Air Pollution Emissions 2008–2018 from Australian Coal Mining: Implications for Public and Occupational Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Data
2.3. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nowrouzi-Kia, B.; Gohar, B.; Casole, J.; Chidu, C.; Dumond, J.; McDougall, A.; Nowrouzi-Kia, B. A systematic review of lost-time injuries in the global mining industry. Work 2018, 60, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Perret, J.L.; Plush, B.; Lachapelle, P.; Hinks, T.S.; Walter, C.; Clarke, P.; Irving, L.; Brady, P.; Dharmage, S.C.; Stewart, A. Coal mine dust lung disease in the modern era. Respirology 2017, 22, 662–670. [Google Scholar] [CrossRef]
- Laney, A.S.; Weissman, D.N. Respiratory diseases caused by coal mine dust. J. Occup. Environ. Med. 2014, 56 (Suppl. 10), S18–S22. [Google Scholar] [CrossRef] [Green Version]
- Leon-Mejia, G.; Espitia-Perez, L.; Hoyos-Giraldo, L.S.; Da Silva, J.; Hartmann, A.; Henriques, J.A.; Quintana, M. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci. Total Environ. 2011, 409, 686–691. [Google Scholar] [CrossRef]
- Petsonk, E.L.; Rose, C.; Cohen, R. Coal mine dust lung disease. New lessons from old exposure. Am. J. Respir. Crit. Care Med. 2013, 187, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Laney, A.S.; Wolfe, A.L.; Petsonk, E.L.; Halldin, C.N. Pneumoconiosis and advanced occupational lung disease among surfce coal miners—16 states, 2010–2011. Morb. Mortal. Wkly. Rep. (MMWR) 2012, 61, 431–434. [Google Scholar]
- Ghose, M.K.; Majee, S.R. Characteristics of hazardous airborne dust around an Indian surface coal mining area. Environ. Monit. Assess. 2007, 130, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Espitia-Perez, L.; Arteaga-Pertuz, M.; Soto, J.S.; Espitia-Perez, P.; Salcedo-Arteaga, S.; Pastor-Sierra, K.; Galeano-Paez, C.; Brango, H.; da Silva, J.; Enriques, J.A.P. Geospatial analysis of residential proximity to open-pit coal mining areas in relation to micronuclei frequency, particulate matter concentration, and elemental enrichment factors. Chemosphere 2018, 206, 203–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurth, L.M.; Kolker, A.; Engle, M.; Geboy, N.; Hendryx, M.; Orem, W.; McCawley, M.; Crosby, L.; Tatu, C.A.; Varonka, M.; et al. Atmospheric particulate matter in proximity to mountaintop coal mines: Sources and potential environmental and human health impacts. Environ. Geochem. Health 2015, 37, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Ramirez, J.; Naish, S.; Sly, P.D.; Jagals, P. Mortality and morbidity in populations in the vicinity of coal mining: A systematic review. BMC Public Health 2018, 18, 721. [Google Scholar] [CrossRef] [Green Version]
- Ahern, M.; Hendryx, M. Cancer mortality rates in Appalachian mountaintop coal mining areas. J. Occup. Environ. Sci. 2012, 1, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Esch, L.; Hendryx, M. Chronic cardiovascular disease mortality in mountaintop mining areas of central Appalachian states. J. Rural Health 2011, 27, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Hendryx, M.; Luo, J. An examination of the effects of mountaintop removal coal mining on respiratory symptoms and COPD using propensity scores. Int. J. Environ. Health Res. 2015, 25, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Hendryx, M.; Higginbotham, N.; Ewald, B.; Connor, L.H. Air quality in association with rural coal mining and combustion in New South Wales Australia. J. Rural Health 2019, 35, 518–527. [Google Scholar] [CrossRef]
- Brown, J.S.; Gordon, T.; Price, O.; Asgharian, B. Thoracic and respirable particle definitions for human health risk assessment. Part. Fibre Toxicol. 2013, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Moreno, T.; Trechera, P.; Querol, X.; Lah, R.; Johnson, D.; Wrana, A.; Williamson, B. Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. Int. J. Coal Geol. 2019, 203, 52–59. [Google Scholar] [CrossRef]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Gemci, T.; Yang, I.A.; Gu, Y.T. Ultrafine particle transport and deposition in a large scale 17-generation lung model. J. Biomech. 2017, 64, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Rothen-Rutishauser, B.M.; Kiama, S.G.; Gehr, P. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am. J. Respir. Cell Mol. Biol. 2005, 32, 281–289. [Google Scholar] [CrossRef]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Gemci, T.; Gu, Y.T. Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract. J. Aerosol. Sci. 2017, 108, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Cullinan, P. Occupation and chronic obstructive pulmonary disease (COPD). Br. Med. Bull. 2012, 104, 143–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, R.A.; Petsonk, E.L.; Rose, C.; Young, B.; Regier, M.; Najmuddin, A.; Abraham, J.L.; Churg, A.; Green, F.H. Lung pathology in U.S. coal workers with rapidly progressive pneumoconiosis implicates silica and silicates. Am. J. Respir. Crit. Care Med. 2016, 193, 673–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenland, K.; Mannetje, A.; Boffetta, P.; Stayner, L.; Attfield, M.; Chen, J.; Dosemeci, M.; DeKlerk, M.; Hnizdo, E.; Koskela, R.; et al. Pooled exposure-response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: An IARC multicentre study. Cancer Causes Control 2001, 12, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.; Glass, D.; Hoy, R.; Roberts, M.; Thompson, B.; Cohen, R.; Go, L.; Almberg, K.; Deponte, K. Review of Respiratory Component of the Coal Mine Workers’ Health Scheme for the Queensland Department of Natural Resources and Mines; Final Report; Monash Centre for Occupational and Environmental Health, Monash University, and School of Public Health, University of Illinois at Chicago: Chicago, IL, USA, 2016. [Google Scholar]
- Office of the Chief Economist (OCE). Australian Government Department of Industry Innovation and Science. 2019. Available online: https://publications.industry.gov.au/publications/resourcesandenergyquarterlydecember2018/index.html (accessed on 30 October 2019).
- National Pollutant Inventory (NPI). Australian Government Department of the Environment and Energy. 2018. Available online: www.npi.gov.au (accessed on 12 May 2019).
- National Pollutant Inventory (NPI). 2012. Available online: http://www.npi.gov.au/resource/emission-estimation-technique-manual-fugitive-emissions (accessed on 14 May 2019).
- National Pollutant Inventory (NPI). Emission Estimation Technique Manual for Mining; Version 3.1.; ACT, Australian Government, Department of Sustainability, Environment, Water, Population and Communities: Canberra, Australia, 2012.
- Office of Environment and Heritage (NSW). 2018. Available online: http://www.environment.nsw.gov.au/topics/air/monitoring-air-quality (accessed on 8 May 2018).
- Queensland Government 2020. Available online: https://www.qld.gov.au/environment/pollution/monitoring/air/air-monitoring (accessed on 22 January 2020).
- Australian Bureau of Statistics (ABS). 2019. Available online: https://quickstats.censusdata.abs.gov.au/census_services/getproduct/census/2016/quickstat/POA4615?opendocument (accessed on 15 November 2019).
- Lu, F.; Xu, D.; Cheng, Y.; Dong, S.; Guo, C.; Jiang, X.; Zheng, X. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ. Res. 2015, 136, 196–204. [Google Scholar] [CrossRef]
- Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M.C.; Pope, C.A.; Thurston, G.; Calle, E.E.; et al. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res. Rep. Health Eff. Inst. 2009, 5–144, 5–36. [Google Scholar]
- Wellenius, G.A.; Schwartz, J.; Mittleman, M.A. Particulate air pollution and hospital admissions for congestive heart failure in seven United States cities. Am. J. Cardiol. 2006, 97, 404–408. [Google Scholar] [CrossRef]
- Lequy, E.; Siemiatycki, J.; Leblond, S.; Meyer, C.; Zhivin, S.; Vienneau, D.; de Hoogh, K.; Goldberg, M.; Zins, M.; Jacquemin, B. Long-term exposure to atmospheric metals assessed by mosses and mortality in France. Environ. Int. 2019, 129, 145–153. [Google Scholar] [CrossRef]
- Cliff, D.; Kizil, G. An estimate of the exposure of Queensland underground longwall workers to respirable dust. In Proceedings of the Queensland Mining Industry Health and Safety Conference, Townsville, Queensland, Australia, 4–7 August 2002. [Google Scholar]
- Kurth, L.M.; McCawley, M.A.; Hendryx, M.; Lusk, S. Atmospheric particulate matter size distribution and concentration in West Virginia coal mining and non-mining areas. J. Exp. Science Environ. Epidem. 2014, 24, 405–411. [Google Scholar] [CrossRef]
- Knuckles, T.; Stapleton, P.; Minarchick, V.; Esch, L.; McCawley, M.A.; Hendryx, M.; Nurkiewicz, T.R. Air pollution particulate matter collected from an Appalachian mountaintop mining site induces microvascular dysfunction. Microcirculation 2013, 20, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Xu, X.; Lei, Y.; Cao, J.; Zhang, Y.; Chen, L.; Huo, X. The role of the PM2.5-associated metals in pathogenesis of child Mycoplasma Pneumoniae infections: A systematic review. Environ. Sci. Pollut. Res. Int. 2016, 23, 10604–10614. [Google Scholar] [CrossRef]
- Siddika, N.; Balogun, H.A.; Amegah, A.K.; Jaakkola, J.J. Prenatal ambient air pollution exposure and the risk of stillbirth: Systematic review and meta-analysis of the empirical evidence. Occup. Environ. Med. 2016, 73, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.W.; Vivian, E.; Mohammed, K.A.; Jakhar, S.; Vaughn, M.; Huang, J.; Zelicoff, A.; Xaverius, P.; Bai, Z.; Lin, S.; et al. Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: The Seven Northeastern Cities (SNEC) study. Atmos. Environ. 2016, 138, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Cooper, N.; Green, D.; Meissner, K.J. The Australian National Pollutant Inventory fails to fulfil its legislated goals. Int. J. Environ. Res. Public Health 2017, 14, 478. [Google Scholar] [CrossRef] [Green Version]
- Hendryx, M. The public health impacts of surface coal mining. Extr. Ind. Soc. 2015, 2, 820–826. [Google Scholar] [CrossRef]
- Thurston, G.D.; Burnett, R.T.; Turner, M.C.; Shi, Y.; Krewski, D.; Lall, R.; Ito, K.; Jerrett, M.; Gapstur, S.M.; Diver, W.R. Ischemic heart disease mortality and long-term exposure to source-related components of U.S. fine particle air pollution. Environ. Health Perspect. 2016, 124, 785–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Emission | N of Observations | Total Amount in kg |
---|---|---|
Antimony and compounds | 741 | 7402.5 |
Arsenic and compounds | 985 | 44,023.9 |
Beryllium and compounds | 902 | 12,776.9 |
Cadmium and compounds | 866 | 2299.9 |
Chromium (VI) and compounds | 107 | 1565.7 |
Cobalt and compounds | 967 | 74,179.6 |
Copper and compounds | 1089 | 241,099.8 |
Lead and compounds | 1102 | 153,289.6 |
Manganese and compounds | 1161 | 4,844,927.9 |
Mercury and compounds | 1114 | 1393.3 |
Nickel and compounds | 1090 | 281,789.1 |
Selenium and compounds | 667 | 9982.4 |
Zinc and compounds | 1117 | 1,127,249.7 |
Total Metals | 11,908 | 6,801,980.3 |
PM2.5 | 1071 | 67,361,544.1 |
PM10 | 1082 | 3,534,238,028.0 |
NOx | 1074 | 833,567,946.0 |
Post Code | PM10 Emissions (kg) | Population (2016) |
---|---|---|
2330 | 517,080,520 | 20,350 |
4744 | 487,372,265 | 8735 |
4742 | 393,371,886 | 1140 |
4717 | 320,200,354 | 4749 |
4746 | 234,138,583 | 1935 |
4745 | 224,807,477 | 2991 |
2333 | 195,740,657 | 13,647 |
4718 | 152,534,402 | 2375 |
4720 | 104,375,624 | 14,394 |
4715 | 84,736,324 | 7127 |
2382 | 83,557,341 | 1319 |
4743 | 81,607,887 | 620 |
4702 | 75,395,426 | 28,609 |
4721 | 71,774,189 | 3717 |
2850 | 63,454,014 | 17,644 |
4741 | 52,933,785 | 7079 |
4804 | 47,928,470 | 1,730 |
4401 | 45,444,892 | 5719 |
6225 | 41,986,061 | 9105 |
4615 | 28,489,238 | 7052 |
Emission | Percent of National Air Emissions from Coal Mines | Total National Air Emissions (kg) |
---|---|---|
Metals | 12.1% | 56,120,926.2 |
NOx | 10.1% | 8,267,252,710 |
PM2.5 | 19.5% | 344,873,749 |
PM10 | 42.1% | 8,404,128,401 |
Emission | Coal Mines | Other NPI Sites | p < * |
---|---|---|---|
Metals | 571.2 (24.1) | 485.6 (36.4) | 0.05 |
NOx | 776,134 (30,071) | 358,423 (14,890) | 0.0001 |
PM2.5 | 62,896 (2626) | 13,943 (597) | 0.0001 |
PM10 | 3,266,394 (136,801) | 235,807 (9354) | 0.0001 |
Group | N of Monitoring Sites | Mean | Standard Deviation | p < * |
---|---|---|---|---|
Mining | 19 | 20.71 | 3.79 | <0.02 |
Nonmining urban | 45 | 17.36 | 4.53 | |
Nonmining rural | 12 | 16.04 | 6.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendryx, M.; Islam, M.S.; Dong, G.-H.; Paul, G. Air Pollution Emissions 2008–2018 from Australian Coal Mining: Implications for Public and Occupational Health. Int. J. Environ. Res. Public Health 2020, 17, 1570. https://doi.org/10.3390/ijerph17051570
Hendryx M, Islam MS, Dong G-H, Paul G. Air Pollution Emissions 2008–2018 from Australian Coal Mining: Implications for Public and Occupational Health. International Journal of Environmental Research and Public Health. 2020; 17(5):1570. https://doi.org/10.3390/ijerph17051570
Chicago/Turabian StyleHendryx, Michael, Mohammad Saidul Islam, Guang-Hui Dong, and Gunther Paul. 2020. "Air Pollution Emissions 2008–2018 from Australian Coal Mining: Implications for Public and Occupational Health" International Journal of Environmental Research and Public Health 17, no. 5: 1570. https://doi.org/10.3390/ijerph17051570