Socioeconomic Inequalities in Frailty in Hong Kong, China: A 14-Year Longitudinal Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exposure
2.3. Outcome
2.4. Covariate
2.4.1. Demographics
2.4.2. Objective Measures of SES
2.4.3. Medical History
2.4.4. Lifestyle
2.4.5. Health-Related Quality of Life (Mental Component)
2.4.6. Cognitive Function
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Clinical Consortium on Healthy Ageing Topic Focus: Frailty and Intrinsic Capacity; Report of Consortium Meeting; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Moody, D.; Lyndon, H.; Stevens, G. Toolkit for General Practice in Supporting Older People Living with Frailty; NHS England: Leeds, UK, 2017. [Google Scholar]
- National Health Service. Supporting Routine Frailty Identification through the GP Contract 2017/2018; NHS England: Leeds, UK, 2018; Available online: https://www.england.nhs.uk/wp-content/uploads/2017/04/supporting-guidance-on-frailty-update-sept-2017.pdf (accessed on 12 March 2018).
- National Health Service. NHS England Standard General Medical Services Contract; NHS England: Leeds, UK, 2018; Available online: https://www.england.nhs.uk/wp-content/uploads/2018/01/17-18-gms-contract.pdf (accessed on 12 March 2018).
- Syddall, H.; Roberts, H.C.; Evandrou, M.; Cooper, C.; Bergman, H.; Sayer, A.A. Prevalence and correlates of frailty among community-dwelling older men and women: Findings from the Hertfordshire Cohort study. Age Ageing 2010, 39, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.; Chan, R.; Leung, J.; Wong, M. Relative contributions of geographic, socioeconomic, and lifestyle factors to quality of life, frailty, and mortality in elderly. PLoS ONE 2010, 5, e8775. [Google Scholar] [CrossRef]
- Marengoni, A.; Fratiglioni, L.; Bandinelli, S.; Ferrucci, L. Socioeconomic status during lifetime and cognitive impairment no-dementia in late life: The population-based aging in the Chianti area (InCHIANTI) study. J. Alzheimer’s Dis. 2011, 24, 559–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puts, M.T.E.; Toubasi, S.; Andrew, M.K.; Ashe, M.C.; Ploeg, J.; Atkinson, E.; Ayala, A.P.; Roy, A.; Rodriguez Monforte, M.; Bergman, H.; et al. Interventions to prevent or reduce the level of frailty in community-dwelling older adults: A scoping review of the literature and international policies. Age Ageing 2017, 46, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenbach, J.P.; Stirbu, I.; Roskam, A.J.R.; Schaap, M.M.; Menvielle, G.; Leinsalu, M.; Kunst, A.E.; Socioec, E.U.W.G. Socioeconomic inequalities in health in 22 European countries. N. Engl. J. Med. 2008, 358, 2468–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stringhini, S.; Sabia, S.; Shipley, M.; Brunner, E.; Nabi, H.; Kivimaki, M.; Singh-Manoux, A. Association of socioeconomic position with health behaviors and mortality. JAMA J. Am. Med. Assoc. 2010, 303, 1159–1166. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.; Goggins, W.; Sham, A.; Ho, S.C. Social determinants of frailty. Gerontology 2005, 51, 402–408. [Google Scholar] [CrossRef]
- Alvarado, B.E.; Zunzunegui, M.V.; Beland, F.; Bamvita, J.M. Life course social and health conditions linked to frailty in Latin American older men and women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Szanton, S.L.; Seplaki, C.L.; Thorpe, R.J.; Allen, J.K.; Fried, L.P. Socioeconomic status is associated with frailty: The women’s health and aging studies. J. Epidemiol. Commun. Health 2010, 64, 63–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casale-Martinez, R.I.; Navarrete-Reyes, A.P.; Avila-Funes, J.A. Social determinants of frailty in elderly Mexican community-dwelling adults. J. Am. Geriatr. Soc. 2012, 60, 800–802. [Google Scholar] [CrossRef]
- Etman, A.; Burdorf, A.; Van der Cammen, T.J.M.; Mackenbach, J.P.; Van Lenthe, F.J. Socio-demographic determinants of worsening in frailty among community-dwelling older people in 11 European countries. J. Epidemiol. Commun. Health 2012, 66, 1116–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoogendijk, E.O.; van Hout, H.P.J.; Heymans, M.W.; van der Horst, H.E.; Frijters, D.H.M.; van Groenou, M.I.B.; Deeg, D.J.H.; Huisman, M. Explaining the association between educational level and frailty in older adults: Results from a 13-year longitudinal study in the Netherlands. Ann. Epidemiol. 2014, 24, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, P.A.; Mishra, G.D.; Dobson, A.J. The effect of socioeconomic status across adulthood on trajectories of frailty in older women. J. Am. Med. Dir. Assoc. 2016, 17, e371–e373. [Google Scholar] [CrossRef]
- Stolz, E.; Mayerl, H.; Waxenegger, A.; Rasky, E.; Freidl, W. Impact of socioeconomic position on frailty trajectories in 10 European countries: Evidence from the survey of health, ageing and retirement in Europe (2004–2013). J. Epidemiol. Commun. Health 2017, 71, 73–80. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Heymans, M.W.; Deeg, D.J.H.; Huisman, M. Socioeconomic inequalities in frailty among older adults: Results from a 10-year longitudinal study in the Netherlands. Gerontology 2018, 64, 157–164. [Google Scholar] [CrossRef]
- Singh-Manoux, A.; Adler, N.E.; Marmot, M.G. Subjective social status: Its determinants and its association with measures of ill-health in the Whitehall II study. Soc. Sci. Med. 2003, 56, 1321–1333. [Google Scholar] [CrossRef]
- Demakakos, P.; Nazroo, J.; Breeze, E.; Marmot, M. Socioeconomic status and health: The role of subjective social status. Soc. Sci. Med. 2008, 67, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Marmot, M.; Wilkinson, R.G. Psychosocial and material pathways in the relation between income and health: A response to Lynch et al. BMJ 2001, 322, 1233–1236. [Google Scholar] [CrossRef] [Green Version]
- Singh-Manoux, A.; Marmot, M.G.; Adler, N.E. Does subjective social status predict health and change in health status better than objective status? Psychosom. Med. 2005, 67, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Lynn, H.; Leung, J.; Wong, S.Y. Self-perceived social status and health in older Hong Kong Chinese women compared with men. Women’s Health 2008, 48, 209–234. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Covinsky, K.E.; Cenzer, I.S.; Adler, N.; Williams, B.A. Subjective social status and functional decline in older adults. J. Gen. Intern. Med. 2012, 27, 693–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Fung, H.; Kwok, T. Spouse’s subjective social status predicts older adults’ prospective cognitive functioning. Aging Mental Health 2019, 23, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Demakakos, P.; Biddulph, J.P.; de Oliveira, C.; Tsakos, G.; Marmot, M.G. Subjective social status and mortality: The English longitudinal study of ageing. Eur. J. Epidemiol. 2018, 33, 729–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.Y.S.; Kwok, T.; Woo, J.; Lynn, H.; Griffith, J.F.; Leung, J.; Tang, Y.Y.N.; Leung, P.C. Bone mineral density and the risk of peripheral arterial disease in men and women: Results from Mr. and Ms Os, Hong Kong. Osteoporos. Int. 2005, 16, 1933–1938. [Google Scholar] [CrossRef]
- Adler, N.E.; Epel, E.S.; Castellazzo, G.; Ickovics, J.R. Relationship of subjective and objective social status with psychological and physiological functioning: Preliminary data in healthy white women. Health Psychol. 2000, 19, 586–592. [Google Scholar] [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The physical-activity scale for the elderly (pase)—Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Kim, S.; Haines, P.S.; Siega-Riz, A.M.; Popkin, B.M. The Diet Quality Index-International (DQI-I) provides an effective tool for cross-national comparison of diet quality as illustrated by China and the United States. J. Nutr. 2003, 133, 3476–3484. [Google Scholar] [CrossRef]
- Woo, J.; Cheung, B.; Ho, S.; Sham, A.; Lam, T.H. Influence of dietary pattern on the development of overweight in a Chinese population. Eur. J. Clin. Nutr. 2008, 62, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Haywood, K.L.; Garratt, A.M.; Fitzpatrick, R. Quality of life in older people: A structured review of generic self-assessed health instruments. Qual. Life Res. 2005, 14, 1651–1668. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.L.K.; Tse, E.Y.Y.; Gandek, B. Is the standard SF-12 health survey valid and equivalent for a Chinese population? Qual. Life Res. 2005, 14, 539–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Chiu, H.F.; Lee, H.C.; Chung, W.S.; Kwong, P.K. Reliability and validity of the cantonese version of the mini-mental state examination—A preliminary study. J. Hong Kong Coll. Psychiatr. 1994, 4, 25–28. [Google Scholar]
- van Rossum, C.T.M.; Shipley, M.J.; van de Mheen, H.; Grobbee, D.E.; Marmot, M.G. Employment grade differences in cause specific mortality. A 25 year follow up of civil servants from the first Whitehall study. J. Epidemiol. Commun. Health 2000, 54, 178–184. [Google Scholar] [CrossRef]
- Dunn, J.R.; Veenstra, G.; Ross, N. Psychosocial and neo-material dimensions of SES and health revisited: Predictors of self-rated health in a Canadian national survey. Soc. Sci. Med. 2006, 62, 1465–1473. [Google Scholar] [CrossRef]
- Prentice, D.A.; Carranza, E. What women and men should be, shouldn’t be, are allowed to be, and don’t have to be: The contents of prescriptive gender stereotypes. Psychol. Women Q. 2002, 26, 269–281. [Google Scholar] [CrossRef]
- Canetto, S.S.; Kaminski, P.L.; Felicio, D.M. Typical and optimal aging in women and men: Is there a double standard? Int. J. Aging Hum. Dev. 1995, 40, 187–207. [Google Scholar] [CrossRef]
- Matthews, S.; Manor, O.; Power, C. Social inequalities in health: Are there gender differences? Soc. Sci. Med. 1999, 48, 49–60. [Google Scholar] [CrossRef]
- Wallerstein, N. What is the Evidence on Effectiveness of Empowerment to Improve Health? Health Evidence Network Report; WHO Regional Office for Europe: Copenhagen, Denmark, 2006; Available online: http://wwweurowhoint/Document/E88086pdf (accessed on 8 October 2019).
- Zimmerman, M.A. Empowerment theory: Psychological, organizational and community levels of analysis. In Handbook of Community Psychology; Rappaport, J., Seidman, E., Eds.; Kluwer Academic/Plenum: New York, NY, USA, 2000; pp. 43–63. [Google Scholar]
- Barnett, R.C.; Hyde, J.S. Women, men, work, and family—An expansionist theory. Am. Psychol. 2001, 56, 781–796. [Google Scholar] [CrossRef]
- Gordon, E.H.; Peel, N.M.; Samanta, M.; Theou, O.; Howlett, S.E.; Hubbard, R.E. Sex differences in frailty: A systematic review and meta-analysis. Exp. Gerontol. 2017, 89, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Poulton, R.; Caspi, A.; Milne, B.J.; Thomson, W.M.; Taylor, A.; Sears, M.R.; Moffitt, T.E. Association between children’s experience of socioeconomic disadvantage and adult health: A life-course study. Lancet 2002, 360, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
Subjective Social Status | Frailty Status at Year 14 | |||||||
---|---|---|---|---|---|---|---|---|
High (n = 414) | Middle (n = 228) | Low (n = 52) | Robust (n = 64) | Pre-Frail (n = 419) | Frail (n = 211) | |||
Variables | Mean ± SD/n (%) | Mean ± SD/n (%) | Mean ± SD/n (%) | P | Mean ± SD/n (%) | Mean ± SD/n (%) | Mean ± SD/n (%) | P |
Demographics | ||||||||
Age, years | 69.7 ± 3.5 | 69.7 ± 3.7 | 69.2 ± 3.3 | 0.551 | 67.2 ± 2.2 | 69.3 ± 3.2 | 71.2 ± 3.9 | <0.001 |
Sex | ||||||||
Men | 182 (44.0) | 127 (55.7) | 37 (71.2) | <0.001 | 38 (59.4) | 230 (54.9) | 78 (37.0) | <0.001 |
Women | 232 (56.0) | 101 (44.3) | 15 (28.8) | 26 (40.6) | 189 (45.1) | 133 (63.0) | ||
Marital status | ||||||||
Married | 322 (77.8) | 186 (81.6) | 47 (90.4) | 0.077 | 58 (90.6) | 343 (81.9) | 154 (73.0) | 0.003 |
Non-married (single, divorced, separated) | 92 (22.2) | 42 (18.4) | 5 (9.6) | 6 (9.4) | 76 (18.1) | 57 (27.0) | ||
Objective socioeconomic status | ||||||||
Educational level | ||||||||
At least completed primary | 232 (56.0) | 120 (52.6) | 26 (50.0) | 0.119 | 40 (62.5) | 248 (59.2) | 90 (42.7) | 0.001 |
Some primary education | 112 (27.1) | 78 (34.2) | 21 (40.4) | 16 (25.0) | 120 (28.6) | 75 (35.5) | ||
No education | 70 (16.9) | 30 (13.2) | 5 (9.6) | 8 (12.5) | 51 (12.2) | 46 (21.8) | ||
Maximum life-time income | ||||||||
Quartile 4 ≥HKD$14,000 | 97 (29.0) | 40 (21.5) | 12 (26.7) | 0.328 | 19 (35.2) | 101 (29.3) | 29 (17.4) | <0.001 |
Quartile 3 HKD$8000–13,999 | 79 (23.6) | 61 (32.8) | 13 (28.9) | 20 (37.0) | 95 (27.5) | 38 (22.8) | ||
Quartile 2 HKD$2500–7900 | 77 (23.0) | 45 (24.2) | 10 (22.2) | 11 (20.4) | 72 (20.9) | 49 (29.3) | ||
Quartile 1 HKD$0–2499 | 82 (24.5) | 40 (21.5) | 10 (22.2) | 4 (7.4) | 77 (22.3) | 51 (30.5) | ||
Medical history | ||||||||
Hypertension | ||||||||
No | 251 (60.6) | 137 (60.1) | 31 (59.6) | 0.984 | 48 (75.0) | 267 (63.7) | 104 (49.3) | <0.001 |
Yes | 163 (39.4) | 91 (39.9) | 21 (40.4) | 16 (25.0) | 152 (36.3) | 107 (50.7) | ||
Diabetes | ||||||||
No | 357 (86.2) | 200 (87.7) | 42 (80.8) | 0.420 | 59 (92.2) | 370 (88.3) | 170 (80.6) | 0.01 |
Yes | 57 (13.8) | 28 (12.3) | 10 (19.2) | 5 (7.8) | 49 (11.7) | 41 (19.4) | ||
Stroke | ||||||||
No | 399 (96.4) | 226 (99.1) | 49 (94.2) | 0.060 | 63 (98.4) | 411 (98.1) | 200 (94.8) | 0.052 |
Yes | 15 (3.6) | 2 (0.9) | 3 (5.8) | 1 (1.6) | 8 (1.9) | 11 (5.2) | ||
Lifestyle | ||||||||
Current smoker | ||||||||
No | 397 (95.9) | 222 (97.4) | 50 (96.2) | 0.628 | 61 (95.3) | 403 (96.2) | 205 (97.2) | 0.732 |
Yes | 17 (4.1) | 6 (2.6) | 2 (3.8) | 3 (4.7) | 16 (3.8) | 6 (2.8) | ||
Current drinker | ||||||||
No | 199 (48.1) | 91 (39.9) | 18 (34.6) | 0.047 | 23 (35.9) | 184 (43.9) | 101 (47.9) | 0.232 |
Yes | 215 (51.9) | 137 (60.1) | 34 (65.4) | 41 (64.1) | 235 (56.1) | 110 (52.1) | ||
Physical activity, PASE score | 106.7 ± 39.8 | 114.6 ± 47.7 | 115.7 ± 47.9 | 0.052 | 116.1 ± 42.0 | 112.0 ± 44.3 | 104.2 ± 41.3 | 0.052 |
Diet quality, DQI | 66.0 ± 9.2 | 65.9 ± 9.0 | 66.5 ± 10.0 | 0.904 | 66.2 ± 8.7 | 65.7 ± 9.3 | 66.5 ± 9.1 | 0.651 |
BMI, kg/m2 | 24.0 ± 2.8 | 23.8 ± 2.8 | 24.0 ± 2.7 | 0.746 | 23.9 ± 2.4 | 23.6 ± 2.5 | 24.6 ± 3.3 | <0.001 |
Mental health | ||||||||
SF-12 MCS score | 56.7 ± 5.8 | 56.9 ± 5.8 | 55.5 ± 5.8 | 0.286 | 56.1 ± 6.0 | 56.7 ± 5.9 | 56.7 ± 5.6 | 0.744 |
cognitive function | ||||||||
MMSE score | 26.8 ± 3.0 | 26.9 ± 2.8 | 27.7 ± 2.2 | 0.130 | 27.2 ± 2.9 | 27.1 ± 2.8 | 26.4 ± 3.1 | 0.010 |
Variables | Men (n = 346) | Women (n = 348) | |||||
---|---|---|---|---|---|---|---|
Subjective Social Status | Subjective Social Status | ||||||
High (n = 182) | Middle (n = 127) | Low (n = 37) | High (n = 232) | Low to Middle (n = 116) | |||
n (%) | P | n (%) | P | ||||
Educational level | |||||||
At least completed primary | 139 (76.4) | 90 (70.9) | 20 (54.1) | 0.064 | 93 (40.1) | 30 (25.9) | 0.132 |
Some primary | 36 (19.8) | 34 (26.8) | 15 (40.5) | 76 (32.8) | 50 (43.1) | ||
No education | 7 (3.8) | 3 (2.4) | 2 (5.4) | 63 (27.2) | 36 (31.0) | ||
Maximum life-time income | |||||||
Quartile 4 ≥HKD$14,000 | 78 (47.6) | 39 (34.2) | 12 (37.5) | 0.240 | 44 (25.7) | 16 (18.8) | 0.405 |
Quartile 3 HKD$8000–13,999 | 54 (32.9) | 47 (41.2) | 12 (37.5) | ||||
Quartile 2 HKD$2500–7900 | 25 (15.2) | 20 (17.5) | 4 (12.5) | 52 (30.4) | 31 (36.5) | ||
Quartile 1 HKD$0–2499 | 7 (4.3) | 8 (7.0) | 4 (12.5) | 75 (43.9) | 38 (44.7) |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Variables | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) |
Socioeconomic status | |||||||
Subjective social status (ref = High) | |||||||
Middle | 1.69 (1.21–2.38) | 1.69 (1.21–2.38) | 1.83 (1.24–2.68) | 1.97 (1.33–2.92) | 2.03 (1.36–3.02) | 2.03 (1.36–3.01) | 2.03 (1.36–3.02) |
Low | 2.43 (1.33–4.42) | 2.44 (1.34–4.44) | 2.43 (1.26–4.68) | 2.29 (1.17–4.47) | 2.30 (1.17–4.49) | 2.35 (1.20–4.61) | 2.34 (1.19–4.60) |
Socio-demographics | |||||||
Age | 1.22 (1.17–1.28) | 1.22 (1.16–1.28) | 1.22 (1.15–1.29) | 1.22 (1.15–1.29) | 1.22 (1.15–1.29) | 1.22 (1.15–1.29) | 1.22 (1.15–1.29) |
Female (ref = Male) | 2.15 (1.56–2.96) | 2.08 (1.48–2.92) | 2.04 (1.29–3.24) | 2.01 (1.25–3.21) | 2.15 (1.29–3.57) | 2.16 (1.30–3.60) | 2.17 (1.30–3.62) |
Non-married (single, divorced, separated) (ref = Married) | 1.12 (0.74–1.70) | 0.95 (0.58–1.56) | 0.88 (0.53–1.46) | 0.89 (0.54–1.48) | 0.90 (0.54–1.50) | 0.90 (0.54–1.50) | |
Educational level (ref = At least completed primary) | |||||||
Some primary | 1.08 (0.71–1.64) | 1.06 (0.69–1.61) | 1.02 (0.66–1.56) | 1.00 (0.65–1.54) | 1.01 (0.65–1.56) | ||
No education | 1.25 (0.70–2.25) | 1.48 (0.81–2.71) | 1.31 (0.71–2.43) | 1.30 (0.70–2.41) | 1.34 (0.68–2.62) | ||
Maximum life-time income (ref = Quartile 4 ≥HKD$14,000) | |||||||
Quartile 3 HKD$8000–13,999 | 0.82 (0.50–1.34) | 0.82 (0.50–1.35) | 0.83 (0.50–1.37) | 0.82 (0.50–1.36) | 0.82 (0.50–1.36) | ||
Quartile 2 HKD$2500–7900 | 1.17 (0.67–2.04) | 1.25 (0.71–2.19) | 1.30 (0.74–2.30) | 1.32 (0.75–2.33) | 1.33 (0.75–2.35) | ||
Quartile 1 HKD$0–2499 | 1.12 (0.61–2.05) | 1.15 (0.62–2.12) | 1.19 (0.64–2.20) | 1.18 (0.64–2.19) | 1.19 (0.64–2.21) | ||
Medical history | |||||||
Hypertension (ref = No hypertension) | 1.93 (1.31–2.84) | 1.83 (1.23–2.72) | 1.83 (1.23–2.73) | 1.84 (1.23–2.74) | |||
Diabetes (ref = No diabetes) | 1.86 (1.10–3.14) | 1.78 (1.05–3.03) | 1.78 (1.05–3.03) | 1.78 (1.05–3.03) | |||
Stroke (ref = No stroke) | 3.57 (1.27–10.05) | 3.79 (1.32–10.84) | 3.74 (1.31–10.68) | 3.75 (1.31–10.69) | |||
Lifestyle | |||||||
Current smoker (ref = Non-current smoker) | 1.19 (0.47–3.03) | 1.18 (0.47–3.01) | 1.18 (0.46–3.01) | ||||
Current drinker (ref = Non-current drinker) | 1.11 (0.74–1.64) | 1.10 (0.74–1.64) | 1.10 (0.74–1.64) | ||||
Physical activity, PASE score | 1.00 (1.00–1.00) | 1.00 (1.00–1.00) | 1.00 (1.00–1.00) | ||||
Diet quality, DQI | 1.00 (0.98–1.01) | 0.99 (0.98–1.01) | 0.99 (0.98–1.01) | ||||
BMI, kg/m2 | 1.07 (1.01–1.15) | 1.07 (1.00–1.15) | 1.07 (1.00–1.15) | ||||
Mental health | |||||||
SF-12 MCS score | 1.01 (0.98–1.05) | 1.01 (0.98–1.05) | |||||
Cognitive function | |||||||
MMSE score | 1.01 (0.94–1.08) |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Variables | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) |
Socioeconomic status | |||||||
Subjective social status (ref = High) | |||||||
Middle | 2.15 (1.31–3.53) | 2.14 (1.31–3.52) | 2.06 (1.22–3.49) | 2.21 (1.29–3.78) | 2.23 (1.30–3.83) | 2.22 (1.29–3.82) | 2.21 (1.28–3.81) |
Low | 3.70 (1.74–7.88) | 3.67 (1.73–7.82) | 3.75 (1.66–8.47) | 3.44 (1.48–7.97) | 3.42 (1.47–7.97) | 3.45 (1.48–8.07) | 3.60 (1.54–8.41) |
Socio–demographics | |||||||
Age | 1.23 (1.15–1.32) | 1.23 (1.15–1.32) | 1.18 (1.09–1.28) | 1.19 (1.10–1.29) | 1.20 (1.11–1.30) | 1.20 (1.11–1.30) | 1.20 (1.11–1.30) |
Non–married (single, divorced, separated) (ref = Married) | 0.73 (0.28–1.95) | 0.70 (0.24–2.01) | 0.58 (0.20–1.70) | 0.60 (0.20–1.77) | 0.61 (0.21–1.81) | 0.62 (0.21–1.86) | |
Educational level (ref = At least completed primary) | |||||||
Some primary | 1.01 (0.57–1.79) | 0.95 (0.53–1.71) | 0.93 (0.51–1.68) | 0.89 (0.49–1.62) | 0.81 (0.44–1.51) | ||
No education | 2.11 (0.54–8.16) | 3.05 (0.75–12.43) | 2.80 (0.66–11.93) | 2.89 (0.68–12.36) | 2.30 (0.52–10.09) | ||
Maximum life–time income (ref = Quartile 4 ≥HKD$14,000) | |||||||
Quartile 3 HKD$8000–13,999 | 1.21 (0.69–2.14) | 1.21 (0.68–2.16) | 1.23 (0.69–2.20) | 1.22 (0.68–2.19) | 1.24 (0.69–2.22) | ||
Quartile 2 HKD$2500–7900 | 1.37 (0.66–2.84) | 1.39 (0.66–2.92) | 1.45 (0.68–3.08) | 1.47 (0.69–3.11) | 1.37 (0.64–2.93) | ||
Quartile 1 HKD$0–2499 | 1.43 (0.51–4.05) | 1.50 (0.52–4.30) | 1.43 (0.50–4.15) | 1.48 (0.51–4.29) | 1.35 (0.46–3.97) | ||
Medical history | |||||||
Hypertension (ref = No hypertension) | 1.93 (1.12–3.33) | 1.80 (1.02–3.18) | 1.82 (1.03–3.21) | 1.74 (0.98–3.09) | |||
Diabetes (ref = No diabetes) | 2.02 (0.97–4.24) | 1.95 (0.93–4.12) | 2.01 (0.95–4.27) | 1.99 (0.93–4.23) | |||
Stroke (ref = No stroke) | 3.07 (0.86–10.99) | 3.12 (0.86–11.40) | 3.15 (0.87–11.48) | 3.28 (0.90–12.00) | |||
Lifestyle | |||||||
Current smoker (ref = Non–current smoker) | 1.18 (0.42–3.30) | 1.15 (0.41–3.24) | 1.13 (0.40–3.19) | ||||
Current drinker (ref = Non–current drinker) | 1.00 (0.56–1.79) | 1.02 (0.57–1.83) | 1.03 (0.57–1.86) | ||||
Physical activity, PASE score | 1.00 (1.00–1.01) | 1.00 (1.00–1.01) | 1.00 (1.00–1.01) | ||||
Diet quality, DQI | 1.00 (0.97–1.03) | 1.00 (0.97–1.02) | 1.00 (0.97–1.02) | ||||
BMI, kg/m2 | 1.07 (0.97–1.18) | 1.07 (0.97–1.18) | 1.07 (0.97–1.18) | ||||
Mental health | |||||||
SF–12 MCS score | 1.02 (0.97–1.07) | 1.02 (0.98–1.07) | |||||
Cognitive function | |||||||
MMSE score | 0.92 (0.81–1.05) |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
---|---|---|---|---|---|---|---|
Variables | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) | OR (95% CI) |
Socioeconomic status | |||||||
Subjective social status (ref = High) | |||||||
Low to middle * | 1.37 (0.87–2.16) | 1.37 (0.87–2.16) | 1.45 (0.84–2.51) | 1.56 (0.89–2.72) | 1.60 (0.91–2.82) | 1.61 (0.91–2.83) | 1.61 (0.91–2.84) |
Socio–demographics | |||||||
Age | 1.22 (1.14–1.29) | 1.21 (1.13–1.29) | 1.26 (1.16–1.36) | 1.25 (1.15–1.35) | 1.24 (1.14–1.35) | 1.24 (1.14–1.35) | 1.25 (1.14–1.36) |
Non–married (single, divorced, separated) (ref = Married) | 1.22 (0.77–1.93) | 1.01 (0.57–1.79) | 0.96 (0.54–1.71) | 0.98 (0.55–1.75) | 0.98 (0.55–1.75) | 0.97 (0.54–1.74) | |
Educational level (ref = At least completed primary) | |||||||
Some primary | 0.97 (0.52–1.82) | 1.01 (0.53–1.91) | 0.95 (0.50–1.83) | 0.95 (0.50–1.83) | 1.00 (0.52–1.94) | ||
No education | 0.95 (0.47–1.91) | 1.15 (0.56–2.37) | 1.03 (0.49–2.15) | 1.02 (0.49–2.15) | 1.26 (0.55–2.89) | ||
Maximum life–time income (ref = Quartile 3 and 4 (HKD$8000–13,999 and ≥HKD$14,000 ^)) | |||||||
Quartile 2 HKD$2500–7900 | 1.64 (0.79–3.41) | 1.90 (0.90–3.99) | 1.89 (0.88–4.06) | 1.91 (0.89–4.13) | 1.98 (0.91–4.29) | ||
Quartile 1 HKD$0–2499 | 1.46 (0.73–2.92) | 1.56 (0.77–3.15) | 1.57 (0.76–3.25) | 1.57 (0.76–3.25) | 1.58 (0.77–3.28) | ||
Medical history | |||||||
Hypertension (ref = No hypertension) | 2.08 (1.19–3.65) | 2.00 (1.12–3.58) | 1.99 (1.11–3.57) | 2.03 (1.13–3.64) | |||
Diabetes (ref = No diabetes) | 1.60 (0.73–3.48) | 1.50 (0.68–3.30) | 1.49 (0.67–3.27) | 1.45 (0.66–3.21) | |||
Stroke (ref = No stroke) | 5.70 (0.81–40.04) | 6.67 (0.93–47.74) | 6.44 (0.89–46.55) | 6.72 (0.93–48.44) | |||
Lifestyle | |||||||
Current smoker (ref = Non–current smoker) | 0.62 (0.05–8.10) | 0.62 (0.05–8.07) | 0.52 (0.04–6.64) | ||||
Current drinker (ref = Non–current drinker) | 1.22 (0.70–2.15) | 1.21 (0.69–2.13) | 1.24 (0.70–2.19) | ||||
Physical activity, PASE score | 1.00 (0.99–1.01) | 1.00 (0.99–1.01) | 1.00 (0.99–1.01) | ||||
Diet quality, DQI | 0.99 (0.97–1.02) | 0.99 (0.97–1.02) | 0.99 (0.96–1.02) | ||||
BMI, kg/m2 | 1.08 (0.98–1.19) | 1.08 (0.98–1.18) | 1.08 (0.98–1.19) | ||||
Mental health | |||||||
SF–12 MCS score | 1.01 (0.97–1.05) | 1.01 (0.97–1.06) | |||||
Cognitive function | |||||||
MMSE score | 1.06 (0.96–1.16) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Tong, C.; Leung, J.; Woo, J. Socioeconomic Inequalities in Frailty in Hong Kong, China: A 14-Year Longitudinal Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 1301. https://doi.org/10.3390/ijerph17041301
Yu R, Tong C, Leung J, Woo J. Socioeconomic Inequalities in Frailty in Hong Kong, China: A 14-Year Longitudinal Cohort Study. International Journal of Environmental Research and Public Health. 2020; 17(4):1301. https://doi.org/10.3390/ijerph17041301
Chicago/Turabian StyleYu, Ruby, Cecilia Tong, Jason Leung, and Jean Woo. 2020. "Socioeconomic Inequalities in Frailty in Hong Kong, China: A 14-Year Longitudinal Cohort Study" International Journal of Environmental Research and Public Health 17, no. 4: 1301. https://doi.org/10.3390/ijerph17041301
APA StyleYu, R., Tong, C., Leung, J., & Woo, J. (2020). Socioeconomic Inequalities in Frailty in Hong Kong, China: A 14-Year Longitudinal Cohort Study. International Journal of Environmental Research and Public Health, 17(4), 1301. https://doi.org/10.3390/ijerph17041301