Prevalence and Risk Factors of Metabolic Associated Fatty Liver Disease in Xinxiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Diehl, A.M.; Day, C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2017, 377, 2063–2072. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Tacke, F.; Arrese, M.; Chander Sharma, B.; Mostafa, I.; Bugianesi, E.; Wai-Sun Wong, V.; Yilmaz, Y.; George, J.; Fan, J.; et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology 2019, 69, 2672–2682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Zou, B.; Yeo, Y.H.; Feng, Y.; Xie, X.; Lee, D.H.; Fujii, H.; Wu, Y.; Kam, L.Y.; Ji, F.; et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2019, 4, 389–398. [Google Scholar] [CrossRef]
- Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.; et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 2018, 69, 896–904. [Google Scholar] [CrossRef]
- National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Expert Committee, Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update. Zhonghua Gan Zang Bing Za Zhi 2018, 26, 195–203. [Google Scholar]
- Eslam, M.; Sanyal, A.J.; George, J. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. Census Data. Available online: http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm (accessed on 2 March 2020).
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef]
- Eslam, M.; George, J. Genetic contributions to NAFLD: Leveraging shared genetics to uncover systems biology. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 40–52. [Google Scholar] [CrossRef]
- Wong, V.W.; Wong, G.L.; Yeung, D.K.; Lau, T.K.; Chan, C.K.; Chim, A.M.; Abrigo, J.M.; Chan, R.S.; Woo, J.; Tse, Y.K.; et al. Incidence of non-alcoholic fatty liver disease in Hong Kong: A population study with paired proton-magnetic resonance spectroscopy. J. Hepatol. 2015, 62, 182–189. [Google Scholar] [CrossRef]
- Serfaty, L.; Lemoine, M. Definition and natural history of metabolic steatosis: Clinical aspects of NAFLD, NASH and cirrhosis. Diabetes Metab. 2008, 34, 634–637. [Google Scholar] [CrossRef]
- Eslam, M.; Valenti, L.; Romeo, S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J. Hepatol. 2018, 68, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Valenti, L.V.C.; Baselli, G.A. Genetics of Nonalcoholic Fatty Liver Disease: A 2018 Update. Curr. Pharm. Des. 2018, 24, 4566–4573. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Liang, S.; Carlton, E.J.; Jiang, Q.; Wu, J.; Wang, L.; Remais, J.V. Urbanisation and health in China. Lancet 2012, 379, 843–852. [Google Scholar] [CrossRef]
- Chen, J.; Yang, H. Geographical Mobility, Income, Life Satisfaction and Family Size Preferences: An Empirical Study on Rural Households in Shaanxi and Henan Provinces in China. Soc. Indic. Res. 2016, 129, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xue, J.; Chen, P.; Chen, L.; Yan, S.; Liu, L. Prevalence of nonalcoholic fatty liver disease in mainland of China: A meta-analysis of published studies. J. Gastroenterol. Hepatol. 2014, 29, 42–51. [Google Scholar] [CrossRef]
- Kwon, Y.M.; Oh, S.W.; Hwang, S.S.; Lee, C.; Kwon, H.; Chung, G.E. Association of nonalcoholic fatty liver disease with components of metabolic syndrome according to body mass index in Korean adults. Am. J. Gastroenterol. 2012, 107, 1852–1858. [Google Scholar] [CrossRef]
- Pang, Q.; Zhang, J.Y.; Song, S.D.; Qu, K.; Xu, X.S.; Liu, S.S.; Liu, C. Central obesity and nonalcoholic fatty liver disease risk after adjusting for body mass index. World J. Gastroenterol. 2015, 21, 1650–1662. [Google Scholar] [CrossRef]
- Orci, L.A.; Gariani, K.; Oldani, G.; Delaune, V.; Morel, P.; Toso, C. Exercise-based Interventions for Nonalcoholic Fatty Liver Disease: A Meta-analysis and Meta-regression. Clin. Gastroenterol. Hepatol. 2016, 14, 1398–1411. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.J.; He, J.; Pan, L.L.; Ma, Z.M.; Han, C.K.; Chen, C.S.; Chen, Z.; Han, H.W.; Chen, S.; Sun, Q.; et al. Effects of Moderate and Vigorous Exercise on Nonalcoholic Fatty Liver Disease: A Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 1074–1082. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Pardee, P.E.; Lavine, J.E.; Blumkin, A.K.; Cook, S. Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease. Circulation 2008, 118, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Sanches, P.L.; de Piano, A.; Campos, R.M.; Carnier, J.; de Mello, M.T.; Elias, N.; Fonseca, F.A.; Masquio, D.C.; da Silva, P.L.; Corgosinho, F.C.; et al. Association of nonalcoholic fatty liver disease with cardiovascular risk factors in obese adolescents: The role of interdisciplinary therapy. J. Clin. Lipidol. 2014, 8, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Cho, Y.K.; Kang, M.S.; Yoo, T.W.; Park, J.H.; Kim, H.J.; Park, D.I.; Sohn, C.I.; Jeon, W.K.; Kim, B.I.; et al. The association between increased alanine aminotransferase activity and metabolic factors in nonalcoholic fatty liver disease. Metabolism 2006, 55, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Maximos, M.; Bril, F.; Portillo Sanchez, P.; Lomonaco, R.; Orsak, B.; Biernacki, D.; Suman, A.; Weber, M.; Cusi, K. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. Hepatology 2015, 61, 153–160. [Google Scholar] [CrossRef]
- Fraser, A.; Longnecker, M.P.; Lawlor, D.A. Prevalence of elevated alanine aminotransferase among US adolescents and associated factors: NHANES 1999–2004. Gastroenterology 2007, 133, 1814–1820. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Chang, Y.; Kim, S.G.; Cho, J.; Guallar, E. Serum uric acid levels predict incident nonalcoholic fatty liver disease in healthy Korean men. Metabolism 2011, 60, 860–866. [Google Scholar] [CrossRef]
- Liu, C.Q.; He, C.M.; Chen, N.; Wang, D.; Shi, X.; Liu, Y.; Zeng, X.; Yan, B.; Liu, S.; Yang, S.; et al. Serum uric acid is independently and linearly associated with risk of nonalcoholic fatty liver disease in obese Chinese adults. Sci. Rep. 2016, 6, 38605. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Xu, C.; Xu, L.; Yu, J.; Miao, M.; Li, Y. Serum proteomic analysis revealed diagnostic value of hemoglobin for nonalcoholic fatty liver disease. J. Hepatol. 2012, 56, 241–247. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Senates, E.; Ayyildiz, T.; Colak, Y.; Tuncer, I.; Ovunc, A.O.; Dolar, E.; Kalayci, C. Characterization of nonalcoholic fatty liver disease unrelated to the metabolic syndrome. Eur. J. Clin. Investig. 2012, 42, 411–418. [Google Scholar] [CrossRef]
- Akyuz, U.; Yesil, A.; Yilmaz, Y. Characterization of lean patients with nonalcoholic fatty liver disease: Potential role of high hemoglobin levels. Scand. J. Gastroenterol. 2015, 50, 341–346. [Google Scholar] [CrossRef]
- Yilmaz, Y. NAFLD in the absence of metabolic syndrome: Different epidemiology, pathogenetic mechanisms, risk factors for disease progression? Semin. Liver Dis. 2012, 32, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, C.F.; Yu, C.H.; Miao, M.; Li, Y.M. Haemoglobin and non-alcoholic fatty liver disease: Further evidence from a population-based study. Gut 2009, 58, 1706–1707. [Google Scholar] [CrossRef] [PubMed]
- Koyama, Y.; Brenner, D.A. Liver inflammation and fibrosis. J. Clin. Investig. 2017, 127, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, C.; Zhang, G.; Yuan, Z.; Liu, Y.; Ding, L.; Sun, X.; Jia, H.; Xue, F. Association between white blood cell count and non-alcoholic fatty liver disease in urban Han Chinese: A prospective cohort study. BMJ Open 2016, 6, e010342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.J.; Lee, H.R.; Shim, J.Y.; Moon, B.S.; Lee, J.H.; Kim, J.K. Relationship between white blood cell count and nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 888–894. [Google Scholar] [CrossRef]
- Yoneda, M.; Fujii, H.; Sumida, Y.; Hyogo, H.; Itoh, Y.; Ono, M.; Eguchi, Y.; Suzuki, Y.; Aoki, N.; Kanemasa, K.; et al. Platelet count for predicting fibrosis in nonalcoholic fatty liver disease. J. Gastroenterol. 2011, 46, 1300–1306. [Google Scholar] [CrossRef]
- Chen, X.L.; Chen, T.W.; Zhang, X.M.; Li, Z.L.; Zeng, N.L.; Zhou, P.; Li, H.; Ren, J.; Xu, G.H.; Hu, J.N. Platelet count combined with right liver volume and spleen volume measured by magnetic resonance imaging for identifying cirrhosis and esophageal varices. World J. Gastroenterol. 2015, 21, 10184–10191. [Google Scholar] [CrossRef]
- Xu, C.; Yu, C.; Ma, H.; Xu, L.; Miao, M.; Li, Y. Prevalence and risk factors for the development of nonalcoholic fatty liver disease in a nonobese Chinese population: The Zhejiang Zhenhai Study. Am. J. Gastroenterol. 2013, 108, 1299–1304. [Google Scholar] [CrossRef]
- Ampuero, J.; Aller, R.; Gallego-Durán, R.; Banales, J.M.; Crespo, J.; García-Monzón, C.; Pareja, M.J.; Vilar-Gómez, E.; Caballería, J.; Escudero-García, D.; et al. The effects of metabolic status on non-alcoholic fatty liver disease-related outcomes, beyond the presence of obesity. Aliment Pharmacol. Ther. 2018, 48, 1260–1270. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Otgonsuren, M.; Venkatesan, C.; Mishra, A. In patients with non-alcoholic fatty liver disease, metabolically abnormal individuals are at a higher risk for mortality while metabolically normal individuals are not. Metabolism 2013, 62, 352–360. [Google Scholar] [CrossRef]
- Yun, Y.; Kim, H.N.; Lee, E.J.; Ryu, S.; Chang, Y.; Shin, H.; Kim, H.L.; Kim, T.H.; Yoo, K.; Kim, H.Y. Fecal and blood microbiota profiles and presence of nonalcoholic fatty liver disease in obese versus lean subjects. PLoS ONE 2019, 14, e0213692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasutake, K.; Nakamuta, M.; Shima, Y.; Ohyama, A.; Masuda, K.; Haruta, N.; Fujino, T.; Aoyagi, Y.; Fukuizumi, K.; Yoshimoto, T.; et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: The significance of dietary cholesterol. Scand. J. Gastroenterol. 2009, 44, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Esmaili, S.; Rogers, G.B.; Bugianesi, E.; Petta, S.; Marchesini, G.; Bayoumi, A.; Metwally, M.; Azardaryany, M.K.; Coulter, S.; et al. Lean NAFLD: A Distinct Entity Shaped by Differential Metabolic Adaptation. Hepatology 2019. [Google Scholar] [CrossRef] [PubMed]
Subgroups | Total Number of Participants | Total Number of Participants with MAFLD | MAFLD Prevalence | χ2 | p Value |
---|---|---|---|---|---|
Overall | 9140 | 2868 | 31.38% | ||
Sex | |||||
Male | 3598 | 1144 | 31.80% | 0.4789 | 0.489 |
Female | 5542 | 1724 | 31.11% | ||
Age at recruitment, years | |||||
20–29 | 540 | 138 | 25.56% | 32.2759 | <0.001 |
30–39 | 955 | 267 | 27.96% | ||
40–49 | 1909 | 601 | 31.48% | ||
50–59 | 2299 | 790 | 34.36% | ||
60–69 | 2523 | 823 | 32.62% | ||
70–79 | 914 | 249 | 27.24% | ||
Body mass index, kg/m2 | |||||
<23.0 | 2288 | 179 | 7.82% | 1.3e+03 | <0.001 |
23.0–24.9 | 1888 | 393 | 20.82% | ||
≥25.0 | 4964 | 2296 | 46.25% |
Behavioral and Clinical Status | MAFLD (n = 2868) | Control (n = 5739) | t/χ2 | p Value |
---|---|---|---|---|
Smoking status | ||||
Never | 2146 (32.84%) | 4388 (67.16%) | 8.9727 | 0.011 |
Former | 183 (36.49%) | 410 (63.51%) | ||
Current | 539 (30.86%) | 938 (69.14%) | ||
Physical activity | ||||
Inactive | 344 (38.48%) | 500 (61.52%) | 73.9346 | <0.001 |
Moderately active | 1841 (35.70%) | 3316 (64.30%) | ||
Active | 683 (26.72%) | 1873 (73.28%) | ||
Hypertension | ||||
Yes | 905 (40.66%) | 1321 (59.34%) | 73.5523 | <0.001 |
No | 1946 (30.70%) | 4393 (69.30%) | ||
Diabetes mellitus | ||||
Yes | 282 (50.36%) | 278 (49.64%) | 78.7159 | <0.001 |
No | 2564 (32.08%) | 5428 (67.92%) | ||
Coronary heart disease | ||||
Yes | 303 (40.03%) | 454 (59.97%) | 17.0507 | <0.001 |
No | 2543 (32.62%) | 5253 (67.38%) | ||
BMI, kg/m2 | 27.79 ± 3.48 | 24.30 ± 3.17 | 46.4583 | <0.001 |
Waist circumference in men, cm | 95.03 ± 8.79 | 85.55 ± 9.02 | 28.5894 | <0.001 |
Waist circumference in women, cm | 92.10 ± 9.78 | 81.79 ± 9.37 | 37.2013 | <0.001 |
Hip circumference, cm | 100.33 ± 6.88 | 95.50 ± 6.34 | 32.3164 | <0.001 |
SBP, mmHg | 134.93 ± 19.48 | 129.40 ± 20.56 | 11.9541 | <0.001 |
DBP, mmHg | 84.11 ± 11.03 | 80.25 ± 11.39 | 14.9791 | <0.001 |
Blood Parameters | MAFLD | Control | t | p Value |
---|---|---|---|---|
WBC, ×109/L | 6.30 ± 1.63 | 5.82 ± 1.57 | 13.0958 | <0.001 |
RBC, ×1012/L | 4.86 ± 0.47 | 4.72 ± 0.46 | 13.1568 | <0.001 |
HGB, g/L | 142.54 ± 15.93 | 138.17 ± 16.72 | 11.5679 | <0.001 |
PLT, ×109/L | 247.11 ± 63.43 | 238.42 ± 63.68 | 5.9598 | <0.001 |
NEUT%, % | 58.26 ± 8.09 | 58.49 ± 8.59 | −1.1907 | 0.234 |
LYMPH%, % | 33.88 ± 7.59 | 33.56 ± 7.99 | 1.8054 | 0.071 |
MONO%, % | 5.43 ± 1.32 | 5.56 ± 1.44 | −4.2614 | <0.001 |
EO%, % | 2.01 ± 1.70 | 1.97 ± 1.93 | 1.0541 | 0.292 |
BASO%, % | 0.42 ± 0.30 | 0.42 ± 0.33 | −0.0335 | 0.973 |
ALT, U/L | 24.90 ± 17.89 | 20.38 ± 20.96 | 9.8647 | <0.001 |
AST, U/L | 23.38 ± 8.55 | 22.97 ± 11.85 | 1.6300 | 0.103 |
ALP, U/L | 87.37 ± 24.71 | 86.01 ± 26.01 | 2.3148 | 0.021 |
TBIL, μmol/L | 16.64 ± 7.33 | 16.35 ± 7.58 | 1.7072 | 0.088 |
Urea, mmol/L | 5.10 ± 1.38 | 5.03 ± 1.45 | 2.3892 | 0.017 |
CR, μmol/L | 62.73 ± 13.60 | 61.71 ± 14.13 | 3.1972 | 0.001 |
TG, mmol/L | 2.10 ± 1.58 | 1.46 ± 1.08 | 22.3593 | <0.001 |
TC, mmol/L | 5.38 ± 1.05 | 5.17 ± 1.03 | 8.9123 | <0.001 |
HDL-C, mmol/L | 1.17 ± 0.27 | 1.33 ± 0.31 | −23.7332 | <0.001 |
LDL-C, mmol/L | 3.09 ± 0.85 | 2.93 ± 0.85 | 8.5616 | <0.001 |
SUA, μmol/L | 314.05 ± 86.62 | 277.21 ± 76.86 | 20.0556 | <0.001 |
FPG, mmol/L | 6.12 ± 1.82 | 5.63 ± 1.42 | 13.5223 | <0.001 |
HBA1c, % | 5.96 ± 1.10 | 5.64 ± 0.89 | 14.6705 | <0.001 |
Variables | Coefficient | Standard Error | Odds Ratio (95%CI) | p Value |
---|---|---|---|---|
Physical Activity | ||||
Moderately active | −0.011 | 0.090 | 0.988 (0.829–1.179) | 0.898 |
Active | −0.446 | 0.097 | 0.640 (0.529–0.775) | <0.001 |
BMI, kg/m2 | 0.175 | 0.014 | 1.192 (1.160–1.224) | <0.001 |
Waist circumference, cm | 0.049 | 0.005 | 1.050 (1.040–1.060) | <0.001 |
HGB, g/L | 0.007 | 0.002 | 1.007 (1.004–1.011) | <0.001 |
PLT, ×109/L | 0.002 | <0.001 | 1.002 (1.002–1.003) | <0.001 |
LYMPH%,% | 0.012 | 0.004 | 1.012 (1.005–1.019) | <0.001 |
TG, μmol/L | 0.138 | 0.025 | 1.148 (1.092–1.207) | <0.001 |
HDL-C, mmol/L | −0.648 | 0.106 | 0.523 (0.425–0.644) | <0.001 |
FPG, mmol/L | 0.104 | 0.017 | 1.110 (1.073–1.148) | <0.001 |
SUA, μmol/L | 0.002 | <0.001 | 1.002 (1.001–1.003) | <0.001 |
Characteristics | Lean MAFLD (n = 179) | Overweight MAFLD (n = 393) | Obese MAFLD (n = 2296) | Non-MAFLD (n = 5739) | F/χ2 | p Value |
---|---|---|---|---|---|---|
Age | 50.39 ± 13.88 * | 53.89 ± 11.91 | 53.92 ± 12.47 | 53.26 ± 13.58 | 4.6998 | 0.003 |
Sex | ||||||
Male | 79 (44.13%) | 158 (40.20%) | 907 (39.50%) | 2012 (35.06%) | 20.7641 | <0.001 |
Female | 100 (55.87%) | 235 (59.80%) | 1389 (60.50%) | 3727 (64.94%) | ||
Smoking status | ||||||
Never | 124 (69.27%) | 296 (75.32%) | 1726 (75.17%) | 4388 (76.5%) | 15.9921 | 0.014 |
Former | 13 (7.26%) | 17 (4.33%) | 153 (6.66%) | 410 (7.15%) | ||
Current | 42 (23.46%) | 80 (20.36%) | 417 (18.16%) | 938 (16.35%) | ||
Physical activity | ||||||
Inactive | 21 (11.73%) | 46 (11.70%) | 277 (12.06%) | 550 (9.58%) | 77.7723 | <0.001 |
Moderately active | 104 (58.1%) | 255 (64.89%) | 1482 (64.55%) | 3316 (57.78%) | ||
Active | 54 (30.17%) | 92 (23.41%) | 537 (23.39%) | 1873 (32.64%) | ||
Hypertension | ||||||
Yes | 32 (17.88%) | 84 (21.54%) | 789 (34.57%) | 1321 (23.12%) | 122.0723 | <0.001 |
No | 147 (82.12%) | 306 (78.46%) | 1493 (65.43%) | 4393 (76.88%) | ||
Diabetes mellitus | ||||||
Yes | 16 (8.99%) | 30 (7.71%) | 236 (10.36%) | 278 (4.87%) | 82.7725 | <0.001 |
No | 162 (91.01%) | 359 (92.29%) | 2043 (89.64%) | 5428 (95.13%) | ||
Coronary heart disease | ||||||
Yes | 8 (4.49%) | 34 (8.74%) | 261 (11.45%) | 454 (7.96%) | 28.9884 | <0.001 |
No | 170 (95.51%) | 355 (91.26%) | 2018 (88.55%) | 5253 (92.04%) | ||
BMI, kg/m2 | 21.68 ± 1.11 * | 24.16 ± 0.55 * | 28.89 ± 2.92 * | 24.30 ± 3.17 | 1396.4295 | <0.001 |
Waist circumference in men, cm | 80.16 ± 5.94 * | 87.20 ± 4.08 | 97.69 ± 7.37 * | 85.55 ± 9.02 | 476.0183 | <0.001 |
Waist circumference in women, cm | 76.18 ± 5.35 * | 83.81 ± 4.98 * | 94.66 ± 8.72 * | 81.79 ± 9.37 | 722.0930 | <0.001 |
Hip circumference, cm | 92.11 ± 6.22 * | 94.94 ± 4.37 | 101.90 ± 6.34 * | 95.50 ± 6.34 | 626.0271 | <0.001 |
SBP, mmHg | 126.61 ± 20.55 | 131.26 ± 18.83 | 136.21 ± 19.27 * | 129.40 ± 20.56 | 65.4556 | <0.001 |
DBP, mmHg | 78.37 ± 10.93 | 81.06 ± 10.42 | 85.08 ± 10.91 * | 80.25 ± 11.39 | 106.5924 | <0.001 |
WBC, ×109/L | 6.00 ± 1.54 | 6.04 ± 1.65 * | 6.36 ± 1.62 * | 5.82 ± 1.57 | 64.0206 | <0.001 |
RBC, ×1012/L | 4.82 ± 0.46 * | 4.82 ± 0.48 * | 4.87 ± 0.47 * | 4.72 ± 0.46 | 59.5651 | <0.001 |
HGB, g/L | 141.06 ± 17.56 | 142.12 ± 16.30 * | 142.73 ± 15.74 * | 138.17 ± 16.72 | 45.2652 | <0.001 |
PLT, ×109/L | 236.16 ± 53.67 | 245.17 ± 61.79 | 248.29 ± 64.34 * | 238.42 ± 63.68 | 13.9895 | <0.001 |
NEUT%, % | 58.36 ± 8.49 | 58.41 ± 8.84 | 58.23 ± 7.93 | 58.49 ± 8.59 | 0.5334 | 0.659 |
LYMPH%, % | 33.52 ± 7.88 | 33.87 ± 8.20 | 33.91 ± 7.47 | 33.56 ± 7.99 | 1.2242 | 0.299 |
MONO%, % | 5.72 ± 1.57 | 5.31 ± 1.24 * | 5.42 ± 1.31 * | 5.56 ± 1.44 | 9.4631 | <0.001 |
EO%, % | 2.00 ± 2.09 | 1.98 ± 1.65 | 2.02 ± 1.67 | 1.97 ± 1.93 | 0.4096 | 0.746 |
BASO%, % | 0.39 ± 0.24 | 0.43 ± 0.29 | 0.42 ± 0.30 | 0.42 ± 0.33 | 0.5844 | 0.625 |
ALT, U/L | 19.29 ± 10.40 | 22.19 ± 12.37 | 25.80 ± 18.99 * | 20.38 ± 20.96 | 41.2049 | <0.001 |
AST, U/L | 21.89 ± 6.13 | 23.02 ± 6.65 | 23.55 ± 8.98 | 22.97 ± 11.85 | 2.3488 | 0.071 |
ALP, U/L | 83.70 ± 23.85 | 88.40 ± 25.42 | 87.48 ± 24.64 | 86.01 ± 26.01 | 3.2391 | 0.021 |
TBIL, μmol/L | 16.82 ± 8.06 | 17.26 ± 7.55 | 16.52 ± 7.23 | 16.35 ± 7.58 | 2.0928 | 0.099 |
Urea, mmol/L | 5.17 ± 1.48 | 5.08 ± 1.41 | 5.10 ± 1.37 | 5.03 ± 1.45 | 2.0733 | 0.102 |
CR, μmol/L | 61.68 ± 13.09 | 61.88 ± 12.90 | 62.96 ± 13.75 * | 61.71 ± 14.13 | 4.4289 | 0.004 |
TG, mmol/L | 1.61 ± 1.41 | 1.98 ± 1.35 * | 2.16 ± 1.62 * | 1.46 ± 1.08 | 179.3021 | <0.001 |
TC, mmol/L | 5.14 ± 0.99 | 5.35 ± 1.04 * | 5.41 ± 1.06 * | 5.17 ± 1.03 | 30.1954 | <0.001 |
HDL-C, mmol/L | 1.32 ± 0.33 | 1.20 ± 0.28 * | 1.15 ± 0.26 * | 1.33 ± 0.31 | 208.2637 | <0.001 |
LDL-C, mmol/L | 2.83 ± 0.82 | 3.00 ± 0.81 | 3.13 ± 0.86 * | 2.93 ± 0.85 | 32.7975 | <0.001 |
SUA, μmol/L | 287.59 ± 102.28 | 290.05 ± 77.64 * | 320.21 ± 85.68 * | 277.21 ± 76.86 | 157.9704 | <0.001 |
FPG, mmol/L | 5.89 ± 2.09 | 5.92 ± 1.75 * | 6.17 ± 1.81 * | 5.63 ± 1.42 | 65.1338 | <0.001 |
HBA1c, % | 5.83 ± 1.10 | 5.85 ± 1.06 * | 5.99 ± 1.10 * | 5.64 ± 0.89 | 75.5209 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Guo, M.; An, Z.; Meng, J.; Jiang, J.; Song, J.; Wu, W. Prevalence and Risk Factors of Metabolic Associated Fatty Liver Disease in Xinxiang, China. Int. J. Environ. Res. Public Health 2020, 17, 1818. https://doi.org/10.3390/ijerph17061818
Li H, Guo M, An Z, Meng J, Jiang J, Song J, Wu W. Prevalence and Risk Factors of Metabolic Associated Fatty Liver Disease in Xinxiang, China. International Journal of Environmental Research and Public Health. 2020; 17(6):1818. https://doi.org/10.3390/ijerph17061818
Chicago/Turabian StyleLi, Hongbin, Meihao Guo, Zhen An, Jun Meng, Jing Jiang, Jie Song, and Weidong Wu. 2020. "Prevalence and Risk Factors of Metabolic Associated Fatty Liver Disease in Xinxiang, China" International Journal of Environmental Research and Public Health 17, no. 6: 1818. https://doi.org/10.3390/ijerph17061818
APA StyleLi, H., Guo, M., An, Z., Meng, J., Jiang, J., Song, J., & Wu, W. (2020). Prevalence and Risk Factors of Metabolic Associated Fatty Liver Disease in Xinxiang, China. International Journal of Environmental Research and Public Health, 17(6), 1818. https://doi.org/10.3390/ijerph17061818