Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks
Abstract
:1. Introduction
2. Methodologies
2.1. Sampling
2.2. Geochemical, Mineralogical and Morphological Characterisation
2.3. Estimation of Emission Factors
2.4. Enrichment Index
2.5. Human Health Risk Assessment of Exposure to Potential Toxic Elements in Road Dust
3. Results and Discussion
3.1. PM10 Emission Factors
3.2. Geochemical Characterization of Dust and Enrichment Index
3.3. Mineralogical Composition
3.4. Morphology
3.5. Grain Size Distribution
3.6. Human Health Exposure Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alves, C.A.; Evtyugina, M.; Vicente, A.M.P.; Vicente, E.D.; Nunes, T.V.; Silva, P.M.A.; Duarte, M.A.C.; Pio, C.A.; Amato, F.; Querol, X. Chemical profiling of PM10 from urban road dust. Sci. Total Environ. 2018, 634, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.K.; Strand, M.A. Road dust and its effect on human health: A literature review. Epidemiol. Health 2018, 40, e2018013. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V.L.; Colombi, C.; et al. AIRUSE-LIFE+: A harmonized PM speciation and source apportionment in five southern European cities. Atmos. Chem. Phys. 2016, 16, 3289–3309. [Google Scholar] [CrossRef] [Green Version]
- Amato, F.; Alastuey, A.; de la Rosa, J.; Gonzalez Castanedo, Y.; Sánchez de la Campa, A.M.; Pandolfi, M.; Lozano, A.; Contreras González, J.; Querol, X. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmos. Chem. Phys. 2014, 14, 3533–3544. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, X.; Lin, J.; Huang, J.; Zhao, D.; Yuan, T.; Huang, K.; Luo, Y.; Jia, Z.; Zang, Z.; et al. Fugitive road dust PM2.5 emissions and their potential health impacts. Environ. Sci. Technol. 2019, 53, 8455–8465. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Wang, K.; Yuan, C.-S.; Wang, G. Study on the seasonal variation and source apportionment of PM10 in Harbin, China. Aerosol Air Qual. Res. 2010, 10, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Jalan, I.; Dholakia, H.H. Understanding Uncertainties in Emissions Inventories; What is Polluting Delhi’s Air; Council on Energy, Environment and Water: New Delhi, India, 2019. [Google Scholar]
- Denier van der Gon, H.A.C.; Gerlofs-Nijland, M.E.; Gehrig, R.; Gustafsson, M.; Janssen, N.; Harrison, R.M.; Hulskotte, J.; Johansson, C.; Jozwicka, M.; Keuken, M.; et al. The policy relevance of wear emissions from road transport, now and in the future—An international workshop report and consensus statement. J. Air Waste Manag. Assoc. 2013, 63, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Greening, T. Quantifying the Impacts of Vehicle-Generated Dust: A Comprehensive Approach; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- AIRUSE. The Efficacy of Dust Suppressants to Control Road Dust Re-Suspension in Northern and Central Europe; Report 14, LIFE 11/ENV/ES/584; AIRUSE: Barcelona, Spain, 2016. [Google Scholar]
- AIRUSE. Methods Used in Barcelona to Evaluate the Effectiveness of CMA and MgCl2 in Reducing Road Dust Emissions; Action B7, LIFE11 ENV/ES/584; AIRUSE: Barcelona, Spain, 2017. [Google Scholar]
- Gulia, S.; Goyal, P.; Goyal, S.K.; Kumar, R. Re-suspension of road dust: Contribution, assessment and control through dust suppressants—A review. Int. J. Environ. Sci. Technol. 2019, 16, 1717–1728. [Google Scholar] [CrossRef]
- Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban air quality: The challenge of traffic non-exhaust emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef]
- Amato, F.; Pandolfi, M.; Moreno, T.; Furger, M.; Pey, J.; Alastuey, A.; Bukowiecki, N.; Prevot, A.S.H.; Baltensperger, U.; Querol, X. Sources and variability of inhalable road dust particles in three European cities. Atmos. Environ. 2011, 45, 6777–6787. [Google Scholar] [CrossRef]
- Adamiec, E. Chemical fractionation and mobility of traffic-related elements in road environments. Environ. Geochem. Health 2017, 39, 1457–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J.A.G.; Bonnaire, N.; et al. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 2016, 129, 114–124. [Google Scholar] [CrossRef]
- USEPA. AP-42, Appendix C.1: Procedures For Sampling Surface/Bulk Dust Loading; U.S. Environmental Protection Agency: Washington, DC, USA, 2003. [Google Scholar]
- USEPA. AP-42, Appendix C.2: Procedures For Laboratory Analysis Of Surface/Bulk Dust Loading Samples; U.S. Environmental Protection Agency: Washington, DC, USA, 2003. [Google Scholar]
- USEPA. Emission Factor Documentation for AP-42, Section 13.2.1, Paved Roads—January 2011; U.S. Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Reimann, C.; de Caritat, P. Chemical Elements in the Environment; Springer: Berlin, Germany, 1998. [Google Scholar]
- Chen, C.W.; Kao, C.M.; Chen, C.F.; Dong, C. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere 2007, 66, 1431–1440. [Google Scholar] [CrossRef]
- USEPA. Soil Screening Guidance: Technical Background Document; EPA 540-R-95-128; U.S. Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- USEPA. Screening Levels (RSL) for Chemical Contaminants at Superfund Sites; U.S. Environmental Protection Agency: Washington, DC, USA, 2013. [Google Scholar]
- USEPA. The Risk Assessment Information System. Available online: https://rais.ornl.gov/ (accessed on 1 November 2019).
- INE. Portal do Instituto Nacional de Estatística—Statistics Portugal. Available online: http://www.ine.pt/ (accessed on 1 November 2019).
- Berg, R. Human Exposure to Soil Contamination: A Qualitative and Quantitative Analysis towards Proposals for Human Toxicological Intervention Values (Partly Revised Edition); Report No. 725201011; National Institute for Public Health and the Environment: Bilthofen, The Netherlands, 1994. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual; EPA 540-1-89-002; U.S. Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- Amato, F.; Bedogni, M.; Padoan, E.; Querol, X.; Ealo, M.; Rivas, I. Characterization of road dust emissions in milan: Impact of vehicle fleet speed. Aerosol Air Qual. Res. 2017, 17, 2438–2449. [Google Scholar] [CrossRef] [Green Version]
- Boulter, P.G. A Review of Emission Factors and Models for Road Vehicle Non-exhaust Particulate Matter; Project Report PPR065; TRL: Berks, UK, 2005. [Google Scholar]
- Li, F.; Zhang, J.; Huang, J.; Huang, D.; Yang, J.; Song, Y.; Zeng, G. Heavy metals in road dust from Xiandao District, Changsha City, China: Characteristics, health risk assessment, and integrated source identification. Environ. Sci. Pollut. Res. 2016, 23, 13100–13113. [Google Scholar] [CrossRef] [PubMed]
- Pamplona, J.; Ribeiro, A. Evolução geodinâmica de Viana do Castelo (Zona Centro-Ibérica, NW de Portugal. In Geologia de Portugal; Dias, R., Araújo, A., Terrinha, P., Kullberg, J., Eds.; Escolar Editora: Lisboa, Portugal, 2013; Volume I, pp. 149–204. ISBN 978-972-592-364-1. [Google Scholar]
- Straffelini, G.; Ciudin, R.; Ciotti, A.; Gialanella, S. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment. Environ. Pollut. 2015, 207, 211–219. [Google Scholar] [CrossRef]
- Fujiwara, F.; Rebagliati, R.J.; Dawidowski, L.; Gómez, D.; Polla, G.; Pereyra, V.; Smichowski, P. Spatial and chemical patterns of size fractionated road dust collected in a megacitiy. Atmos. Environ. 2011, 45, 1497–1505. [Google Scholar] [CrossRef]
- Li, X.; Liu, B.; Zhang, Y.; Wang, J.; Ullah, H.; Zhou, M.; Peng, L.; He, A.; Zhang, X.; Yan, X.; et al. Spatial distributions, sources, potential risks of multi-trace metal/metalloids in street dusts from barbican downtown embracing by Xi’an ancient city wall (NW, China). Int. J. Environ. Res. Public Health 2019, 16, 2992. [Google Scholar] [CrossRef] [Green Version]
- Tanner, P.A.; Ma, H.-L.; Yu, P.K.N. Fingerprinting metals in urban street dust of Beijing, Shanghai, and Hong Kong. Environ. Sci. Technol. 2008, 42, 7111–7117. [Google Scholar] [CrossRef]
- Rajaram, B.S.; Suryawanshi, P.V.; Bhanarkar, A.D.; Rao, C.V.C. Heavy metals contamination in road dust in Delhi city, India. Environ. Earth Sci. 2014, 72, 3929–3938. [Google Scholar] [CrossRef]
- De Miguel, E.; Llamas, J.F.; Chacón, E.; Berg, T.; Larssen, S.; Røyset, O.; Vadset, M. Origin and patterns of distribution of trace elements in street dust: Unleaded petrol and urban lead. Atmos. Environ. 1997, 31, 2733–2740. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Chang, H.-L.R. Development of low temperature three-way catalysts for future fuel efficient vehicles. Johns. Matthey Technol. Rev. 2015, 59, 64–67. [Google Scholar] [CrossRef]
- Gietl, J.K.; Lawrence, R.; Thorpe, A.J.; Harrison, R.M. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos. Environ. 2010, 44, 141–146. [Google Scholar] [CrossRef]
- Bourliva, A.; Christophoridis, C.; Papadopoulou, L.; Giouri, K.; Papadopoulos, A.; Mitsika, E.; Fytianos, K. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environ. Geochem. Health 2017, 39, 611–634. [Google Scholar] [CrossRef] [PubMed]
- Keshavarzi, B.; Tazarvi, Z.; Rajabzadeh, M.A.; Najmeddin, A. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmos. Environ. 2015, 119, 1–10. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Li, W.; Zhang, C.; Zhang, R.; Mei, Y.; Liao, X.; Liu, Y. Spatial distribution and ecological risk assessment of trace metals in urban soils in Wuhan, central China. Environ. Monit. Assess. 2015, 187. [Google Scholar] [CrossRef]
- Cai, K.; Li, C. Street dust heavy metal pollution source apportionment and sustainable management in a typical city—Shijiazhuang, China. Int. J. Environ. Res. Public Health 2019, 16, 2625. [Google Scholar] [CrossRef] [Green Version]
- Valotto, G.; Rampazzo, G.; Visin, F.; Gonella, F.; Cattaruzza, E.; Glisenti, A.; Formenton, G.; Tieppo, P. Environmental and traffic-related parameters affecting road dust composition: A multi-technique approach applied to Venice area (Italy). Atmos. Environ. 2015, 122, 596–608. [Google Scholar] [CrossRef]
- Sternbeck, J.; Sjödin, Å.; Andréasson, K. Metal emissions from road traffic and the influence of resuspension—Results from two tunnel studies. Atmos. Environ. 2002, 36, 4735–4744. [Google Scholar] [CrossRef]
- USNLM. ToxNet—Toxicology Data Network. U.S. National Library of Medicine. Available online: https://toxnet.nlm.nih.gov/ (accessed on 1 November 2019).
- Sugözü, B.; Dağhan, B. Effect of BaSO4 on tribological properties of brake friction materials. Int. J. Innov. Res. Sci. Eng. Technol. 2016, 5, 30–35. [Google Scholar]
- Bi, X.; Li, Z.; Zhuang, X.; Han, Z.; Yang, W. High levels of antimony in dust from e-waste recycling in southeastern China. Sci. Total Environ. 2011, 409, 5126–5128. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.M. Dados Geoquímicos de Base de Solos de Portugal Continental, Utilizando Amostragem de Baixa Densidade. Ph.D. Thesis, University of Aveiro, Aveiro, Portugal, 2004. [Google Scholar]
- Root, R.A. Lead loading of urban streets by motor vehicle wheel weights. Environ. Health Perspect. 2000, 108, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Kukutschová, J.; Moravec, P.; Tomášek, V.; Matějka, V.; Smolík, J.; Schwarz, J.; Seidlerová, J.; Šafářová, K.; Filip, P. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environ. Pollut. 2011, 159, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Apeagyei, E.; Bank, M.S.; Spengler, J.D. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos. Environ. 2011, 45, 2310–2323. [Google Scholar] [CrossRef]
- Abbasi, G.; Saini, A.; Goosey, E.; Diamond, M.L. Product screening for sources of halogenated flame retardants in Canadian house and office dust. Sci. Total Environ. 2016, 545–546, 299–307. [Google Scholar] [CrossRef]
- Punshon, T.; Jackson, B.P.; Meharg, A.A.; Warczack, T.; Scheckel, K.; Guerinot, M. Lou Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci. Total Environ. 2017, 581–582, 209–220. [Google Scholar] [CrossRef]
- WHO. Arsenic and Arsenic Compounds (Environmental Health Criteria 224), 2nd ed.; International Programme on Chemical Safety; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Gunawardana, C.; Goonetilleke, A.; Egodawatta, P.; Dawes, L.; Kokot, S. Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere 2012, 87, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, H.W.; Young, G.M. Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 1996, 43, 341–358. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Selvaraj, K.; Chen, C.T.A. Moderate chemical weathering of subtropical Taiwan: Constraints from solid-phase geochemistry of sediments and sedimentary rocks. J. Geol. 2006, 114, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.; Lowe, D.R.; Cullers, R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Vasiluk, L.; Hale, B.A. The geochemical fingerprinting of geogenic particles in road deposited dust from Tehran metropolis, Iran: Implications for provenance tracking. J. Geochem. Explor. 2018, 190, 411–423. [Google Scholar] [CrossRef]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A.S.H.; Baltensperger, U.; Buchmann, B.; Gehrig, R. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Penkała, M.; Ogrodnik, P.; Rogula-Kozłowska, W. Particulate matter from the road surface abrasion as a problem of non-exhaust emission control. Environments 2018, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Weinbruch, S.; Worringen, A.; Ebert, M.; Scheuvens, D.; Kandler, K.; Pfeffer, U.; Bruckmann, P. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy. Atmos. Environ. 2014, 99, 175–182. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Non-exhaust Traffic Related Emissions. Brake and Tyre Wear PM; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- CONCAWE. A Study of the Number, Size & Mass of Exhaust Particles Emitted from European Diesel and Gasoline Vehicles under Steady-state and European Driving Cycle Conditions; Report N°. 98/51; CONCAWE: Brussels, Belgium, 1998. [Google Scholar]
- NIOSH. National Institute for Occupational Safety and Health. Available online: https://www.cdc.gov/niosh (accessed on 1 November 2019).
- IARC. Monographs on the Identification of Carcinogenic Hazards to Humans. International Association for Research on Cancer. Available online: https://monographs.iarc.fr/monographs-available/ (accessed on 1 November 2019).
LOD | F1 | F2 | |||
---|---|---|---|---|---|
min–max | Med ± SD | min–max | Med ± SD | ||
Al | 0.50 | 64,013–95,874 | 75,836 ± 13,150 | 54,873–67,749 | 66,241 ± 5748 |
As | 4.06 | 28–180 | 35 ± 70 | 12–21 | 18 ± 3.5 |
Ba | 6.90 | 270–560 | 390 ± 119 | 250–490 | 290 ± 105 |
Br | 0.78 | 37–62 | 49 ± 11 | 7.7–17 | 11 ± 4.0 |
Ca | 0.50 | 17,146–58,412 | 19,669 ± 18,887 | 9,806–27,938 | 13,687 ± 7795 |
Cl | 0.50 | 3090–11,610 | 6890 ± 3485 | 220–400 | 330 ± 74 |
Cr | 1.96 | 48–230 | 210 ± 81 | 49–67 | 60 ± 7.5 |
Cu | 2.84 | 95–870 | 260 ± 333 | 31–210 | 42 ± 82 |
F | 0.60 | 920–1350 | 1170 ± 176 | 1160–1640 | 1220 ± 214 |
Fe | 0.50 | 27,613–39,895 | 35,188 ± 5059 | 17,353–18,633 | 18,416 ± 559 |
Ga | 0.94 | 14–18 | 15 ± 1.5 | 9.6–12 | 10 ± 0.8 |
K | 0.60 | 31,969–48,614 | 43,318 ± 6943 | 38,146–47,095 | 43,102 ± 3661 |
Mg | 0.50 | 5947–6887 | 6610 ± 395 | 2883–5030 | 3920 ± 877 |
Mn | 5.62 | 472–488 | 480 ± 6.3 | 248–279 | 263 ± 13 |
Mo | 0.78 | 1.3–2.9 | 2.1 ± 0.7 | 2.9–11 | 6.9 ± 3.3 |
Na | 0.50 | 10,416–14,214 | 10,638 ± 1740 | 8583–16,454 | 10,349±3372 |
Ni | 2.00 | 15–29 | 16 ± 6.2 | 4.4–8.7 | 5.7 ± 1.8 |
P | 0.60 | 3561–5158 | 3 749 ± 713 | 1554–2453 | 1667 ± 400 |
Pb | 1.72 | 81–310 | 86 ± 107 | 37–79 | 40 ± 19 |
Rb | 0.64 | 230–350 | 240 ± 54 | 200–250 | 220 ± 21 |
S | 0.50 | 2908–19,384 | 4870 ± 7348 | 1173–1970 | 1950 ± 371 |
Sb | 4.18 | nd | nd | 5.1–35 | 5.2 ± 14 |
Si | 0.50 | 175,454–239,759 | 229,176 ± 28,153 | 312,012–320,823 | 316,480 ± 3597 |
Sn | 3.02 | 35–75 | 36 ± 19 | 19–25 | 23 ± 2.6 |
Sr | 0.72 | 90–250 | 190 ± 66 | 55–350 | 76 ± 134 |
Ti | 0.50 | 3717–5809 | 4310 ± 880 | 2668–2836 | 2668 ± 79 |
U | 1.22 | 3.5–4.1 | 3.6 ± 0.3 | 8.5–13.2 | 11.2 ± 1.9 |
V | 2.78 | 10–23 | 15 ± 5.2 | 28–47 | 38 ± 7.6 |
W | 3.70 | nd | nd | 7.7–25 | 16 ± 8.7 |
Zn | 1.28 | 680–1870 | 1180 ± 488 | 160–510 | 220 ± 153 |
Zr | 0.80 | 270–550 | 360 ± 117 | 41–74 | 70 ± 15.0 |
F1 | F2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ID | ing | inh | drm | Total | ing | inh | drm | Total | ||
S1 | As | 1.38 × 10−4 | 1.2038 × 10−7 | 2.0238 × 10−5 | 1.5838 × 10−4 | 1.3838 × 10−5 | 1.2038 × 10−8 | 2.0238 × 10−6 | 1.5838 × 10−5 | |
Pb | 5.8538 × 10−7 | 1.5038 × 10−10 | – | 5.8638 × 10−7 | 2.6738 × 10−7 | 6.8738 × 10−11 | – | 2.6738 × 10−7 | ||
total | 1.3838 × 10−4 | 1.2038 × 10−7 | 2.0238 × 10−5 | 1.5938 × 10−4 | 1.4038 × 10−5 | 1.2038 × 10−8 | 2.0238 × 10−6 | 1.6138 × 10−5 | ||
S2 | As | 2.6838 × 10−5 | 2.3338 × 10−8 | 3.9338 × 10−6 | 3.0738 × 10−5 | 1.6138 × 10−5 | 1.4038 × 10−8 | 2.3638 × 10−6 | 1.8438 × 10−5 | |
Pb | 6.2238 × 10−7 | 1.6038 × 10−10 | – | 6.2238 × 10−7 | 2.8938 × 10−7 | 7.4338 × 10−11 | – | 2.8938 × 10−7 | ||
total | 2.7438 × 10−5 | 2.3538 × 10−8 | 3.9338 × 10−6 | 3.1438 × 10−5 | 1.6438 × 10−5 | 1.4138 × 10−8 | 2.3638 × 10−6 | 1.8738 × 10−5 | ||
S3 | As | 2.1438 × 10−5 | 1.8638 × 10−8 | 3.1438 × 10−6 | 2.4638 × 10−5 | 9.1838 × 10−6 | 7.9938 × 10−9 | 1.3538 × 10−6 | 1.0538 × 10−5 | |
Pb | 2.2438 × 10−5 | 5.76 × 10−10 | - | 2.24 × 10−5 | 5.71 × 10−7 | 1.47 × 10−10 | – | 5.71 × 10−7 | ||
total | 2.3738 × 10−5 | 1.92 × 10−8 | 3.14 × 10−6 | 2.68 × 10−5 | 9.75 × 10−6 | 8.13 × 10−9 | 1.35 × 10−6 | 1.11 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candeias, C.; Vicente, E.; Tomé, M.; Rocha, F.; Ávila, P.; Célia, A. Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks. Int. J. Environ. Res. Public Health 2020, 17, 1563. https://doi.org/10.3390/ijerph17051563
Candeias C, Vicente E, Tomé M, Rocha F, Ávila P, Célia A. Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks. International Journal of Environmental Research and Public Health. 2020; 17(5):1563. https://doi.org/10.3390/ijerph17051563
Chicago/Turabian StyleCandeias, Carla, Estela Vicente, Mário Tomé, Fernando Rocha, Paula Ávila, and Alves Célia. 2020. "Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks" International Journal of Environmental Research and Public Health 17, no. 5: 1563. https://doi.org/10.3390/ijerph17051563
APA StyleCandeias, C., Vicente, E., Tomé, M., Rocha, F., Ávila, P., & Célia, A. (2020). Geochemical, Mineralogical and Morphological Characterisation of Road Dust and Associated Health Risks. International Journal of Environmental Research and Public Health, 17(5), 1563. https://doi.org/10.3390/ijerph17051563