Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Modeling Approaches and Feature Selection (FS)
2.2.1. Multilayer Neural Network (MLNN)
2.2.2. Support Vector Regression (SVR)
2.2.3. Assessing Model Performance
2.2.4. Feature Selection (FS)
3. Results
3.1. Inputs Selection
3.2. Model Comparison and Prediction Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barnes, R.S.K. Coastal Lagoons: The Natural History of a Neglected Habitat; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Kjerfve, B. Coastal Lagoons. In Coastal Lagoons Processes; Kjerfve, B., Ed.; Elsevier Oceanography Series; Elsevier Science Publishers: Amsterdam, The Netherlands, 1994; Volume 60, pp. 1–7. [Google Scholar]
- Pérez-Ruzafa, A.; Pérez-Ruzafa, I.M.; Newton, A.; Marcos, C. Coastal lagoons: Environmental variability, ecosystem complexity and goods and services uniformity. In Coasts and Estuaries, the Future; Wolanski, E., Day, J., Elliott, M., Ramesh, R., Eds.; Elsevier: New York, NY, USA, 2019; pp. 253–276. [Google Scholar] [CrossRef]
- Kennish, M.J. Coastal lagoons. In Encyclopedia of Estuaries; Kennish, M.J., Ed.; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Nixon, S.W. Nutrient dynamics, primary production and fisheries yields of lagoons. Oceanol. Acta 1982, 5, 357–371. [Google Scholar]
- Pérez-Ruzafa, A.; Marcos, C. El Mar Menor como motor del cambio de paradigmas en el estudio de las lagunas costeras. In Mar Menor: Una Laguna Singular y Sensible. Evaluación Científica de su Estado; Leon, V.M., Bellido, J.M., Eds.; Temas de Oceanografía; Instituto Español de Oceanografía, Ministerio de Economía y Competitividad: Madrid, Spain, 2016; Volume 9, pp. 31–57. [Google Scholar]
- García-Ayllón, S. New Strategies to Improve Co-Management in Enclosed Coastal Seas and Wetlands Subjected to Complex Environments: Socio-Economic Analysis Applied to an International Recovery Success Case Study after an Environmental Crisis. Sustainability 2019, 11, 1039. [Google Scholar] [CrossRef] [Green Version]
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcolea, A.; Contreras, S.; Hunink, J.E.; García-Aróstegui, J.L.; Jiménez-Martínez, J. Hydrogeological modelling for the watershed management of the Mar Menor coastal lagoon (Spain). Sci. Total Environ. 2019, 663, 901–914. [Google Scholar] [CrossRef] [PubMed]
- Nixon, S.W. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 1995, 41, 199–219. [Google Scholar] [CrossRef]
- Huang, J.; Gao, J.; Zhang, Y. Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China. Limnology 2015, 16, 179–191. [Google Scholar] [CrossRef]
- Canfield, D.E., Jr. Prediction of chlorophyll a concentrations in Florida lakes: The importance of phosphorus and nitrogen. J. Am. Water Resour. Assoc. 1983, 19, 255–262. [Google Scholar] [CrossRef]
- Phillips, G.; Pietiläinen, O.P.; Carvalho, L.; Solimini, A.; Lyche Solheim, A.; Cardoso, A.C. Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquat. Ecol. 2008, 42, 213–226. [Google Scholar] [CrossRef] [Green Version]
- EL PAÍS. Available online: https://elpais.com/elpais/2019/10/22/inenglish/1571743580_215496.html (accessed on 16 January 2020).
- García-Ayllón, S. Integrated management in coastal lagoons of highly complexity environments: Resilience comparative analysis for three case-studies. Ocean Coast. Manag. 2017, 143, 16–25. [Google Scholar] [CrossRef]
- García-Ayllón, S. The Integrated Territorial Investment (ITI) of the Mar Menor as a model for the future in the comprehensive management of enclosed coastal seas. Ocean Coast. Manag. 2018, 166, 82–97. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Campillo, S.; Fernández-Palacios, J.M.; García Lacunza, A.; García-Oliva, M.; Ibañez, H.; Navarro-Martinez, P.C.; Pérez-Marcos, M.; Pérez-Ruzafa, I.M.; Quispe-Becerra, J.I. Long term dynamic in nutrients, chlorophyll a and water quality parameters in a coastal lagoon during a process of eutrophication for decades, a sudden break and a relatively rapid recovery. Front. Mar. Sci. 2019, 6, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Fernandez, J.M.; León, V.M.; Marín-Guirao, L.; Giménez-Casalduero, F.; Alvárez-Rogel, J.; Esteve-Selma, M.A.; Gómez-Cerezo, R.; Robledano-Aymerich, F.; González-Barberá, G.; Martínez Fernández, J. Informe de síntesis sobre el estado actual del Mar Menor y sus causas en relación a los contenidos de nutrientes. In Projects of Sustainability and Conservation of Mar Menor Lagoon and Its Basin; Universidad de Alicante: Alicante, Spain, 2019; Available online: https://dcmba.ua.es/es/documentos/carteles-seminarios-doctorado/informe-estado-mar-menor.pdf (accessed on 25 November 2019).
- Comunidad Autónoma de la Región de Murcia. Decreto-Ley nº 1/2017, de 4 de abril, de Medidas Urgentes Para Garantizar la Sostenibilidad Ambiental en el Entorno Del Mar Menor; Boletín Oficial de la Región de Murcia: Murcia, Spain, 2017. (In Spanish) [Google Scholar]
- Comunidad Autónoma de la Región de Murcia. Ley 1/2018, de 7 de Febrero, de Medidas Urgentes Para Garantizar la Sostenibilidad Ambiental en el Entorno Del Mar Menor; Boletín Oficial de la Región de Murcia: Murcia, Spain, 2018. (In Spanish) [Google Scholar]
- Comunidad Autónoma de la Región de Murcia. Decreto-Ley nº 2/2019, de 26 de diciembre, de Protección Integral del Mar Menor; Boletín Oficial de la Región de Murcia: Murcia, Spain, 2019. (In Spanish) [Google Scholar]
- Iglesias, C.; Martínez Torres, J.; García Nieto, P.J.; Alonso Fernández, J.R.; Díaz Muñiz, C.; Piñeiro, J.I.; Taboada, J. Turbidity Prediction in a River Basin by Using Artificial Neural Networks: A Case Study in Northern Spain. Water Resour. Manag. 2014, 28, 319–331. [Google Scholar] [CrossRef]
- Najah, A.; El-Shafie, A.; Kari, O.A.; El-Shafie, A.H. Application of artificial neural networks for water quality prediction. Neural Comput. Appl. 2013, 22 (Suppl. 1), S187–S201. [Google Scholar] [CrossRef]
- Li, X.; Cheng, Z.; Yu, Q.; Bai, Y.; Li, C. Water-quality prediction using multimodal support vector regression: Case study of Jialing River, China. J. Environ. Eng. 2017, 143, 04017070. [Google Scholar] [CrossRef]
- Su, J.; Wang, X.; Zhao, S.; Chen, B.; Li, C.; Yang, Z. A Structurally Simplified Hybrid Model of Genetic Algorithm and Support Vector Machine for Prediction of Chlorophyll a in Reservoirs. Water 2015, 7, 1610–1627. [Google Scholar] [CrossRef] [Green Version]
- Abba, S.I.; Hadi, S.J.; Abdullahi, J. River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques. Procedia Comput. Sci. 2017, 120, 75–82. [Google Scholar] [CrossRef]
- Juntunen, P.; Liukkonen, M.; Pelu, M.; Lehtola, M.; Hiltunen, Y. Modelling of Water Quality: An Application to a Water Treatment Process. Appl. Comput. Intell. Soft Comput. 2012. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sha, J.; Wang, Z.-L. A comparative study of multiple linear regression, artificial neural network and support vector machine for the prediction of dissolved oxygen. Hydrol. Res. 2016. [Google Scholar] [CrossRef]
- Charulatha, G.; Srinivasalu, S.; Maheswari, O.U. Evaluation of ground water quality contaminants using linear regression and artificial neural network models. Arab. J. Geosci. 2017, 10, 128. [Google Scholar] [CrossRef]
- Keller, S.; Maier, P.M.; Riese, F.M.; Norra, S.; Holbach, A.; Börsig, N.; Wilhelms, A.; Moldaenke, C.; Zaake, A.; Hinz, S. Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll a, Diatoms, Green Algae and Turbidity. Int. J. Environ. Res. Public Health 2018, 15, 1881. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sha, J.; Wang, Z.-L. Chlorophyll-A Prediction of Lakes with Different Water Quality Patterns in China Based on Hybrid Neural Networks. Water 2017, 9, 524. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.-S.; Park, S.; An, K.-G.; Kwak, K.-C. Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea. Int. J. Environ. Res. Public Health 2018, 15, 2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazeer, M.; Bilal, M.; Alsahli, M.M.M.; Shahzad, M.I.; Waqas, A. Evaluation of Empirical and Machine Learning Algorithms for Estimation of Coastal Water Quality Parameters. ISPRS Int. J. Geo Inf. 2017, 6, 360. [Google Scholar] [CrossRef] [Green Version]
- Erena, M.; Domínguez, J.A.; Aguado-Giménez, F.; Soria, J.; García-Galiano, S. Monitoring Coastal Lagoon Water Quality through Remote Sensing: The Mar Menor as a Case Study. Water 2019, 11, 1468. [Google Scholar] [CrossRef] [Green Version]
- García-Oliva, M.; Marcos, C.; Umgiesser, G.; McKiver, W.; Ghezzo, M.; De Pascalis, F.; Pérez-Ruzafa, A. Modelling the impact of dredging inlets on the salinity and temperature regimes in coastal lagoons. Ocean Coast. Manag. 2019, 180, 104913. [Google Scholar] [CrossRef]
- López-Ballesteros, A.; Senent-Aparicio, J.; Srinivasan, R.; Pérez-Sánchez, J. Assessing the Impact of Best Management Practices in a Highly Anthropogenic and Ungauged Watershed Using the SWAT Model: A Case Study in the El Beal Watershed (Southeast Spain). Agronomy 2019, 9, 576. [Google Scholar] [CrossRef] [Green Version]
- Senent-Aparicio, J.; Pérez-Sánchez, J.; García-Aróstegui, J.L.; Bielsa-Artero, A.; Domingo-Pinillos, J.C. Evaluating Groundwater Management Sustainability under Limited Data Availability in Semiarid Zones. Water 2015, 7, 4305–4322. [Google Scholar] [CrossRef] [Green Version]
- Navarro, M.C.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Vidal, J.; Tovar, P.J.; Bech, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Conesa, H.M.; Jiménez-Cárceles, F.J. The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. Mar. Pollut. Bull. 2007, 54, 839–849. [Google Scholar] [CrossRef]
- Domingo-Pinillos, J.C.; Senent-Aparicio, J.; García-Aróstegui, J.L.; Baudron, P. Long Term Hydrodynamic Effects in a Semi-Arid Mediterranean Multilayer Aquifer: Campo de Cartagena in South-Eastern Spain. Water 2018, 10, 1320. [Google Scholar] [CrossRef] [Green Version]
- Stefanova, A.; Hesse, C.; Krysanova, V. Combined Impacts of Medium Term Socio-Economic Changes and Climate Change on Water Resources in a Managed Mediterranean Catchment. Water 2015, 7, 1538–1567. [Google Scholar] [CrossRef] [Green Version]
- Velasco, J.; Lloret, J.; Millán, A.; Marín, A.; Barahona, J.; Abellán, P.; Sánchez-Fernández, D. Nutrient and particulate inputs into the Mar Menor lagoon (SE Spain) from an intensive agricultural watershed. Water Air Soil Pollut. 2006, 176, 37–56. [Google Scholar] [CrossRef]
- García-Oliva, M.; Pérez-Ruzafa, Á.; Umgiesser, G.; McKiver, W.; Ghezzo, M.; De Pascalis, F.; Marcos, C. Assessing the Hydrodynamic Response of the Mar Menor Lagoon to Dredging Inlets Interventions through Numerical Modelling. Water 2018, 10, 959. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S. Neural Networks, a Comprehensive Foundation, 2nd ed.; Prentice Hall: Old Tappan, NJ, USA, 1999. [Google Scholar]
- Wei, B.; Sugiura, N.; Maekawa, T. Use of artificial neural network in the prediction of algal blooms. Water Res. 2001, 35, 2022–2028. [Google Scholar] [CrossRef]
- Fogelman, S.; Zhao, H.; Blumenstein, M.; Zhang, S. Estimation of oxygen demand levels using UV-Vis spectroscopy and artificial neural networks as an effective tool for real-time, wastewater treatment control. In Proceedings of the 1st Australian Young Water Professionals Conference, Sydney, Australia, 15–17 February 2006. [Google Scholar]
- ASCE Task Committee. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water 2018, 10, 192. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.D.; Tan, R.R.; Brondial, Y.; Fuchino, T. Prediction of vapor-liquid equilibrium data for ternary systems using artificial neural networks. Fluid Phase Equilibria 2007, 254, 188–197. [Google Scholar] [CrossRef]
- Bekkari, N.; Zeddouri, A. Using artificial neural network for predicting and controlling the effluent chemical oxygen demand in wastewater treatment plant. Manag. Environ. Qual. 2019, 30, 593–608. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; Smith, K.; Inial, G.; Liu, S.; Conil, L.B.; Pan, B. Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Res. 2019, 164, 114888. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour. Manag. 2017, 31, 2761–2775. [Google Scholar] [CrossRef]
- Vapnik, V.; Golowich, S.; Smola, A. Support vector method for function approximation, regression estimation, and signal processing. In Advances in Neural Information Processing Systems; Mozer, M.C., Jordan, M.I., Petsche, T., Eds.; MIT Press: Cambridge, MA, USA, 1997; pp. 281–287. [Google Scholar]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Benesty, M.; Lescarbeau, R.; et al. Caret: Classification and Regression Training, R Package Version 6.0-84. 2019. Available online: https://CRAN.R-project.org/package=caret (accessed on 12 December 2019).
- Kuhn, M. Futility analysis in the cross-validation of machine learning models. arXiv 2014, arXiv:1405.6974. [Google Scholar]
- Kohavi, R.; John, G.H. The wrapper approach. In Feature Extraction, Construction and Selection: A Data Mining Perspective; Liu, H., Motoda, H., Eds.; Springer: Boston, MA, USA, 1998; Volume 453, pp. 33–50. [Google Scholar]
- Motoda, H.; Liu, H. Feature selection, extraction and construction. Towards the Foundation of Data Mining Workshop. In Proceedings of the Sixth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD’02), Taipei, Taiwan, 6–8 May 2002; pp. 67–72. [Google Scholar]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Kumar, S.; Bucher, P. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features. BMC Bioinform. 2016, 17 (Suppl. 1), S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mjalli, F.S.; Al-Asheh, S.; Alfadala, H.E. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. J. Environ. Manag. 2007, 83, 329–338. [Google Scholar] [CrossRef]
- Palani, S.; Liong, S.Y.; Tkalich, P. An ANN application for water quality forecasting. Mar. Pollut. Bull. 2008, 56, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- Kuo, J.T.; Hsieh, M.H.; Lung, W.S.; She, N. Using Artificial Neural Network for reservoir eutrophication prediction. Ecol. Model. 2007, 200, 171–177. [Google Scholar] [CrossRef]
- Khadr, M. Modeling of Water Quality Parameters in Manzala Lake Using Adaptive Neuro-Fuzzy Inference System and Stochastic Models. In Egyptian Coastal Lakes and Wetlands: Part II—Climate Change and Biodiversity; Negm, A., Bek, M., Abdel-Fattah, S., Eds.; The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2017; p. 72. [Google Scholar]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D.; Cecilia, J.M. Estimation of Instantaneous Peak Flow Using Machine-Learning Models and Empirical Formula in Peninsular Spain. Water 2017, 9, 347. [Google Scholar] [CrossRef] [Green Version]
Performance Metric | Equation | Range |
---|---|---|
Cross-validated coefficient of determination (R2CV) | [0, 1] | |
Cross-validated root mean squared error (RMSECV) | [0, ∞] | |
Cross-validated mean absolute error (MAECV) | [0, ∞] |
Parameters (Units) 1 | Xmax | Xmin | Xmean | St. Dev. 2 | C.V. 3 | CC 4 |
---|---|---|---|---|---|---|
Chl-a (mg/m3) | 7.50 | 0.13 | 2.02 | 1.43 | 0.71 | 1.00 |
T (°C) | 27.70 | 11.00 | 20.09 | 6.41 | 0.32 | –0.08 |
pH | 8.46 | 7.83 | 8.17 | 0.12 | 0.01 | –0.02 |
SS (mg/l) | 35.35 | 5.00 | 8.64 | 4.94 | 0.57 | 0.22 |
TU(NTU) | 24.00 | 0.50 | 2.82 | 3.37 | 1.19 | 0.002 |
SD (m) | 6.50 | 0.30 | 2.39 | 1.63 | 0.68 | –0.55 |
S (PSU) | 46.38 | 41.86 | 44.21 | 0.95 | 0.02 | –0.35 |
DO (mg/l) | 8.12 | 4.25 | 6.55 | 0.80 | 0.12 | –0.17 |
TN (mg N/l) | 8.84 | 0.16 | 0.59 | 0.80 | 1.35 | 0.09 |
TP (mg P/l) | 0.07 | 0.01 | 0.01 | 0.01 | 0.70 | 0.25 |
Algorithm 1 | N. of Features Selected | Features Selected 2 | Input Scenario |
---|---|---|---|
Without feature selection | 12 | T, pH, SS, SD, S, DO, TU, TN, TP, LON, LAT, month | M1 |
The most highly correlated features | 4 | SD,S,TP,SS | M2 |
RFE_RF | 9 | SD, S, SS,TN, T, pH, DO, TP, LON | M3 |
RFE_SVM | 9 | SD, T, SS, S, TP, pH, TN, LON, TU | M4 |
GA_RF | 9 | LON, T, pH, SS, TU, SD, S, DO, TP | M5 |
GA_SVM | 10 | month, LAT, LON, T, pH, TU, SD, DO, TN, TP | M6 |
SA_RF | 8 | LAT, LON, pH, TU, SD, S, DO, TN | M7 |
SA_SVM | 7 | LON, T, SS, TU, S, TN, TP | M8 |
Model-Input Scenario | Architecture [I–H1–H2–O] 1 | Training Phase | Testing Phase | ||||
---|---|---|---|---|---|---|---|
R2CV | RMSECV (mg/m3) | MAECV (mg/m3) | R2CV | RMSECV (mg/m3) | MAECV (mg/m3) | ||
MLNN-M1 | [12–16–27–1] | 0.63 ± 0.14 | 0.85 ± 0.21 | 0.59 ± 0.21 | 0.53 ± 0.16 | 0.98 ± 0.31 | 0.70 ± 0.22 |
MLNN-M2 | [4–12–17–1] | 0.62 ± 0.11 | 0.88 ± 0.16 | 0.61 ± 0.09 | 0.52 ± 0.17 | 0.95 ± 0.32 | 0.71 ± 0.17 |
MLNN-M3 | [9–31–23–1] | 0.67 ± 0.17 | 0.80 ± 0.25 | 0.54 ± 0.15 | 0.60 ± 0.23 | 0.89 ± 0.41 | 0.66 ± 0.24 |
MLNN-M4 | [9–32–39–1] | 0.72 ± 0.07 | 0.76 ± 0.14 | 0.50 ± 0.06 | 0.61 ± 0.16 | 0.89 ± 0.35 | 0.63± 0.18 |
MLNN-M5 | [9–40–39–1] | 0.74 ± 0.09 | 0.73 ± 0.17 | 0.49 ± 0.13 | 0.62 ± 0.13 | 0.89 ± 0.26 | 0.66 ± 0.14 |
MLNN-M6 | [9–40–33–1] | 0.72 ± 0.13 | 0.74 ± 0.20 | 0.51 ± 0.20 | 0.55 ± 0.21 | 0.99 ± 0.34 | 0.76 ± 0.19 |
MLNN-M7 | [8–39–16–1] | 0.72 ± 0.08 | 0.78 ± 0.15 | 0.57 ± 0.13 | 0.54 ± 0.16 | 0.96 ± 0.32 | 0.71 ± 0.18 |
MLNN-M8 | [7–23–26–1] | 0.72 ± 0.08 | 0.74 ± 0.14 | 0.47 ± 0.10 | 0.53 ± 0.11 | 0.98 ± 0.24 | 0.68 ± 0.13 |
Model-Input Scenario | Model Parameters | Training Phase | Testing Phase | ||||
---|---|---|---|---|---|---|---|
R2CV | RMSECV (mg/m3) | MAECV (mg/m3) | R2CV | RMSECV (mg/m3) | MAECV (mg/m3) | ||
SVR-M1 | σ = 0.07 C = 3.31 | 0.53 ± 0.05 | 0.99 ± 0.07 | 0.70 ± 0.03 | 0.56 ± 0.09 | 0.85 ± 0.26 | 0.62 ± 0.14 |
SVR-M2 | σ = 0.24 C = 0.58 | 0.45 ± 0.06 | 1.12 ± 0.08 | 0.80 ± 0.03 | 0.49 ± 0.19 | 0.98 ± 0.34 | 0.71 ± 0.16 |
SVR-M3 | σ = 0.13 C = 2.54 | 0.56 ± 0.05 | 0.96 ± 0.12 | 0.66 ± 0.05 | 0.65 ± 0.11 | 0.82 ± 0.30 | 0.58 ± 0.16 |
SVR-M4 | σ = 0.10 C = 2.59 | 0.58 ± 0.06 | 0.94 ± 0.10 | 0.66 ± 0.04 | 0.68 ± 0.10 | 0.81 ± 0.32 | 0.56 ± 0.17 |
SVR-M5 | σ = 0.10 C = 3.01 | 0.58 ± 0.05 | 0.92 ± 0.09 | 0.64 ± 0.04 | 0.67 ± 0.09 | 0.82 ± 0.30 | 0.57 ± 0.18 |
SVR-M6 | σ = 0.10 C = 4.20 | 0.52 ± 0.09 | 0.98 ± 0.11 | 0.69 ± 0.06 | 0.61 ± 0.16 | 0.86 ± 0.31 | 0.61 ± 0.15 |
SVR-M7 | σ = 0.13 C = 3.38 | 0.51 ± 0.10 | 1.03 ± 0.15 | 0.72 ± 0.08 | 0.57 ± 0.20 | 0.90 ± 0.37 | 0.64 ± 0.21 |
SVR-M8 | σ = 0.30 C = 2.63 | 0.47 ± 0.05 | 1.06 ± 0.07 | 0.74 ± 0.04 | 0.54 ± 0.13 | 0.94 ± 0.21 | 0.66 ± 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimeno-Sáez, P.; Senent-Aparicio, J.; Cecilia, J.M.; Pérez-Sánchez, J. Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain). Int. J. Environ. Res. Public Health 2020, 17, 1189. https://doi.org/10.3390/ijerph17041189
Jimeno-Sáez P, Senent-Aparicio J, Cecilia JM, Pérez-Sánchez J. Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain). International Journal of Environmental Research and Public Health. 2020; 17(4):1189. https://doi.org/10.3390/ijerph17041189
Chicago/Turabian StyleJimeno-Sáez, Patricia, Javier Senent-Aparicio, José M. Cecilia, and Julio Pérez-Sánchez. 2020. "Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain)" International Journal of Environmental Research and Public Health 17, no. 4: 1189. https://doi.org/10.3390/ijerph17041189
APA StyleJimeno-Sáez, P., Senent-Aparicio, J., Cecilia, J. M., & Pérez-Sánchez, J. (2020). Using Machine-Learning Algorithms for Eutrophication Modeling: Case Study of Mar Menor Lagoon (Spain). International Journal of Environmental Research and Public Health, 17(4), 1189. https://doi.org/10.3390/ijerph17041189