Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice
Abstract
:1. Introduction
2. Methodology
2.1. Literature Search Strategy
2.2. Case Studies Refining
- a)
- the studies are put together in English;
- b)
- the studies are peer-reviewed journal articles, full conference papers excluding abstracts and posters, theses or dissertations, or official governmental reports;
- c)
- the wave or tidal technologies are designed for production of electricity.
2.2.1. Spatial Distribution of Studied Wave and Tidal Energy Systems
2.2.2. Installed Capacities and Technological Development Status
2.2.3. ISO 14040 and 14044 Conformance Declarations
3. Results
3.1. Goal and Scope
3.1.1. Internal and External Application
3.1.2. System Boundary
3.1.3. Functional Unit
3.1.4. Cut-off Criteria
3.1.5. Allocation
3.1.6. Impact Categories Definition
3.1.7. Critical Review
3.2. Life Cycle Inventory Analysis
3.2.1. Data Collection and Data Quality
3.2.2. Data Calculation and Energy Flows
3.2.3. Validation of Data
3.2.4. Relating of Data to Unit Process and Reference Flow of the Functional Unit
3.2.5. Allocation of Inputs and Outputs
3.3. Life Cycle Impact Assessment
4. Critical Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- US Public Law 110–140, 110 Congress, Energy Independence and Security Act of 2007. Available online: https://www.congress.gov/110/plaws/publ140/PLAW-110publ140.pdf (accessed on 18 November 2019).
- Azzellino, A.; Lanfredi, C.; Contestabile, P.; Ferrante, V.; Vicinanza, D. Strategic environmental assessment to evaluate WEC projects in the perspective of the environmental cost-benefit analysis. In Proceedings of the Twenty-First International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011. [Google Scholar]
- Hans, C.S.; Stefan, N.; Stefan, A.; Hauschild, M.Z. Life Cycle Assessment of the Wave Energy Converter: Wave Dragon. 2007. Poster session presented at Conference in Bremerhaven. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/3711218/WaveDragon.pdf (accessed on 11 November 2019).
- Dahlsten, H. Life Cycle Assessment of Electricity from Wave Power. Swedish University of Agricultural Sciences, 2009. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:slu:epsilon-s-2115 (accessed on 19 November 2019).
- ISO14040:2006. Environmental Management Life Cycle Assessment: Principle and Framework; CEN: Brussels, Belgium, 2006. [Google Scholar]
- ISO14044:2006. Environmental Management-Life Cycle Assessment: Requirements and Guidelines; CEN: Brussels, Belgium, 2006. [Google Scholar]
- Uihlein, A.; Magagna, D. Wave and tidal current energy-A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar] [CrossRef]
- Banerjee, S.; Duckers, L.; Blanchard, R.E. An overview on green house gas emission characteristics and energy evaluation of ocean energy systems from life cycle assessment and energy accounting studies. J. Appl. Nat. Sci. 2013, 5, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Paredes, M.G.; Padilla-Rivera, A.; Güereca, L.P. Life Cycle Assessment of Ocean Energy Technologies: A Systematic Review. J. Mar. Sci. Eng. 2019, 7, 322. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, F.; Coiro, D. Life Cycle Assessment (LCA) of a marine current turbine for cleaner energy production. In Proceedings of the 3rd International Conference on Life Cycle Management, Zurich, Switzerland, 27–29 August 2007. [Google Scholar]
- Douglas, C.A.; Harrison, G.P.; Chick, J.P. Life cycle assessment of the Seagen marine current turbine. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2008, 222, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rule, B.M.; Worth, Z.J.; Boyle, C. Comparison of Life Cycle Carbon Dioxide Emissions and Embodied Energy in Four Renewable Electricity Generation Technologies in New Zealand. Environ. Sci. Technol. 2009, 43, 6406–6413. [Google Scholar] [CrossRef] [PubMed]
- Howell, R.J.; Walker, S.; Hodgson, P.; Griffin, A. Tidal energy machines: A comparative life cycle assessment. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2013. [Google Scholar] [CrossRef] [Green Version]
- Parker, R.P.M.; Harrison, G.P.; Chick, J.P. Energy and Carbon Audit of an Offshore Wave Energy Converter. Proc. Inst. Mech. Eng. Part A J. Power Energy 2007, 221, 1119–1130. [Google Scholar] [CrossRef] [Green Version]
- Thomson, C.; Harrison, G.; Chick, J. Full Life Cycle Assessment of a Wave Energy Converter. In Proceedings of the IET Renewable Power Generation Conference, Edinburgh, UK, 6–8 September 2011. [Google Scholar] [CrossRef] [Green Version]
- Thomson, R.C.; Harrison, G.P.; Chick, J. Life Cycle Assessment in the Marine Renewable Energy Sector. In Proceedings of the LCA XI International Conference, Chicago, IL, USA, 4–6 October 2011. [Google Scholar]
- Thomson, R.C.; Chick, J.; Harrison, G. An LCA of the Pelamis wave energy converter. Int. J. Life Cycle Assess. 2019, 24, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.; Howell, R. Life cycle comparison of a wave and tidal energy device. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 325–337. [Google Scholar] [CrossRef]
- Ombach, G. Design and safety considerations of interoperable wireless charging system for automotive. Int. Conf. Ecol. Veh. Renew. Energ. 2014, 1–4. [Google Scholar] [CrossRef]
- Zhai, Q.; Zhu, L.; Lu, S. Life Cycle Assessment of a Buoy-Rope-Drum Wave Energy Converter. Energies 2018, 11, 2432. [Google Scholar] [CrossRef] [Green Version]
- Elginoz, N.; Bas, B. Life Cycle Assessment of a multi-use offshore platform: Combining wind and wave energy production. Ocean Eng. 2017, 430–443. [Google Scholar] [CrossRef]
- Curto, D.; Neugebauer, S.; Viola ATraverso, M.; Franzitta, V.; Trapanese, M. First Life Cycle Impact Considerations of Two Wave Energy Converters. In Proceedings of the Oceans conference, New York, NY, USA, 8 June 2018. [Google Scholar]
- Patrizi, N.; Pulselli, R.M.; Neri, E.; Niccolucci, V.; Vicinanza, D.; Contestabile, P.; Bastianoni, S. Lifecycle Environmental Impact Assessment of an Overtopping Wave Energy Converter Embedded in Breakwater Systems. Front. Energy Res. 2019. [Google Scholar] [CrossRef] [Green Version]
- Uihlein, A. Life cycle assessment of ocean energy technologies. Int. J. Life Cycle Assess. 2016, 21, 1425–1437. [Google Scholar] [CrossRef] [Green Version]
- Douziech, M.; Hellweg, S.; Verones, F. Are Wave and Tidal Energy Plants New Green Technologies? Environ. Sci. Technol. 2016, 50, 7870–7878. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, E.; Zhai, Q.; Yang, F. Temporal discounting in life cycle assessment: A critical review and theoretical framework. Environ. Impact Assess. Rev. 2015, 51, 23–31. [Google Scholar] [CrossRef]
- Hellweg, S.; Frischknecht, R. Evaluation of long-Term impacts in LCA. Int. J. Life Cycle Assess. 2004, 9, 339–341. [Google Scholar] [CrossRef] [Green Version]
- Pinsonnault, A.; Lesage, P.; Levasseur, A.; Samson, R. Temporal differentiation of background systems in LCA: Relevance of adding temporal information in LCI databases. Int. J. Life Cycle Assess. 2014, 19, 1843–1853. [Google Scholar] [CrossRef]
- Potting, J.; Hauschild, M. Background for Spatial Differentiation in Life Cycle Impact Assessment—The EDIP2003 Methodology. Environmental Project No. 996. Danish Environmental Protection Agency: Copenhagen, Denmark, 2005. Available online: http://www2.mst.dk/Udgiv/publications/2005/87–7614–581–6/html/indhold_eng.htm (accessed on 19 November 2019).
- Riva, A.; D′Angelosante, S.; Trebeschi, C. Natural gas and the environmental results of life cycle assessment. Energy 2006, 31, 138–148. [Google Scholar] [CrossRef]
- Shah, V.P.; Ries, R.J. A characterization model with spatial and temporal resolution for life cycle impact assessment of photochemical precursors in the United States. Int. J. Life Cycle Assess. 2009, 14, 313–327. [Google Scholar] [CrossRef]
- Yuan, C.Y.; Simon, R.; Mady, N.; Dornfeld, D. Embedded temporal difference in life cycle assessment: Case study on VW Golf A4 CAR. In Proceedings of the IEEE International Symposium on Sustainable System & Technology, Phoenix, AZ, USA, 18–20 May 2009. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Q.; Ciardo, K.; Yuan, C.Y. Temporal discounting for life cycle assessment: Perspectives and mechanisms. In Proceedings of the 17th CIRP International Conference on Life Cycle Engineering, Hefei, China, 19–21 May 2010. [Google Scholar] [CrossRef]
- Kendall, A.; Chang, B.; Sharpe, B. Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations. Environ. Sci. Technol. 2009, 43, 7142–7147. [Google Scholar] [CrossRef] [PubMed]
- Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment. Part 1: Goal & scope and inventory analysis. Int. J. Life Cycle Assess. 2008, 13, 290–300. [Google Scholar] [CrossRef]
- Huppes, G. Methods for life cycle inventory of a product. J. Clean. Prod. 2005, 13, 687–697. [Google Scholar] [CrossRef]
- Owens, J.W. Life-Cycle assessment in relation to risk assessment: An evolving perspective. Risk Anal. 1997, 17, 359–365. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Z.; Li, S.; Liu, Y.; Shi, X. Research and application status of dynamic life cycle assessment. China Environ. Sci. 2018, 38, 4764–4771. (In Chinese) [Google Scholar] [CrossRef]
- Müller, A.; Wörner, P. Impact of dynamic CO2 emission factors for the public electricity supply on the life-Cycle assessment of energy efficient residential buildings. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012036. [Google Scholar] [CrossRef] [Green Version]
- Su, S.; Li, X.; Zhu, Y. Dynamic assessment elements and their prospective solutions in dynamic life cycle assessment of buildings. Build. Environ. 2019, 248–259. [Google Scholar] [CrossRef]
- Batouli, M.; Mostafavi, A. Service and performance adjusted life cycle assessment: A methodology for dynamic assessment of environmental impacts in infrastructure systems. Sustain. Resilient Infrastruct. 2017, 2, 117–135. [Google Scholar] [CrossRef]
- Negishi, K.; Tiruta-Barna, L.; Schiopu, N.; Lebert, A.; Chevalier, J. An operational methodology for applying dynamic Life Cycle Assessment to buildings. Build. Environ. 2018, 611–621. [Google Scholar] [CrossRef]
- Hu, M. Dynamic life cycle assessment integrating value choice and temporal factors-A case study of an elementary school. Energy Build. 2018, 1087–1096. [Google Scholar] [CrossRef]
- Keiron, P.; Roberts David, A.; Turner, J.; Anne, M.; Stringfellow Bello, I.; Powrie, W.; Watson, G. SWIMS: A dynamic life cycle-Based optimisation and decision support tool for solid waste management. J. Clean. Prod. 2018, 547–563. [Google Scholar] [CrossRef] [Green Version]
- Bixler, T.S.; Houle, J.; Ballestero, T.P.; Mo, W. A dynamic life cycle assessment of green infrastructures. Sci. Total Environ. 2019, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Cardellini, G.; Mutel, C.L.; Vial, E.; Muys, B. Temporalis, a generic method and tool for dynamic Life Cycle Assessment. Sci. Total Environ. 2018, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Uncertainty-Embedded dynamic life cycle sustainability assessment framework: An ex-Ante perspective on the impacts of alternative vehicle options. Energy 2016, 715–728. [Google Scholar] [CrossRef]
- Onat, N.C.; Kucukvar, M.; Tatari, O. Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: A case for electric vehicles. Int. J. Life Cycle Assess. 2016, 21, 1009–1034. [Google Scholar] [CrossRef]
- Louis, J.; Pongracz, E. Life cycle impact assessment of home energy management systems (HEMS) using dynamic emissions factors for electricity in Finland. Environ. Impact Assess. Rev. 2017, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Beloin-Saint-Pierre, D.; Levasseur, A.; Margni, M.; Blanc, I. Implementing a dynamic life cycle assessment methodology with a case study on domestic hot water production. J. Ind. Ecol. 2016, 21, 1128–1138. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, B. Dynamic Hybrid Life Cycle Assessment of CO2 Emissions of a Typical Biogas Project. Energy Procedia 2016, 396–401. [Google Scholar] [CrossRef]
- Pehnt, M. Dynamic life cycle assessment (LCA) of renewable energy technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
Reference | Device | Region | Installed capacity | Capacity factor | ISO Smartcards | |
---|---|---|---|---|---|---|
14040 | 14044 | |||||
Cavallaro et al. (2007) | Kobold | Italy | 160 kW | N.A. | - | - |
Douglas et al. (2008) | Seagen | UK | 1.2 MW | 48% | √ | - |
Rule et al. (2009) | Kaipara Harbor | New Zealand | 200 MW | 37% | - | √ |
Howell et al. (2013) | DeepGen; OpenHydro; ScotRenewables SR2000; Flumill | UK | 1 MW; 2 MW; 2 MW; 2 MW | N.A. | √ | √ |
Hans et al. (2007) | Wave Dragon | Denmark | 7 MW | N.A. | - | - |
Parker et al. (2007) | Pelamis | UK | 750 kW | N.A. | √ | - |
Thomson et al. (2011a) | Pelamis | UK | 750 kW | N.A. | √ | - |
Thomson et al. (2011b) | Pelamis | UK | 750 kW | N.A. | √ | - |
Thomson et al. (2019) | Pelamis | UK | 750 kW | 45% | - | √ |
Dahlsten et al. (2009) | Seabased | Hypothetical | 20 MW | N.A. | √ | √ |
Walker et al. (2011) | Oyster | UK | 315 kW | N.A. | - | - |
Ombach et al. (2014) | Wave Star | Denmark | 1000 kW | N.A. | 14000 | - |
Zhai et al. (2018) | BRD | China | 10 kW | 50% | √ | - |
Elginoz et al. (2017) | MUP farm | Hypothetical | 265.5 MW | Various | √ | - |
Curto et al. (2018) | DEIM | Italy | 30 kW | N.A. | √ | √ |
Patrizi et al. (2019) | OBREC | Italy | 3 kW | N.A. | - | - |
Uihlein et al. (2016) | Various | Unspecified | 500kW-1 MW | 34%; 0% | - | - |
Douziech et al. (2016) | Annapolis; SeaGen; HS1000; HydraTidal; Oyster800 | Canada; Ireland; UK; Norway; UK | 20 MW; 1200 kW; 1000 kW; 1500 kW; 800 kW | N.A. | - | - |
Reference | Study Type | Goal | Scope | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCA | LCI | CS | Int. | Ext. | System Boundary | Functional Unit | Cut-off Criteria | Allocation | ICD | CRD | |||||||
Inputs | Outputs | Open Loop | Closed Loop | ||||||||||||||
M | E | ES | M | E | ES | ||||||||||||
Cavallaro et al. (2007) | √ | - | - | √ | - | X-grave | System | - | - | - | - | - | - | - | √ | √ | - |
Douglas et al. (2008) | - | √ | √ | √ | - | X-grave | Undefined1 | - | √ | √ | - | √ | √ | - | √ | N.A. | - |
Rule et al. (2009) | - | √ | √ | - | √ | X-grave | 1 kWh | - | √ | √ | - | - | - | - | √2 | N.A. | - |
Howell et al. (2013) | √ | √ | √ | X-grave | System | √ | - | - | √ | - | - | √3 | N.A. | - | |||
Hans et al. (2007) | √ | √ | - | √ | X-grave | 1 kWh | - | - | - | - | - | - | √4 | √4 | √ | - | |
Parker et al. (2007) | √ | √ | √ | X-grave | 1 kWh | - | √ | √ | - | - | - | √3 | - | N.A. | - | ||
Thomson et al. (2011a) | √ | - | √ | √ | √ | X-grave | 1 kWh | - | √ | √ | - | - | - | √5 | - | √ | - |
Thomson et al. (2011b) | √ | - | - | √ | √ | X-grave | 1 kWh | - | √ | √ | - | - | - | √5 | - | √ | - |
Thomson et al. (2019) | √ | - | √ | √ | - | X-grave | 1 kWh | - | √ | √ | - | √ | √ | √5 | - | √ | - |
Dahlsten et al. (2009) | √ | - | - | √ | - | X-grave | 1 kWh | √ | √ | √ | √ | √ | √ | √6 | - | √ | - |
Walker et al. (2011) | - | √ | - | √ | - | X-grave | Undefined | - | - | - | - | - | - | - | √7 | N.A. | - |
Ombach et al. (2014) | - | √ | √ | √ | - | X-grave | Undefined | - | - | - | - | - | - | - | √8 | N.A. | - |
Zhai et al. (2018) | √ | - | √ | √ | - | X-grave | System | √ | - | - | √ | - | - | - | √ | √ | - |
Elginoz et al. (2017) | √ | - | √ | √ | √ | X-grave | 1 kWh | - | - | - | - | - | - | - | √9 | √ | - |
Curto et al. (2018) | √ | - | √ | √ | - | X-gate | System | - | - | - | - | - | - | - | - | √ | - |
Patrizi et al. (2019) | - | √ | - | √ | - | X-gate | System | - | - | √ | - | - | √ | - | - | √ | - |
Uihlein et al. (2016) | √ | - | √ | √ | - | X-grave | 1 kWh | - | - | - | - | - | - | - | √10 | √ | - |
Douziech et al. (2016) | √ | - | √ | - | √ | X-grave | 1 kWh | - | - | - | - | - | - | - | √11 | √ | - |
Reference | Data Collection | ||
---|---|---|---|
Primary (Specific) Data | Secondary (Generic) Data | Unavailable Data | |
Cavallaro et al. (2007) | Designer | ETH-ESU 1996, IDEMAT 2001, BUWAL 1996, ETH-ESU 1996, IDEMAT 2001, and ETH 1996 | Assumptions |
Douglas et al. (2008) | MCT (designer/manufacturer); Inventory of Carbon and Energy (ICE, a database by the University of Bath); | Literature (existing LCAs, journals, and textbooks) | Assumptions |
Rule et al. (2009) | Reports regarding the studied systems | Literature | Assumptions |
Howell et al. (2013) | Manufacturers, brochures and presentations | Literature | Assumptions |
Hans et al. (2007) | Designer and Manufacturer | EDIP database; literature (existing LCAs and reports) | Assumptions |
Parker et al. (2007) | Inventory of Carbon and Energy (ICE) | Ecoinvent database; literature (journals, conference papers and previous LCA studies) | Assumptions |
Thomson et al. (2011a) | Manufacturer | Ecoinvent database | Assumptions |
Thomson et al. (2011b) | Manufacturer | Ecoinvent database | Assumptions |
Thomson et al. (2019) | PWP’s own records by Parker et al. | Ecoinvent database | Assumptions |
Dahlsten et al. (2009) | Calculation based on drawing, product sheets, product specific processes | Ecoinvent; | Assumptions |
Walker et al. (2011) | Company website, device patent, installation contractor, and EMEC | Literature | Assumptions |
Ombach et al. (2014) | Designer, ICE database, compiled by the University of Bath | Unspecified | Assumptions |
Zhai et al. (2018) | Designer | Ecoinvent database | Assumptions |
Elginoz et al. (2017) | Designer | Ecoinvent; literature (reports, thesis, scientific papers) | Assumptions |
Curto et al. (2018) | Unspecified | Unspecified | Assumptions |
Patrizi et al. (2019) | Metric computations | Ecoinvent database | Assumptions |
Uihlein et al. (2016) | JRC ocean energy database | GaBi database | Assumptions |
Douziech et al. (2016) | Plant developers | Ecoinvent; literature | Assumptions |
Reference | Method, Midpoint/End-point | Classification brk (Assignment of LCI Results) | Characterization brk (Calculation of Indicator Results) | Normalization/Reference (Optional) | Weighting (Optional) |
---|---|---|---|---|---|
Cavallaro et al. (2007) | Eco-indicator 99, midpoint and endpoint | √ | Unspecified, no details presented | Yes/Europe | - |
Hans et al. (2007) | EDIP1997, midpoint | √ | Unspecified, no details presented | Yes/Unspecified | - |
Thomson et al. (2011a) | EDIP 2003, midpoint | √ | √ | - | - |
Thomson et al. (2011b) | EDIP 2003, midpoint | √ | √ | - | - |
Thomson et al. (2019) | ReCiPe and CED, midpoint | √ | √ | - | - |
Dahlsten et al. (2009) | PCR, midpoint | √ | √ | - | - |
Zhai et al. (2018) | ReCiPe, midpoint | √ | √ | - | - |
Elginoz et al. (2017) | CML 2001, midpoint | √ | √ | Yes/Atlantic base scenario | - |
Curto et al. (2018) | Unspecified, midpoint | √ | √ | - | - |
Patrizi et al. (2019) | Unspecified, midpoint | √ | √ | - | - |
Uihlein et al. (2016) | ILCD, midpoint | √ | √ | - | - |
Douziech et al. (2016) | ReCiPe, midpoint | √ | √ | - | - |
Reference | Impact categories | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | OD | EXT | ACD | EUT | HT | HW | RD | POF | SA | RD | LU | PMF | BW | |
[3] | √1 | √1 | √1 | √1 | √1 | √1 | √1 | - | √1 | √1 | √1 | - | - | √1 |
[4] | M | M | - | M | M | - | - | M | M | - | - | - | - | - |
[10] | √1 | √1 | M | √1 | √1 | - | - | M | - | - | - | √1 | √1 | - |
[15] | M | M | O&M | M | O&M | M | M | M | - | M | M | - | - | M |
[16] | M | M | O&M | O&M | O&M | M | M | M | - | M | M | - | - | M |
[17] | M | O&M | M | O&M | O&M | M | - | M | O&M | - | M | M | M | - |
[20] | M | M | EOL | M | EOL | M | - | M | M | - | M | M | M | - |
[21] | M | M | M | M | M | M | - | M | M | - | - | - | - | - |
[22] | √1 | - | √1 | - | - | √1 | - | √1 | - | - | - | - | - | - |
[23] | M | - | - | - | - | - | - | - | - | - | - | - | - | - |
[24] | M | M | M | M | M | M | M | M | M | - | M | - | M | - |
[25] | M | - | EOL | - | - | EOL | - | M | - | - | - | - | M | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, L.; Yuan, Y.; Zhai, Q. Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice. Int. J. Environ. Res. Public Health 2020, 17, 1604. https://doi.org/10.3390/ijerph17051604
Zhang X, Zhang L, Yuan Y, Zhai Q. Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice. International Journal of Environmental Research and Public Health. 2020; 17(5):1604. https://doi.org/10.3390/ijerph17051604
Chicago/Turabian StyleZhang, Xizhuo, Longfei Zhang, Yujun Yuan, and Qiang Zhai. 2020. "Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice" International Journal of Environmental Research and Public Health 17, no. 5: 1604. https://doi.org/10.3390/ijerph17051604
APA StyleZhang, X., Zhang, L., Yuan, Y., & Zhai, Q. (2020). Life Cycle Assessment on Wave and Tidal Energy Systems: A Review of Current Methodological Practice. International Journal of Environmental Research and Public Health, 17(5), 1604. https://doi.org/10.3390/ijerph17051604