Does China’s Urban Development Satisfy Zipf’s Law? A Multiscale Perspective from the NPP-VIIRS Nighttime Light Data
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Correction of the NPP-VIIRS Data
3.2. Zipf ’s Law
4. Results and Discussion
4.1. Evaluating the Corrected Results of the NPP-VIIRS Data
4.2. Analyzing the Zipf ’s Law Results of China’s Urban Development at Multiple Scales
4.2.1. Urban Development at the Provincial Level
4.2.2. Urban Development at the Prefectural Level
4.2.3. Urban Development at the County Level
4.2.4. Comparison of Urban Development at Different Scales
4.3. Limitations and Future Perspectives
5. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- Shi, L.; Zhang, Z.; Liu, F.; Zhao, X.; Wang, X.; Liu, B.; Hu, S.; Wen, Q.; Zuo, L.; Yi, L. City size distribution and its spatiotemporal evolution in China. Chin. Geogr. Sci. 2016, 26, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CPER, K.; ANOS, P. Realizing China’s urban dream. Nature 2014, 509. [Google Scholar]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Shuai, C.; Jiao, L.; Tan, Y.; Song, X. A global perspective on the sustainable performance of urbanization. Sustainability 2016, 8, 783. [Google Scholar] [CrossRef] [Green Version]
- Wu, F. Globalization, place promotion and urban development in Shanghai. J. Urban Aff. 2003, 25, 55–78. [Google Scholar] [CrossRef]
- Guzmán, P.; Roders, A.P.; Colenbrander, B. Measuring links between cultural heritage management and sustainable urban development: An overview of global monitoring tools. Cities 2017, 60, 192–201. [Google Scholar] [CrossRef]
- The CPC Central Committee, The State Council. National New Urbanization Plan (2014–2020); The State Council: Beijing, China, 2014.
- Wang, X.-R.; Hui, E.C.-M.; Choguill, C.; Jia, S.-H. The new urbanization policy in China: Which way forward? Habitat Int. 2015, 47, 279–284. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis. Ecol. Indic. 2015, 49, 121–131. [Google Scholar] [CrossRef]
- Yang, B.; Xu, T.; Shi, L. Analysis on sustainable urban development levels and trends in China’s cities. J. Clean. Prod. 2017, 141, 868–880. [Google Scholar] [CrossRef]
- Roefs, I.; Meulman, B.; Vreeburg, J.H.; Spiller, M. Centralised, decentralised or hybrid sanitation systems? Economic evaluation under urban development uncertainty and phased expansion. Water Res. 2017, 109, 274–286. [Google Scholar] [CrossRef]
- De Roo, G.; Miller, D. Compact cities and sustainable urban development: A critical assessment of policies and plans from an international perspective. Routledge 2019. [Google Scholar]
- Collas, L.; Green, R.E.; Ross, A.; Wastell, J.H.; Balmford, A. Urban development, land sharing and land sparing: The importance of considering restoration. J. Appl. Ecol. 2017, 54, 1865–1873. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, Q.; Gong, Y.; Wang, L.; Zhang, Y.; Cheng, L.; Li, M.; Lu, J.; Duan, Y.; Huang, Q. Using urban development boundaries to constrain uncontrolled urban sprawl in China. Ann. Am. Assoc. Geogr. 2016, 106, 1321–1343. [Google Scholar] [CrossRef]
- Katircioglu, S.; Katircioglu, S.; Kilinc, C.C. Investigating the role of urban development in the conventional environmental Kuznets curve: Evidence from the globe. Environ. Sci. Pollut. Res. 2018, 25, 15029–15035. [Google Scholar] [CrossRef]
- Mabogunje, A. The development process: A spatial perspective. Routledge 2015. [Google Scholar]
- Bernt, M. The limits of shrinkage: Conceptual pitfalls and alternatives in the discussion of urban population loss. Int. J. Urban Reg. Res. 2016, 40, 441–450. [Google Scholar] [CrossRef]
- Katircioğlu, S.; Katircioğlu, S. Testing the role of urban development in the conventional environmental Kuznets curve: Evidence from Turkey. Appl. Econ. Lett. 2018, 25, 741–746. [Google Scholar] [CrossRef]
- Huang, L.; Yan, L.; Wu, J. Assessing urban sustainability of Chinese megacities: 35 years after the economic reform and open-door policy. Landsc. Urban Plan. 2016, 145, 57–70. [Google Scholar] [CrossRef]
- Jiang, B.; Yin, J.; Liu, Q. Zipf’s law for all the natural cities around the world. Int. J. Geogr. Inf. Sci. 2015, 29, 498–522. [Google Scholar] [CrossRef]
- Wang, K.; Qi, W. Space-time relationship between urban municipal district adjustment and built-up area expansion in China. Chin. Geogr. Sci. 2017, 27, 165–175. [Google Scholar] [CrossRef]
- Da Silva, D.F.C.; Neto, R.d.M.S. Population dynamics and spatial dependence: Evidence from Brazilian cities. Rev. Reg. Stud. 2019, 49, 454–473. [Google Scholar]
- Li, Y.; Shao, H.; Jiang, N.; Shi, G.; Cheng, X. The evolution of the urban spatial pattern in the yangtze river economic belt: Based on multi-source remote sensing data. Sustainability 2018, 10, 2733. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Qi, W.; Fu, B.; Wang, K. Geographical transformations of urban sprawl: Exploring the spatial heterogeneity across cities in China 1992–2015. Cities 2019, 102415. [Google Scholar] [CrossRef]
- Tsekeris, T. Rank-size distribution of urban employment in labour market areas. Cities 2019, 95, 102472. [Google Scholar] [CrossRef]
- Warsame, A.; Wilhelmsson, M. Armed conflicts and prevailing rank-size patterns in 28 African states. Afr. Geogr. Rev. 2019, 38, 81–93. [Google Scholar] [CrossRef]
- Lanmandjèkpogni, M.P.; Codo, F.D.P.; Yao, B.K. Urban growth evaluation by coupling descriptive analysis and Zipf’s Rank-Size Model in Parakou (Benin). Urban Reg. Plan. 2019, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Arshad, S.; Hu, S.; Ashraf, B.N. Zipf’s law and city size distribution: A survey of the literature and future research agenda. Phys. A: Stat. Mech. Appl. 2018, 492, 75–92. [Google Scholar] [CrossRef]
- Wen, Z. Zipf law analysis of urban scale in China. Asian J. Soc. Sci. Stud. 2016, 1, 53. [Google Scholar]
- Li, J.; Huang, X.; Hu, T.; Jia, X.; Benediktsson, J.A. A novel unsupervised sample collection method for urban land-cover mapping using Landsat imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3933–3951. [Google Scholar] [CrossRef]
- Li, Z.; Roy, D.P.; Zhang, H.K.; Vermote, E.F.; Huang, H. Evaluation of Landsat-8 and Sentinel-2A Aerosol Optical Depth Retrievals across Chinese cities and implications for medium spatial resolution urban aerosol monitoring. Remote Sens. 2019, 11, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, C.; Sousa, D.; Yetman, G.; Elvidge, C.; MacManus, K. Decades of urban growth and development on the Asian megadeltas. Glob. Planet. Chang. 2018, 165, 62–89. [Google Scholar] [CrossRef]
- Kang, M.; Jung, M.C. Night on South Korea: Unraveling the Relationship between Urban Development Patterns and DMSP-OLS Night-Time Lights. Remote Sens. 2019, 11, 2140. [Google Scholar] [CrossRef] [Green Version]
- Stokes, E.C.; Seto, K.C. Characterizing urban infrastructural transitions for the Sustainable Development Goals using multi-temporal land, population, and nighttime light data. Remote Sens. Environ. 2019, 234, 111430. [Google Scholar] [CrossRef]
- Duque, J.C.; Lozano-Gracia, N.; Patino, J.E.; Restrepo, P.; Velasquez, W.A. Spatiotemporal dynamics of urban growth in Latin American cities: An analysis using nighttime light imagery. Landsc. Urban Plan. 2019, 191, 103640. [Google Scholar] [CrossRef]
- Luqman, M.; Rayner, P.J.; Gurney, K.R. Combining measurements of built-up area, nighttime light, and travel time distance for detecting changes in urban boundaries: Introducing the BUNTUS algorithm. Remote Sens. 2019, 11, 2969. [Google Scholar] [CrossRef] [Green Version]
- Amaral, S.; Monteiro, A.M.; Câmara, G.; Quintanilha, J.A. DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon. Int. J. Remote Sens. 2006, 27, 855–870. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Li, L.; Huang, C. Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective. Appl. Energy 2018, 211, 218–229. [Google Scholar] [CrossRef]
- Yu, B.; Tang, M.; Wu, Q.; Yang, C.; Deng, S.; Shi, K.; Peng, C.; Wu, J.; Chen, Z. Urban built-up area extraction from log-transformed NPP-VIIRS nighttime light composite data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Wang, H.; Yang, Q.; Wang, L.; Sun, X.; Li, Y. Exploring the relationships between urban forms and fine particulate (PM2.5) concentration in China: A multi-perspective study. J. Clean. Prod. 2019, 231, 990–1004. [Google Scholar] [CrossRef]
- Lu, X.; Lin, C.; Li, W.; Chen, Y.; Huang, Y.; Fung, J.C.; Lau, A.K. Analysis of the adverse health effects of PM2. 5 from 2001 to 2017 in China and the role of urbanization in aggravating the health burden. Sci. Total Environ. 2019, 652, 683–695. [Google Scholar] [CrossRef]
- Yu, B.; Lian, T.; Huang, Y.; Yao, S.; Ye, X.; Chen, Z.; Yang, C.; Wu, J. Integration of nighttime light remote sensing images and taxi GPS tracking data for population surface enhancement. Int. J. Geogr. Inf. Sci. 2019, 33, 687–706. [Google Scholar] [CrossRef]
- Hu, T.; Huang, X. A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data. Appl. Energy 2019, 240, 778–792. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Li, D.; Yu, H.; Li, X. The spatial-temporal pattern analysis of city development in ountries along the Belt and Road Initiative based on nighttime light data. Geomat. Inf. Sci. Wuhan Univerisity 2017, 6, 711–720. [Google Scholar]
- Huang, Q.; He, C.; Gao, B.; Yang, Y.; Liu, Z.; Zhao, Y.; Dou, Y. Detecting the 20 year city-size dynamics in China with a rank clock approach and DMSP/OLS nighttime data. Landsc. Urban Plan. 2015, 137, 138–148. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D.; Balk, D.; Montgomery, M. Spatial scaling of stable night lights. Remote Sens. Environ. 2011, 115, 269–280. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, S.; Wang, S.; Shen, Y. Monitoring evolving urban cluster systems using DMSP/OLS nighttime light data: A case study of the Yangtze River Delta region, China. J. Appl. Remote Sens. 2017, 11, 046029. [Google Scholar] [CrossRef]
- 51 Lv, X.; Ming, D.; Chen, Y.; Wang, M. Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification. Int. J. Remote Sens. 2019, 40, 506–531. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Sun, Z.; Zhang, D. How does sprawl differ across cities in China? A multi-scale investigation using nighttime light and census data. Landsc. Urban Plan. 2016, 148, 89–98. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Hu, Y.; Huang, C.; Chen, Y.; Huang, Y.; Chen, Z.; Wu, J. Modeling and mapping total freight traffic in China using NPP-VIIRS nighttime light composite data. Giscience Remote Sens. 2015, 52, 274–289. [Google Scholar] [CrossRef]
- Chen, Y. The evolution of Zipf’s law indicative of city development. Phys. A: Stat. Mech. Appl. 2016, 443, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhan, D.; Jin, F. Spatio-temporal characteristics and geographical determinants of air quality in cities at the prefecture level and above in China. Chin. Geogr. Sci. 2019, 29, 316–324. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, S.; Luo, Y.; Xu, Q.; Qu, L. The widening urbanization gap between the Three Northeast Provinces and the Yangtze River Delta under China’s economic reform from 1984 to 2014. Int. J. Sustain. Dev. World Ecol. 2018, 25, 262–275. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, C.; Wu, J.; Sun, X. Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road. Energy 2018, 150, 847–859. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Zhou, Y.; Chen, Y.; Yang, C.; Chen, Z.; Wu, J. Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels. Appl. Energy 2019, 233–234, 170–181. [Google Scholar] [CrossRef]
- Fang, L.; Li, P.; Song, S. China’s development policies and city size distribution: An analysis based on Zipf’s law. Urban Stud. 2017, 54, 2818–2834. [Google Scholar] [CrossRef]
- Wang, C.; Wu, G.; Zhang, C. Research on spatial structure of the Chengdu-Chongqing Urban Agglomeration based on the DMSP/OLS night time light data. Urban Stud. 2015, 22, 20–24. [Google Scholar]
- Ma, Q.; He, C.; Wu, J. Behind the rapid expansion of urban impervious surfaces in China: Major influencing factors revealed by a hierarchical multiscale analysis. Land Use Policy 2016, 59, 434–445. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, B.; Buyantuev, A.; He, X.; Gao, W.; Wang, Y.; Yang, Z. Urban agglomeration of Kunming and Yuxi cities in Yunnan, China: The relative importance of government policy drivers and environmental constraints. Landsc. Ecol. 2019, 34, 663–679. [Google Scholar] [CrossRef]
- Wan, G.; Zhu, D.; Wang, C.; Zhang, X. The size distribution of cities in China: Evolution of urban system and deviations from Zipf’s law. Ecol. Indic. 2020, 111, 106003. [Google Scholar] [CrossRef]
- Lee, S.; Cao, C. Soumi NPP VIIRS day/night band stray light characterization and correction using calibration view data. Remote Sens. 2016, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Liu, P.; Liu, X.; Wang, R.; Zhang, Y.; He, J.; Yao, Y. Geospatial big data: New paradigm of remote sensing applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3841–3851. [Google Scholar] [CrossRef]
- Mpakairi, K.S.; Muvengwi, J. Night-time lights and their influence on summer night land surface temperature in two urban cities of Zimbabwe: A geospatial perspective. Urban Clim. 2019, 29, 100468. [Google Scholar] [CrossRef]
- Nwaerema, P.; Ajiere, S. Regional Mapping of Land Surface Temperature (LST), Land Surface Emissivity (LSE) and Normalized Difference Vegetation Index (NDVI) of South-South Coastal Settlements of Rivers State in Nigeria. World News Nat. Sci. 2020, 28, 76–86. [Google Scholar]
- Zhang, Y.; Odeh, I.O.; Han, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y. A Genetic Algorithm-based urban cluster automatic threshold method by combining VIIRS DNB, NDVI, and NDBI to monitor urbanization. Remote Sens. 2018, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Chang, Z.; Chen, Z.; Wu, J.; Yu, B. Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: A case study of Chongqing, China. J. Clean. Prod. 2020, 120245. [Google Scholar] [CrossRef]
- Lou, G.; Chen, Q.; He, K.; Zhou, Y.; Shi, Z. Using Nighttime Light Data and POI Big Data to Detect the Urban Centers of Hangzhou. Remote Sens. 2019, 11, 1821. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Fan, H.; Wang, Y. An estimation of housing vacancy rate using NPP-VIIRS night-time light data and OpenStreetMap data. Int. J. Remote Sens. 2019, 40, 8566–8588. [Google Scholar] [CrossRef]
- Cheng, F.; Liu, S.; Hou, X.; Zhang, Y.; Dong, S.; Coxixo, A.; Liu, G. Urban land extraction using DMSP/OLS nighttime light data and OpenStreetMap datasets for cities in China at different development levels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2587–2599. [Google Scholar] [CrossRef]
- Tsolakidis, I.; Vafiadis, M. In Urban land cover mapping, using open satellite data. Case study of the municipality of Thessaloniki. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012062. [Google Scholar] [CrossRef]
- Zare, M.; Drastig, K.; Zude-Sasse, M. Tree Water Status in Apple Orchards Measured by Means of Land Surface Temperature and Vegetation Index (LST–NDVI) Trapezoidal Space Derived from Landsat 8 Satellite Images. Sustainability 2020, 12, 70. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Bakhsh, K.; Yasin, M.A. Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan. Sustain. Cities Soc. 2019, 48, 101553. [Google Scholar] [CrossRef]
Year | The Corrected NPP-VIIRS Data | The Original NPP-VIIRS Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GDP | EPC | Population | GDP | EPC | Population | |||||||
Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max | |
R2 | R2 | R2 | R2 | R2 | R2 | R2 | R2 | R2 | R2 | R2 | R2 | |
2012 | 0.849 | 0.817 | 0.891 | 0.870 | 0.545 | 0.574 | 0.740 | 0.689 | 0.785 | 0.750 | 0.464 | 0.437 |
2013 | 0.854 | 0.786 | 0.883 | 0.841 | 0.569 | 0.565 | 0.749 | 0.661 | 0.781 | 0.728 | 0.446 | 0.444 |
2014 | 0.842 | 0.764 | 0.901 | 0.855 | 0.551 | 0.546 | 0.735 | 0.635 | 0.798 | 0.739 | 0.452 | 0.423 |
2015 | 0.842 | 0.750 | 0.874 | 0.815 | 0.555 | 0.555 | 0.738 | 0.634 | 0.773 | 0.708 | 0.464 | 0.443 |
2016 | 0.831 | 0.764 | 0.896 | 0.873 | 0.568 | 0.557 | 0.728 | 0.650 | 0.795 | 0.767 | 0.464 | 0.438 |
2017 | 0.837 | 0.787 | 0.905 | 0.873 | 0.607 | 0.612 | 0.736 | 0.679 | 0.805 | 0.770 | 0.511 | 0.505 |
Avg | 0.843 | 0.778 | 0.892 | 0.855 | 0.566 | 0.568 | 0.738 | 0.658 | 0.790 | 0.744 | 0.467 | 0.448 |
Year | All Provinces | Top 20 Provinces | ||||
---|---|---|---|---|---|---|
R2 | q | R2 | q | |||
2012 | y = −0.9348x + 6.4720 | 0.733 | 0.9348 | y =−0.6360x + 6.2679 | 0.941 | 0.6360 |
2013 | y = −0.9182x + 6.4863 | 0.728 | 0.9182 | y = −0.6212x + 6.2833 | 0.955 | 0.6212 |
2014 | y = −0.9173x + 6.4701 | 0.734 | 0.9173 | y = −0.6339x + 6.2761 | 0.957 | 0.6339 |
2015 | y = −0.9071x + 6.4715 | 0.746 | 0.9071 | y = −0.6256x + 6.2792 | 0.969 | 0.6256 |
2016 | y = −0.9018x + 6.4830 | 0.736 | 0.9018 | y = −0.6275x + 6.2947 | 0.967 | 0.6275 |
2017 | y = −0.8759x +6.5357 | 0.718 | 0.8759 | y = −0.5955x + 6.3433 | 0.964 | 0.5955 |
2018 | y = −0.8934x + 6.5762 | 0.739 | 0.8934 | y = −0.6218x + 6.3901 | 0.966 | 0.6218 |
Year | All Prefectures | Top 250 Prefectures | ||||
---|---|---|---|---|---|---|
R2 | q | R2 | q | |||
2012 | y = −0.9857x + 6.3815 | 0.748 | 0.9857 | y = −0.7481x + 5.9886 | 0.945 | 0.7481 |
2013 | y = −0.9555x + 6.3570 | 0.735 | 0.9555 | y = −0.7233x + 5.9725 | 0.955 | 0.7233 |
2014 | y = −0.9638x + 6.3560 | 0.737 | 0.9638 | y = −0.7265x + 5.9632 | 0.952 | 0.7265 |
2015 | y = −0.8597x + 6.1438 | 0.644 | 0.8597 | y = −0.7190x + 5.9593 | 0.953 | 0.7190 |
2016 | y = −0.9696x + 6.3898 | 0.728 | 0.9696 | y = −0.7279x + 5.9897 | 0.954 | 0.7279 |
2017 | y = −0.9186x + 6.3787 | 0.737 | 0.9186 | y = −0.6859x + 5.9942 | 0.949 | 0.6859 |
2018 | y = −0.9164x + 6.4011 | 0.743 | 0.9164 | y = −0.6912x + 6.0286 | 0.945 | 0.6912 |
Year | All Counties | Top 2000 Counties | ||||
---|---|---|---|---|---|---|
R2 | q | R2 | q | |||
2012 | y = −1.1183x + 6.6881 | 0.710 | 1.1183 | y = −0.7636x + 5.7868 | 0.934 | 0.7636 |
2013 | y = −1.0776x + 6.6113 | 0.705 | 1.0917 | y = −0.7375x + 5.7466 | 0.939 | 0.7375 |
2014 | y = −1.1083x + 6.7362 | 0.718 | 1.1083 | y = −0.7545x + 5.7752 | 0.934 | 0.7545 |
2015 | y = −1.0259x + 6.6863 | 0.717 | 1.0259 | y = −0.7459x + 5.7625 | 0.935 | 0.7459 |
2016 | y = −1.0987x + 6.6863 | 0.707 | 1.0987 | y = −0.7669x + 5.8324 | 0.927 | 0.7669 |
2017 | y = −1.0840x + 6.6217 | 0.718 | 1.0840 | y = −0.7070x + 5.7539 | 0.933 | 0.7070 |
2018 | y = −1.0321x + 6.6060 | 0.720 | 1.0321 | y = −0.7115x + 5.7914 | 0.932 | 0.7115 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Jiang, M.; Chang, Z.; Li, Y.; Shi, K. Does China’s Urban Development Satisfy Zipf’s Law? A Multiscale Perspective from the NPP-VIIRS Nighttime Light Data. Int. J. Environ. Res. Public Health 2020, 17, 1460. https://doi.org/10.3390/ijerph17041460
Wu Y, Jiang M, Chang Z, Li Y, Shi K. Does China’s Urban Development Satisfy Zipf’s Law? A Multiscale Perspective from the NPP-VIIRS Nighttime Light Data. International Journal of Environmental Research and Public Health. 2020; 17(4):1460. https://doi.org/10.3390/ijerph17041460
Chicago/Turabian StyleWu, Yizhen, Mingyue Jiang, Zhijian Chang, Yuanqing Li, and Kaifang Shi. 2020. "Does China’s Urban Development Satisfy Zipf’s Law? A Multiscale Perspective from the NPP-VIIRS Nighttime Light Data" International Journal of Environmental Research and Public Health 17, no. 4: 1460. https://doi.org/10.3390/ijerph17041460
APA StyleWu, Y., Jiang, M., Chang, Z., Li, Y., & Shi, K. (2020). Does China’s Urban Development Satisfy Zipf’s Law? A Multiscale Perspective from the NPP-VIIRS Nighttime Light Data. International Journal of Environmental Research and Public Health, 17(4), 1460. https://doi.org/10.3390/ijerph17041460