The Effects of Active Self-Correction on Postural Control in Girls with Adolescent Idiopathic Scoliosis: The Role of an Additional Mental Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Methods
- COP variability [mm] – standard deviation of COP displacement from mean COP;
- COP mean speed [mm/s] – COP excursion divided by trial time;
- COP fractal dimension – a non-linear dynamic parameter of COP where the greater the fractal dimension, the better the postural system adapts to changes;
- incremented COP sample entropy – computed for the velocity of the COP displacements [13].
2.3. Statistical Analysis
3. Results
3.1. COP Variability [mm]
3.2. COP Mean Speed [mm/s]
3.3. COP Fractal Dimension
3.4. COP Sample Entropy
3.5. Incremented COP Sample Entropy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Monticone, M.; Ambrosini, E.; Cazzaniga, D.; Rocca, B.; Ferrante, S. Active self-correction and task-oriented exercises reduce spinal deformity and improve quality of life in subjects with mild adolescent idiopathic scoliosis. Results of a randomised controlled trial. Eur. Spine J. 2014, 23, 1204–1214. [Google Scholar] [CrossRef]
- Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.; Danielsson, A.; Morcuende, J.A. Adolescent idiopathic scoliosis. Lancet 2008, 371, 1527–1537. [Google Scholar] [CrossRef] [Green Version]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; de Mauroy, J.C.; Lebel, A. 2016 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusco, C.; Zaina, F.; Atanasio, S.; Romano, M.; Negrini, A.; Negrini, S. Physical exercises in the treatment of adolescent idiopathic scoliosis: An updated systematic review. Physiother. Theory Pract. 2011, 27, 80–114. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.R.; Hollaender, M.; Klein, R. ADL based scoliosis rehabilitation--the key to an improvement of time-efficiency? Stud. Health Technol. Inform. 2006, 123, 594–598. [Google Scholar] [PubMed]
- Piątek, E.; Kuczyński, M.; Ostrowska, B. Postural control in girls with adolescent idiopathic scoliosis while wearing a Chêneau brace or performing active self-correction: A pilot study. PeerJ 2019, 7, e7513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, W.W.N.; Chan, V.W.L.; Wong, H.H.; Yip, T.W.C.; Lu, X. The effect of performing a dual-task on postural control and selective attention of older adults when stepping backward. J. Phys. Ther. Sci. 2016, 28, 2806–2811. [Google Scholar] [CrossRef] [PubMed]
- Kerr, B.; Condon, S.M.; McDonald, L.A. Cognitive spatial processing and the regulation of posture. J. Exp. Psychol. Hum. Percept. Perform. 1985, 11, 617. [Google Scholar] [CrossRef]
- Chang, Y.T.; Meng, L.F.; Chang, C.J.; Lai, P.L.; Lung, C.W.; Chern, J.S. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis. Front. Hum. Neurosci. 2017, 11, 326. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The stroop color and word test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Donker, S.F.; Roerdink, M.; Greven, A.J.; Beek, P.J. Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp. Brain Res. 2007, 181, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roerdink, M.; Hlavackova, P.; Vuillerme, N. Center-of-pressure regularity as a marker for attentional investment in postural control: A comparison between sitting and standing postures. Hum. Mov. Sci. 2011, 30, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, C.; Wei, Q.; Shieh, J.S.; Fourcade, P.; Isableu, B.; Majed, L. Sample entropy, univariate, and multivariate multi-scale entropy in comparison with classical postural sway parameters in young healthy adults. Front. Hum. Neurosci. 2017, 11, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczyński, M.; Szymańska, M.; Bieć, E. Dual-task effect on postural control in high-level competitive dancers. J. Sports Sci. 2011, 29, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Huxhold, O.; Li, S.C.; Schmiedek, F.; Lindenberger, U. Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res. Bull. 2006, 69, 294–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruthruff, E.; Van Selst, M.; Johnston, J.C.; Remington, R. How does practice reduce dual-task interference: Integration, automatization, or just stage-shortening? Psychol. Res. 2006, 70, 125–142. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, R.F.; Raab, M.; Hegele, M.; Schorer, J. Task integration facilitates multitasking. Front. Psychol. 2017, 8, 398. [Google Scholar] [CrossRef] [Green Version]
- Richer, N.; Polskaia, N.; Lajoie, Y. Continuous cognitive task promotes greater postural stability than an internal or external focus of attention in older adults. Exp. Aging Res. 2017, 43, 21–33. [Google Scholar] [CrossRef]
- Doherty, C.; Bleakley, C.; Hertel, J.; Caulfield, B.; Ryan, J.; Delahunt, E. Balance failure in single limb stance due to ankle sprain injury: An analysis of center of pressure using the fractal dimension method. Gait Posture 2014, 40, 172–176. [Google Scholar] [CrossRef]
- Cone, B.L.; Goble, D.J.; Rhea, C.K. Relationship between changes in vestibular sensory reweighting and postural control complexity. Exp. Brain Res. 2017, 235, 547–554. [Google Scholar] [CrossRef]
- Casabona, A.; Leonardi, G.; Aimola, E.; La Grua, G.; Polizzi, C.M.; Cioni, M.; Valle, M.S. Specificity of foot configuration during bipedal stance in ballet dancers. Gait Posture 2016, 46, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Assaiante, C.; Mallau, S.; Jouve, J.L.; Bollini, G.; Vaugoyeau, M. Do adolescent idiopathic scoliosis (AIS) neglect proprioceptive information in sensory integration of postural control? PLoS ONE 2012, 7, e40646. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chau, W.W.; Hui-Chan, C.W.; Cheung, C.S.; Tsang, W.W.; Cheng, J.C. Balance control in adolescents with idiopathic scoliosis and disturbed somatosensory function. Spine 2006, 31, E437–E440. [Google Scholar] [CrossRef] [PubMed]
- Leteneur, S.; Cremoux, S.; Allard, P.; Simoneau-Buessinger, É.; Farahpour, N.; Barbier, F. Frequency coherence analysis of postural balance in able-bodied and in non-treated adolescent idiopathic scoliotic girls. Clin. Biomech. 2019, 67, 180–186. [Google Scholar] [CrossRef]
- Simoneau, M.; Mercier, P.; Blouin, J.; Allard, P.; Teasdale, N. Altered sensory-weighting mechanisms is observed in adolescents with idiopathic scoliosis. BMC Neurosci. 2006, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Antoniadou, N.; Hatzitaki, V.; Stavridis, S.Ι.; Samoladas, E. Verticality perception reveals a vestibular deficit in adolescents with idiopathic scoliosis. Exp. Brain Res. 2018, 236, 1725–1734. [Google Scholar] [CrossRef]
- Yu, S.H.; Huang, C.Y. Improving posture-motor dual-task with a supraposture-focus strategy in young and elderly adults. PLoS ONE 2017, 12, e0170687. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chen, Y.A.; Hwang, S.; Wu, R.M. Improving dual-task control with a posture-second strategy in early-stage Parkinson disease. Arch. Phys. Med. Rehabil. 2018, 99, 1540–1546. [Google Scholar] [CrossRef]
Patients with AIS (n = 24) | ||
---|---|---|
Age [years] | 13.4 ± 1.6 | |
Height [cm] | 159.5 ± 10.1 | |
Body mass [kg] | 50.8 ± 7.8 | |
AIS curve pattern | 75% R thoracic/L lumbar | 25% L thoracolumbar |
Primary Cobb angle [degrees] | 24.5 ± 7.5 | |
Risser sign | 2.8 ± 0.8 |
Direction | Variable | QST | ASC | QST+MT | ASC+MT |
---|---|---|---|---|---|
Mediolateral | Variability [mm] | 5.35 ± 2.59 | 4.83 ± 1.71 | 4.28 ± 1.43 | 4.94 ± 1.74 |
Speed [mm/s] | 14.05 ± 3.47 | 14.55 ± 4.00 | 12.24 ± 3.18 | 14.35 ± 4.00 | |
Fractal dimension | 1.43 ± 0.07 | 1.44 ± 0.05 | 1.42 ± 0.05 | 1.42 ± 0.07 | |
Sample entropy | 0.90 ± 0.25 | 0.96 ± 0.20 | 0.98 ± 0.19 | 0.92 ± 0.17 | |
Incremented sample entropy | 1.60 ± 0.16 | 1.63 ± 0.16 | 1.72 ± 0.17 * | 1.63 ± 0.15 | |
Anteroposterior | Variability [mm] | 6.36 ± 2.32 | 6.07 ± 2.78 | 5.48 ± 2.07 | 6.36 ± 2.75 |
Speed [mm/s] | 16.14 ± 3.93 | 17.27 ± 5.07 | 16.27 ± 4.85 | 18.11 ± 5.75 | |
Fractal dimension | 1.39 ± 0.05 | 1.42 ± 0.05 * | 1.42 ± 0.06 * | 1.42 ± 0.05 * | |
Sample entropy | 0.98 ± 0.25 | 1.07 ± 0.25 | 1.11 ±0.23 | 1.05 ± 0.29 | |
Incremented sample entropy | 1.92 ± 0.13 | 1.88 ± 0.13 | 1.93 ± 0.12 | 1.83 ± 0.15 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piątek, E.; Kuczyński, M.; Ostrowska, B. The Effects of Active Self-Correction on Postural Control in Girls with Adolescent Idiopathic Scoliosis: The Role of an Additional Mental Task. Int. J. Environ. Res. Public Health 2020, 17, 1640. https://doi.org/10.3390/ijerph17051640
Piątek E, Kuczyński M, Ostrowska B. The Effects of Active Self-Correction on Postural Control in Girls with Adolescent Idiopathic Scoliosis: The Role of an Additional Mental Task. International Journal of Environmental Research and Public Health. 2020; 17(5):1640. https://doi.org/10.3390/ijerph17051640
Chicago/Turabian StylePiątek, Elżbieta, Michał Kuczyński, and Bożena Ostrowska. 2020. "The Effects of Active Self-Correction on Postural Control in Girls with Adolescent Idiopathic Scoliosis: The Role of an Additional Mental Task" International Journal of Environmental Research and Public Health 17, no. 5: 1640. https://doi.org/10.3390/ijerph17051640
APA StylePiątek, E., Kuczyński, M., & Ostrowska, B. (2020). The Effects of Active Self-Correction on Postural Control in Girls with Adolescent Idiopathic Scoliosis: The Role of an Additional Mental Task. International Journal of Environmental Research and Public Health, 17(5), 1640. https://doi.org/10.3390/ijerph17051640