Farmer-Led Irrigation and Its Impacts on Smallholder Farmers’ Crop Income: Evidence from Southern Tanzania
Abstract
:1. Introduction
2. Summary of the Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Sampling
3.3. Variable Specifications
3.4. Calculating Per Capita Net Crop Income
3.5. Empirical Model
4. Results and Discussion
4.1. Household Characteristics
4.2. Adoption of Farmer-Led Irrigation Practices
4.3. Estimating the Effects of Farmer-Led Irrigation on Smallholder Farmers’ Crop Income
5. Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Woodhouse, P.; Veldwisch, G.J.; Venot, J.P.; Brockington, D.; Komakech, H.; Manjichi, Â. African farmer-Led irrigation development: Re-Framing agricultural policy and investment? J. Peasant Stud. 2017, 44, 213–233. [Google Scholar] [CrossRef]
- FAO. Climate-Smart Agriculture: Sourcebook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Deressa, T.T. Measuring the Economic Impact of Climate Change on Ethiopian Agriculture: Ricardian Approach; World Bank Policy Research Working Paper No. 4342; World Bank: Washington DC, USA, 2007. [Google Scholar]
- Hassan, R.; Nhemachena, C. Determinants of African Farmers’ Strategies for Adapting to Climate Change: Multinomial Choice Analysis. Afr. J. Agric. Resour. Econ. 2008, 2, 83–104. [Google Scholar]
- Füssel, H.M.; Klein, R.J.T. Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Mideksa, T.K. Economic and Distributional Impacts of Climate Change: The Case of Ethiopia. Glob. Environ. Chang. 2010, 20, 278–286. [Google Scholar] [CrossRef]
- Deressa, T.T.; Hassan, R.M.; Ringler, C.; Alemu, T.; Yesuf, M. Determinants of Farmers’ Choice of Adaptation Methods to Climate Change in the Nile Basin of Ethiopia. Glob. Environ. Chang. 2009, 19, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to Climate Change in Ethiopia and South Africa: Options and Constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- Hall, C.; Dawson, T.P.; MacDiarmid, J.I.; Matthews, R.B.; Smith, P. The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. Int. J. Agric. Sustain. 2017, 15, 124–135. [Google Scholar] [CrossRef] [Green Version]
- Kamwamba-Mtethiwa, J.; Namara, R.; De Fraiture, C.; Mangisoni, J.; Owusu, E. Treadle pump irrigation in Malawi: Adoption, gender, and benefits. Irrig. Drain. 2012, 61, 583–595. [Google Scholar] [CrossRef]
- Pittock, J.; Bjornlund, H.; Stirzaker, R.; Van Rooyen, A. Communal irrigation systems in South-Eastern Africa: Findings on productivity and profitability. Int. J. Water Resour. Dev. 2017, 33, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Pavelic, P.; Villholth, K.G.; Verma, S. Identifying the barriers and pathways forward for expanding the use of groundwater for irrigation in Sub-Saharan Africa. Water Int. 2013, 38, 363–368. [Google Scholar] [CrossRef]
- Asfaw, S.; Bekele, S.; Simtowe, F.; Mekbib, G.H. Agricultural technology adoption, seed access constraints, and commercialization in Ethiopia. J. Dev. Agric. Econ. 2011, 3, 436–447. [Google Scholar]
- Beekman, W.; Veldwisch, G.J.; Bolding, A. Identifying the potential for irrigation development in Mozambique: Capitalizing on the drivers behind farmer-Led irrigation expansion. Phys. Chem. Earth Parts A/B/C 2014, 76, 54–63. [Google Scholar] [CrossRef]
- Khatri–Chhetri, A.; Aggarwal, P.K.; Joshi, P.K. Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agric. Syst. 2017, 151, 184–191. [Google Scholar] [CrossRef]
- Mdee, A.; Harrison, E. Critical governance problems for farmer-Led irrigation: Isomorphic mimicry and capability traps. Water Altern. 2019, 12, 30–45. [Google Scholar]
- Xie, H.; You, L.; Wielgosz, B.; Ringler, C. Estimating the potential for expanding smallholder irrigation in Sub-Saharan Africa. Agric. Water Manag. 2014, 131, 183–193. [Google Scholar] [CrossRef]
- Brüssow, K.; Anja, F.; Ulrike, G. Implications of climate-Smart strategy adoption by farm households for food security in Tanzania. Food Secur. Sci. Sociol. Econ. Food Prod. Access Food 2017, 9, 1203–1218. [Google Scholar] [CrossRef]
- Woodhouse, P. Water in African Agronomy. In Contested Agronomy: Agricultural Research in a Changing World; Sumberg, J., Thompson, J., Eds.; Earthscan: London, UK, 2012; pp. 102–115. [Google Scholar]
- Nkoka, F.; Veldwisch, G.J.; Bolding, A. Organizational Modalities of Farmer-Led Irrigation Development in Tsangano District, Mozambique. Water Altern. 2014, 7, 414–433. [Google Scholar]
- Veldwisch, G.J.A.; Bolding, A.; Wester, P.H. Sand in the Engine: The Travails of an Irrigated Rice Scheme in Bwanje, Valley, Malawi. J. Dev. Stud. 2009, 45, 197–226. [Google Scholar] [CrossRef]
- Morris, J. Irrigation as a privileged solution in African development. Dev. Policy Rev. 1987, 5, 99–123. [Google Scholar] [CrossRef]
- Van Der Zaag, P. Viewpoint–Water variability, soil nutrient heterogeneity, and market volatility–Why sub-Saharan Africa’s Green revolution will be location-Specific and knowledge intensive. Water Altern. 2010, 3, 154–160. [Google Scholar]
- Lankford, B. Viewpoint–The right irrigation? Policy directions for agricultural water management in sub-Saharan Africa. Water Altern. 2009, 2, 476–480. [Google Scholar]
- De Fraiture, C.; Giordano, M. Small private irrigation: A thriving but overlooked sector. Agric. Water Manag. 2014, 131, 167–174. [Google Scholar] [CrossRef]
- Lankford, B.A. Rural Infrastructure to Contribute to African Development: The Case of Irrigation; Report for the Commission for Africa; ODG, University of East Anglia: Norwich, UK, 2005. [Google Scholar]
- Giordano, M.; De Fraiture, C.; Weight, E.; Van der Bliek, J. Water for Wealth and Food Security: Supporting Farmer-Driven Investments in Agricultural Water Management; Synthesis Report of the AgWater Solutions Project; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2012. [Google Scholar]
- Mwungu, C.M.; Mwongera, C.; Shikuku, K.M. Survey data of intra-Household decision making and smallholder agricultural production in northern Uganda and southern Tanzania. Data Brief. 2017, 14, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Jena, P.R.; Stellmacher, T.; Grote, U. Can. coffee certification schemes increase incomes of smallholder farmers? Evidence from Jinotega, Nicaragua. Environ. Dev. Sustain. 2017, 19, 45–66. [Google Scholar] [CrossRef]
- Manda, J.; Alene, A.D.; Gardebroek, C. Adoption and impacts of sustainable agricultural practices on maize yields and incomes: Evidence from rural Zambia. J. Agric. Econ. 2016, 67, 130–153. [Google Scholar] [CrossRef]
- Thirtle, C.; Lin, L.; Piesse, J. The impact of research-Led agricultural productivity growth on poverty reduction in Africa, Asia, and Latin America. World Dev. 2003, 31, 1959–1975. [Google Scholar] [CrossRef] [Green Version]
- Bernard, T.; Taffesse, A.S.; Gabre-Madhin, E. Impact of cooperatives on smallholders’ commercialization behavior: Evidence from Ethiopia. Agric. Econ. 2008, 39, 147–161. [Google Scholar] [CrossRef]
- Mignouna, B.; Manyong, M.; Rusike, J.; Mutabazi, S.; Senkondo, M. Determinants of Adopting Imazapyr-Resistant Maize Technology and its Impact on Household Income in Western Kenya. AgBioforum 2011, 14, 158–163. [Google Scholar]
- Khonje, M.; Manda, J.; Alene, A.D.; Kassie, M. Analysis of adoption and impacts of improved maize varieties in eastern Zambia. World Dev. 2015, 66, 695–706. [Google Scholar] [CrossRef]
- Obisesan, A. Gender Differences in Technology Adoption and Welfare Impact among Nigerian Farming Households; MPRA Paper No. 58920; University Library of Munich: Munich, Germany, 2014. [Google Scholar]
- Asayehegn, G.K.; Temple, L.; Sanchez, B. Perception of climate change and farm level adaptation choices in central Kenya. Cah. Agric. 2017, 26, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.; Doss, C. How does gender affect the adoption of agricultural innovations. In Improved Maize Technology in Ghana: Paper Presented at the Annual Meeting; American Agricultural Economics Association (AAEA): Nashville, TN, USA, 1999; pp. 8–11. [Google Scholar]
- Genius, M.; Koundouri, M.; Nauges, C.; Tzouvelekas, V. Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects; DEOS Working papers 1329; Athens University of Economics and Business: Athens, Greece, 2010. [Google Scholar]
- Namara, R.E.; Horowitz, L.; Nyamadi, B.; Barry, B. Irrigation Development in Ghana: Past Experiences, Emerging Opportunities, and Future Directions; GSSP Working Paper No. 0027; International Food Policy Research Institute: Washington DC, USA, 2011. [Google Scholar]
- Uaiene, R.; Arndt, C.; Masters, W. Determinants of Agricultural Technology Adoption in Mozambique; Discussion papers No. 67E; Ministry of Planning and Development: Tete, Republic of Zimbabwe, 2009; pp. 1–31. [Google Scholar]
- Shiferaw, B.; Tesfaye, K.; Kassie, M. Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: Technological, institutional, and policy options. Weather Clim. Extrem. 2014, 3, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Akudugu, M.; Guo, E.; Dadzie, S. Adoption of Modern Agricultural Production Technologies by Farm Households in Ghana: What Factors Influence their Decisions? J. Biol. Agric. Healthc. 2012, 2, 1–3. [Google Scholar]
- Simtowe, F.; Muange, E.; Munyua, B. Technology awareness and adoption: The case of improved pigeon pea varieties in Kenya. In Proceedings of the Presentation at the International Association of Agricultural Economists Triennial Conference, Foz do Iguaçu, Brazil, 18–24 August 2012. [Google Scholar]
- Bandiera, O.; Rasul, I. Social Networks and Technology Adoption in Northern Mozambique; Discussion Paper Series; CEPR: London, UK, 2002. [Google Scholar]
- Rosenzweig, C.; Parry, M.L. The potential impact of climate change on world food supply. Nature 1994, 367, 346–375. [Google Scholar] [CrossRef]
- Alene, A.D.; Coulibaly, O. The impact of agricultural research on productivity and poverty in sub-Saharan Africa. Food Policy 2009, 34, 198–209. [Google Scholar] [CrossRef]
- Bjornlund, H.; Pittock, J. Exploring the productivity and profitability of small-Scale communal irrigation systems in sub-Saharan Africa. Int. J. Water Resour. Dev. 2017, 33, 685–689. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Jin, S.; Wang, H.; Ye, C. Estimating the effects of cooperative membership on farmers’ safe production behaviors: Evidence from the pig sector in China. Food Policy 2019, 83, 231–245. [Google Scholar] [CrossRef]
- Udoh, E.J.; Titus, O.B. Improved rice variety adoption and its welfare impact on rural farming households in the Akwa Ibom State of Nigeria. J. New Seeds 2008, 9, 156–173. [Google Scholar] [CrossRef]
- Mathenge, M.K.; Smale, M.; Olwande, J. The impacts of hybrid maize seed on the welfare of farming households in Kenya. Food Policy 2014, 44, 262–271. [Google Scholar] [CrossRef]
- Pavelic, P.; Villholth, K.G.; Shu, Y.; Rebelo, L.M.; Smakhtin, V. Smallholder groundwater irrigation in Sub-Saharan Africa: Country-Level estimates of development potential. Water Int. 2013, 38, 392–407. [Google Scholar] [CrossRef]
Variables | Adopters N = 222 | Nonadopters N = 386 | Sample N = 608 | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | |
Household head age (years) | 48.0 | 13.51 | 48.82 | 14.81 | 48.52 | 14.34 | 0.7277 |
Household size (count) | 5.270 | 2.206 | 4.821 | 2.273 | 4.985 | 2.257 | 0.0131 ** |
Household head sex (1/0) | 1.094 | 0.293 | 1.192 | 0.394 | 1.156 | 0.363 | 0.0015 ** |
Years in the village (years) | 18.38 | 13.25 | 19.69 | 13.32 | 19.21 | 13.30 | 0.2423 |
Literacy index (index) | 0.1114 | 0.1665 | 0.1067 | 0.1783 | 0.108 | 0.174 | 0.7486 |
Asset index (index) | 0.4688 | 2.1804 | 0.2696 | 1.8168 | 8.35 × 10−10 | 1.988 | 0.000 *** |
Government extension (0/1) | 0.4279 | 0.4959 | 0.3135 | 0.4645 | 0.355 | 0.479 | 0.0045 ** |
Farmer organization (0/1) | 0.2748 | 0.4474 | 0.4067 | 0.4919 | 0.359 | 0.480 | 0.0011 ** |
Agricultural group membership (0/1) | 0.1892 | 0.3925 | 0.2047 | 0.4040 | 0.199 | 0.400 | 0.6454 |
Water user group membership (0/1) | 0.2793 | 0.4497 | 0.0518 | 0.2219 | 0.135 | 0.342 | 0.000 *** |
NGO information (0/1) | 0.1306 | 0.3378 | 0.1788 | 0.3836 | 0.161 | 0.368 | 0.1202 |
Credit services (0/1) | 0.2072 | 0.4062 | 0.2176 | 0.4132 | 0.214 | 0.410 | 0.7631 |
Future climatic changes | 0.9640 | 0.1868 | 0.9482 | 0.2220 | 0.954 | 0.210 | 0.3715 |
Experienced drought | 0.5135 | 0.5009 | 0.2332 | 0.4234 | 0.336 | 0.473 | 0.000*** |
Research Variable | ME | SE | p-Value | VIF |
---|---|---|---|---|
Household size (count) | 0.0284 | 0.0344 | 0.410 | 1.14 |
Household head age (years) | −0.0093 | 0.0409 | 0.821 | 2.08 |
Household head sex (1/0) | 0.0945 * | 0.0542 | 0.087 | 1.23 |
Literacy index (index) | −0.0187 | 0.1110 | 0.866 | 1.14 |
Years in the village (years) | −0.0010 | 0.0019 | 0.596 | 2.04 |
Asset index (index) | 0.0255 *** | 0.0097 | 0.009 | 1.29 |
Government extension (0/1) | 0.0645 * | 0.0382 | 0.091 | 1.14 |
Farmer organization (0/1) | −0.1404 *** | 0.0386 | 0.000 | 1.16 |
NGO information (0/1) | −0.0276 | 0.0520 | 0.596 | 1.16 |
Credit services (0/1) | −0.0485 | 0.0459 | 0.291 | 1.11 |
Water user group membership (0/1) | 0.3091 *** | 0.0488 | 0.000 | 1.11 |
Agricultural group membership (0/1) | −0.0258 | 0.0503 | 0.609 | 1.22 |
Experienced drought | 0.1981 *** | 0.0337 | 0.000 | 1.10 |
Future climatic changes | −0.0100 | 0.0886 | 0.910 | 1.04 |
Constant | −1.0851 | 1.6489 | 0.510 | |
Log-likelihood | −333.63474 | |||
LR chi2 (14) | 130.81 | |||
Prob>chi2 | 0.0000 | |||
Pseudo-R2 | 0.1639 | |||
Hosmer–Lemeshow chi2 (8)Prob > chi2 | 4.31 0.8277 |
Matching Algorithms | Treated (ATT) | Controls (ATT) | Difference | SE | t-Stat | ATE |
---|---|---|---|---|---|---|
RM | 346,907.63 | 222,347.92 | 124,559.71 | 59,321.74 | 2.10 | 91,151.85 |
KBM | 346,907.63 | 269,317.76 | 77,589.86 | 81,418.77 | 0.95 | 76,771.80 |
NNM | 346,907.63 | 219,444.83 | 127,462.80 | 65,447.42 | 1.95 | 90727.00 |
Matching Method | Pseudo-R2 | Likelihood Ratio Chi2 | p > Chi2 | Mean Bias | Median Bias |
---|---|---|---|---|---|
Before matching | 0.163 | 130.45 | 0.000 | 21.8 | 17.3 |
Radius matching | 0.013 | 7.90 | 0.895 | 5.6 | 4.8 |
Kernel-based matching | 0.025 | 15.03 | 0.376 | 6.6 | 5.1 |
Nearest neighbor matching | 0.018 | 10.39 | 0.733 | 5.7 | 4.7 |
Gamma | Sig+ | Sig- |
---|---|---|
1 | 0.042058 | 0.042058 |
1.25 | 0.373238 | 0.000809 |
1.5 | 0.793916 | 6.9 × 10−06 |
1.75 | 0.963412 | 3.7 × 10−08 |
2 | 0.995877 | 1.4 × 10−10 |
2.25 | 0.999665 | 4.5 × 10−13 |
2.5 | 0.999978 | 1.2 × 10−15 |
2.75 | 0.999999 | 0 |
3 | 1 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osewe, M.; Liu, A.; Njagi, T. Farmer-Led Irrigation and Its Impacts on Smallholder Farmers’ Crop Income: Evidence from Southern Tanzania. Int. J. Environ. Res. Public Health 2020, 17, 1512. https://doi.org/10.3390/ijerph17051512
Osewe M, Liu A, Njagi T. Farmer-Led Irrigation and Its Impacts on Smallholder Farmers’ Crop Income: Evidence from Southern Tanzania. International Journal of Environmental Research and Public Health. 2020; 17(5):1512. https://doi.org/10.3390/ijerph17051512
Chicago/Turabian StyleOsewe, Maurice, Aijun Liu, and Tim Njagi. 2020. "Farmer-Led Irrigation and Its Impacts on Smallholder Farmers’ Crop Income: Evidence from Southern Tanzania" International Journal of Environmental Research and Public Health 17, no. 5: 1512. https://doi.org/10.3390/ijerph17051512
APA StyleOsewe, M., Liu, A., & Njagi, T. (2020). Farmer-Led Irrigation and Its Impacts on Smallholder Farmers’ Crop Income: Evidence from Southern Tanzania. International Journal of Environmental Research and Public Health, 17(5), 1512. https://doi.org/10.3390/ijerph17051512