi-target attention and visual short-term memory capacity are closely linked in the intraparietal sulcus. Hum. Brain Mapp. 2019, 12, 3589–3605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proia, P.; Di Liegro, C.M.; Schiera, G.; Fricano, A.; Di Liegro, I. Lactate as a Metabolite and a Regulator in the Central Nervous System. Int. J. Mol. Sci. 2016, 9, 1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarck, S.; Schmicker, M.; Dordevic, M.; Rehfeld, K.; Müller, N.; Müller, P. Inter-Individual Differences in Cognitive Response to a Single Bout of Physical Exercise-A Randomized Controlled Cross-Over Study. J. Clin. Med. 2019, 8, 1101. [Google Scholar] [CrossRef] [Green Version]
- Strauss, E.; Sherman, E.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Strömmer, J.M.; Davis, S.W.; Henson, R.N.; Tyler, L.K.; Cam-CAN; Campbell, K.L. Physical Activity Predicts Population-Level Age-Related Differences in Frontal White Matter. J. Gerontol. Biol. Sci. Med. Sci. 2020, 75, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Sudo, M.; Komiyama, T.; Aoyagi, R.; Nagamatsu, T.; Higaki, Y.; Ando, S. Executive function after exhaustive exercise. Eur. J. Appl. Physiol. 2017, 10, 2029–2038. [Google Scholar] [CrossRef]
- Tombaugh, T.N. Trail Making Test A and B: normative data stratified by age and education. Arch. Clin. Neuropsychol. 2004, 2, 203–214. [Google Scholar] [CrossRef]
- Uehara, S.; Mizuguchi, N.; Hirose, S.; Yamamoto, S.; Naito, E. Involvement of human left frontoparietal cortices in neural processes associated with task-switching between two sequences of skilled finger movements. Brain Res. 2019, 1, 1722–146365. [Google Scholar] [CrossRef]
- Vrijkotte, S.; Meeusen, R.; Vandervaeren, C.; Buyse, L.; Cutsem, J.V.; Pattyn, N.; Roelands, B. Mental Fatigue and Physical and Cognitive Performance During a 2-Bout Exercise Test. Int. J. Sports Physiol. Perform. 2018, 4, 510–516. [Google Scholar] [CrossRef]
- Petralia, M.C.; Perciavalle, V.; Basile, M.S.; Alagona, G.; Monaca, A.; Buscemi, A.; Coco, M. The rise of lactic acid, from a pharmacist’s laboratory to entry into the central nervous system. Sport Sci. Health 2018, 14, 455. [Google Scholar] [CrossRef]
- Coco, M.; Platania, S.; Castellano, S.; Sagone, E.; Ramaci, T.; Petralia, M.C.; Agati, M.; Massimino, S.; Di Corrado, D.; Guarnera, M.; et al. Memory, personality and blood lactate during a judo competition. Sport Sci. Health 2018, 14, 547–553. [Google Scholar] [CrossRef]
- Coco, M.; Guerrera, C.S.; Di Corrado, D.; Ramaci, T.; Maci, T.; Pellerone, M.; Santisi, G.; Minissale, C.; Di Nuovo, S.; Perciavalle, V.; et al. Personality traits and athletic young adults. Sport Sci. Health 2019, 15, 435–441. [Google Scholar] [CrossRef]
- Calabrese, V.; Dattilo, S.; Petralia, A.; Parenti, R.; Pennisi, M.; Koverech, G.; Calabrese, V.; Graziano, A.; Monte, I.; Maiolino, L.; et al. Analytical approaches to the diagnosis and treatment of aging and aging-related disease: Redox status and proteomics. Free Radic. Res. 2015, 49, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Serapide, M.F.; Zappalà, A.; Parenti, R.; Pantò, M.R.; Cicirata, F. Laterality of the pontocerebellar projections in the rat. Eur. J. Neurosci. 2002, 15, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Cicirata, F.; Parenti, R.; Spinella, F.; Giglio, S.; Tuorto, F.; Zuffardi, O.; Gulisano, M. Genomic organization and chromosomal localization of the mouse Connexin36 (mCx36) gene. Gene 2000, 251, 123–130. [Google Scholar] [CrossRef]
- Wang, H.; Tan, X.; Xu, J.; Li, H.; Wang, M.; Chen, S.; Yang, X.; Liu, Y.; Wang, F. Negative correlation between CSF lactate levels and MoCA scores in male Chinese subjects. Psychiatry Res. 2017, 255, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chua, S.C.; Bouhadir, L.; Treadwell, E.L.; Gibbs, E.; McGee, T.M. Point-of-care measurement of fetal blood lactate - Time to trust a new device. Aust. N. Z. J. Obstet. Gynaecol. 2018, 1, 72–78. [Google Scholar] [CrossRef]
- Woods, D.L.; Wyma, J.M.; Yund, E.W.; Herron, T.J.; Reed, B. Factors influencing the latency of simple reaction time. Front. Hum. Neurosci. 2015, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Zaehringer, J.; Falquez, R.; Schubert, A.L.; Nees, F.; Barnow, S. Neural correlates of reappraisal considering working memory capacity and cognitive flexibility. Brain Imaging Behav. 2018, 6, 1529–1543. [Google Scholar] [CrossRef]
Subject | YOUNG | OLD | ||||||
---|---|---|---|---|---|---|---|---|
Age (years) | Height (cm) | Weight (kg) | BMI * | Age (years) | Height (cm) | Weight (kg) | BMI | |
1 | 28 | 169 | 71 | 24.86 | 60 | 168 | 73 | 25.86 |
2 | 24 | 178 | 77 | 24.30 | 55 | 171 | 73 | 24.96 |
3 | 27 | 168 | 69 | 24.45 | 58 | 166 | 70 | 25.40 |
4 | 20 | 170 | 71 | 24.57 | 65 | 173 | 71 | 23.72 |
5 | 29 | 175 | 74 | 24.16 | 59 | 178 | 80 | 25.25 |
6 | 22 | 174 | 79 | 26.09 | 60 | 174 | 78 | 25.76 |
7 | 23 | 181 | 83 | 25.34 | 58 | 162 | 65 | 24.77 |
8 | 28 | 171 | 78 | 26.67 | 59 | 174 | 79 | 26.09 |
9 | 25 | 166 | 69 | 25.04 | 61 | 169 | 72 | 25.21 |
10 | 23 | 177 | 80 | 25.54 | 57 | 171 | 76 | 25.99 |
11 | 21 | 173 | 78 | 26.06 | 55 | 171 | 69 | 23.60 |
12 | 20 | 170 | 73 | 25.26 | 59 | 170 | 73 | 25.26 |
13 | 25 | 176 | 74 | 23.89 | 60 | 168 | 70 | 24.80 |
14 | 27 | 168 | 70 | 24.80 | 61 | 167 | 70 | 25.10 |
15 | 29 | 173 | 71 | 23.72 | 56 | 176 | 72 | 23.24 |
Mean | 24.73 | 172.60 | 74.47 | 24.98 | 58.87 | 170.53 | 72.73 | 25.00 |
SD ** | 3.17 | 4.26 | 4.42 | 0.85 | 2.59 | 4.12 | 4.06 | 0.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coco, M.; Buscemi, A.; Guerrera, C.S.; Di Corrado, D.; Cavallari, P.; Zappalà, A.; Di Nuovo, S.; Parenti, R.; Maci, T.; Razza, G.; et al. Effects of a Bout of Intense Exercise on Some Executive Functions. Int. J. Environ. Res. Public Health 2020, 17, 898. https://doi.org/10.3390/ijerph17030898
Coco M, Buscemi A, Guerrera CS, Di Corrado D, Cavallari P, Zappalà A, Di Nuovo S, Parenti R, Maci T, Razza G, et al. Effects of a Bout of Intense Exercise on Some Executive Functions. International Journal of Environmental Research and Public Health. 2020; 17(3):898. https://doi.org/10.3390/ijerph17030898
Chicago/Turabian StyleCoco, Marinella, Andrea Buscemi, Claudia Savia Guerrera, Donatella Di Corrado, Paolo Cavallari, Agata Zappalà, Santo Di Nuovo, Rosalba Parenti, Tiziana Maci, Grazia Razza, and et al. 2020. "Effects of a Bout of Intense Exercise on Some Executive Functions" International Journal of Environmental Research and Public Health 17, no. 3: 898. https://doi.org/10.3390/ijerph17030898
APA StyleCoco, M., Buscemi, A., Guerrera, C. S., Di Corrado, D., Cavallari, P., Zappalà, A., Di Nuovo, S., Parenti, R., Maci, T., Razza, G., Petralia, M. C., Perciavalle, V., & Perciavalle, V. (2020). Effects of a Bout of Intense Exercise on Some Executive Functions. International Journal of Environmental Research and Public Health, 17(3), 898. https://doi.org/10.3390/ijerph17030898