Remediation of 1-Nitropyrene in Soil: A Comparative Study with Pyrene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Experimental Design
2.2.1. Soil Contamination
2.2.2. Physical Remediation by Activated Carbon
2.2.3. Chemical Remediation by Zero-Valent Iron
2.2.4. Biological Remediation by Vegetation
2.3. pPAH and nPAH Analysis
2.3.1. Extraction and Clean-up
2.3.2. Derivatization
2.3.3. Instrumentation
2.4. Data Analysis
2.4.1. 1-Nitropyrene Concentration
2.4.2. Removal Rate
2.4.3. First order Kinetics
3. Results and Discussion
3.1. Analytical Method Validation
3.2. Physical Remediation by Activated Carbon
3.3. Chemical Remediation by Zero-Valent Iron
3.4. Biological Remediation by Scallions
3.5. Comparison of Remediation Technologies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alegbeleye, O.O.; Opeolu, B.O.; Jackson, V.A. Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation. Environ. Manag. 2017, 60, 758–783. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chernyak, S.M.; Batterman, S.A. PAHs (polycyclic aromatic hydrocarbons), nitro-PAHs, and hopane and sterane biomarkers in sediments of southern Lake Michigan, USA. Sci. Total Environ. 2014, 487, 173–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trine, L.S.D.; Davis, E.L.; Roper, C.; Truong, L.; Tanguay, R.L.; Simonich, S.L.M. Formation of PAH derivatives and increased developmental toxicity during steam enhanced extraction remediation of creosote contaminated superfund soil. Environ. Sci. Technol. 2019, 53, 4460–4469. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M.D.; Dumanoglu, Y.; Efstathiou, C.; Kukucka, P.; Matejovicova, J.; Maurer, C.; Pribylova, P.; Prokes, R.; Sofuoglu, A.; Sofuoglu, S.C.; et al. Fast formation of nitro-PAHs in the marine atmosphere constrained in a regional-scale lagrangian field experiment. Environ. Sci. Technol. 2019, 53, 8914–8924. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, L.; Ledoux, F.; Courcot, D.; Mellouki, A.; Gao, Y.; Jiang, P.; Li, Y.; Wang, W. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in rural and suburban areas in Shandong and Henan Provinces during the 2016 Chinese New Year’s holiday. Environ. Pollut. 2019, 250, 782–791. [Google Scholar] [CrossRef]
- Deutsch-Wenzel, R.P.; Brune, H.; Grimmer, G. Experimental studies on the carcinogenicity of five nitrogen containing polycyclic aromatic compounds directly injected into rat lungs. Cancer Lett. 1983, 20, 97–101. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Diesel and Gasoline Engine Exhausts and Some Nitroarenes. In Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1989; Volume 46. [Google Scholar]
- Chatel, A.; Faucet-Marquis, V.; Pfohl-Leszkowicz, A.; Gourlay-France, C.; Vincent-Hubert, F. DNA adduct formation and induction of detoxification mechanisms in Dreissena polymorpha exposed to nitro-PAHs. Mutagenesis 2014, 29, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Jariyasopit, N.; McIntosh, M.; Zimmermann, K.; Arey, J.; Atkinson, R.; Cheong, P.H.; Carter, R.G.; Yu, T.W.; Dashwood, R.H.; Massey Simonich, S.L. Novel nitro-PAH formation from heterogeneous reactions of PAHs with NO2, NO3/N2O5, and OH radicals: Prediction, laboratory studies, and mutagenicity. Environ. Sci. Technol. 2014, 48, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Pieto, P.; Falciglia, G.D.G.; Alfio, C.; Federico, G.A. Vagliasindi, Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation. Chem. Eng. J. 2016, 296, 162–172. [Google Scholar]
- Musa Bandowe, B.A.; Wei, C.; Han, Y.; Cao, J.; Zhan, C.; Wilcke, W. Polycyclic aromatic compounds (PAHs, oxygenated PAHs, nitrated PAHs and azaarenes) in soils from China and their relationship with geographic location, land use and soil carbon fractions. Sci. Total Environ. 2019, 690, 1268–1276. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, Y.; Zhuo, S.; Liu, W.; Zeng, E.Y.; Wang, X.; Xing, B.; Tao, S. Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion. Environ. Int. 2017, 108, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Li, J.; Wu, D.; Wang, X.; Tsang, D.C.; Li, X.; Sun, J.; Zhu, L.; Shen, H.; Tao, S.; et al. Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere 2017, 178, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Bandowe, B.A.; Han, Y.; Cao, J.; Zhan, C.; Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 2015, 134, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Uno, S.; Tanaka, H.; Kokushi, E.; Bacolod, E.T.; Koyama, J. Distributions of nitrated polycyclic aromatic hydrocarbons in the sediment of Osaka Bay, Japan. Mar. Pollut. Bull. 2017, 124, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, D.; Cohen, Y.; Arey, J.; Grosovsky, A.J. Multimedia analysis of PAHs and nitro-PAH daughter products in the Los Angeles Basin. Risk Anal. 2001, 21, 275–294. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Meusel, H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment—A review. Sci. Total Environ. 2017, 581–582, 237–257. [Google Scholar] [CrossRef]
- Shi, W.; Guo, Y.; Ning, G.; Li, C.; Li, Y.; Ren, Y.; Zhao, O.; Yang, Z. Remediation of soil polluted with HMW-PAHs by alfalfa or brome in combination with fungi and starch. J. Hazard. Mater. 2018, 360, 115–121. [Google Scholar] [CrossRef]
- Abdullah, S.R.S.; Al-Baldawi, I.A.; Almansoory, A.F.; Purwanti, I.F.; Al-Sbani, N.H.; Sharuddin, S.S.N. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere 2020, 247, 125932. [Google Scholar] [CrossRef]
- Annamalai, S.; Santhanam, M.; Sundaram, M.; Curras, M.P. Electrokinetic remediation of inorganic and organic pollutants in textile effluent contaminated agricultural soil. Chemosphere 2014, 117, 673–678. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 2017, 168, 944–968. [Google Scholar] [CrossRef]
- Lamichhane, S.; Bal Krishna, K.C.; Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere 2016, 148, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Shu, H.Y.; Hsieh, W.P.; Wang, M.C. Remediation of Soil Contaminated with Pyrene Using Ground Nanoscale Zero-Valent Iron. J. Air Waste Manag. Assoc. 2012, 57, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, K.; Lavine, G.A. Jason Ritter, Polarographic studies of zero valent iron as a reductant for remediation of nitroaromatics in the environment. Microchem. J. 2001, 70, 69–83. [Google Scholar]
- Signes-Pastor, A.J.; Munera-Picazo, S.; Burlo, F.; Cano-Lamadrid, M.; Carbonell-Barrachina, A.A. Phytoremediation assessment of Gomphrena globosa and Zinnia elegans grown in arsenic-contaminated hydroponic conditions as a safe and feasible alternative to be applied in arsenic-contaminated soils of the Bengal Delta. Environ. Monit. Assess. 2015, 187, 387. [Google Scholar] [CrossRef]
- Samanta, S.K.; Singh, O.V.; Jain, R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 2002, 20, 243–248. [Google Scholar] [CrossRef]
- Deng, K.; Chan, W. Development of a QuEChERS-based method for determination of carcinogenic 2-Nitrofluorene and 1-nitropyrene in rice grains and vegetables: A comparative study with benzo[a]pyrene. J. Agric. Food Chem. 2017, 65, 1992–1999. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, W.; Jian, Q.; Song, W.; Zheng, Z.; Wang, D.; Liu, X. Residues and dissipation kinetics of triazole fungicides difenoconazole and propiconazole in wheat and soil in Chinese fields. Food Chem. 2015, 168, 396–403. [Google Scholar] [CrossRef]
- Koltowski, M.; Hilber, I.; Bucheli, T.D.; Oleszczuk, P. Effect of activated carbon and biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially contaminated soils. Environ. Sci. Pollut. Res. Int. 2016, 23, 11058–11068. [Google Scholar] [CrossRef]
- He, Q.; Liang, J.J.; Chen, L.X.; Chen, S.L.; Zheng, H.L.; Liu, H.X.; Zhang, H.J. Removal of the environmental pollutant carbamazepine using molecular imprinted adsorbents: Molecular simulation, adsorption properties, and mechanisms. Water Res. 2020, 168, 115164. [Google Scholar] [CrossRef]
- Arora, P.K.; Sasikala, C.; Ramana Ch, V. Degradation of chlorinated nitroaromatic compounds. Appl. Microbiol. Biotechnol. 2012, 93, 2265–2277. [Google Scholar] [CrossRef]
- Tabak, H.H.; Chambers, C.W.; Kabler, P.W. Microbial metabolism of aromatic compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriol. 1964, 87, 910–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, F.; Cebron, A. Short-term rhizosphere effect on available carbon sources, phenanthrene degradation, and active microbiome in an aged-contaminated industrial soil. Front. Microbiol. 2016, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.F.; Chaparro, J.M.; Reardon, K.F.; Zhang, R.; Shen, Q.; Jorge, M. Vivanco, Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany 2014, 92, 267–275. [Google Scholar] [CrossRef]
- Sun, H.; Wang, M.; Nan, Y.; Han, M.; Lu, H. The kinetics and mechanisms for photodegradation of nitrated polycyclic aromatic hydrocarbons on lettuce leaf surfaces: An in vivo study. J. Agric. Food Chem. 2019, 67, 8452–8458. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Agents Classifed by the IARC Monographs; IARC: Lyon, France, 2020; Volume 1–25. [Google Scholar]
Property | Value a | Methods |
---|---|---|
pH | 8.82 ± 0.04 | NY/T 1121.2–2006 |
Organic carbon(g/kg) | 3.33 ± 0.15 | LY/T 1237–1999 |
Cation exchange capacity cmol(+)/kg | 10.01 ± 0.32 | LY/T 1243–1999 |
Comp. and Conc. | Accuracy | Precision | |||
---|---|---|---|---|---|
Spiked Conc. | Calculated Conc. | Recovery | Intra-Day | Inter-Day | |
(μg/kg) | (μg/kg) | (%) | (% RSD) | (% RSD) | |
0.5 | 0.48 ± 0.04 | 95.9 ± 8.4 | 7.6 | 6.7 | |
1N-pyr | 5 | 5.24 ± 0.48 | 104.7 ± 9.1 | 8.9 | 10.2 |
50 | 43.40 ± 2.04 | 86.8 ± 4.7 | 3.8 | 6.6 | |
1 | 1.08 ± 0.08 | 108.0 ± 7.1 | 5.4 | 10.0 | |
Pyr | 5 | 4.54 ± 0.30 | 90.8 ± 6.5 | 1.7 | 3.7 |
50 | 47.85 ± 4.55 | 95.7 ± 9.5 | 2.2 | 4.3 |
Time (h) | 1N-Pyr | Pyr |
---|---|---|
0 | 100.0 ± 1.2% | 100.0 ± 0.7% |
1 | 55.7 ± 0.3% | 87.0 ± 1.9% |
2 | 26.7 ± 0.2% | 46.4 ± 0.2% |
4 | 12.9 ± 0.1% | 28.2 ± 1.1% |
7 | 11.7 ± 0.1% | 20.3 ± 0.8% |
16 | 11.9 ± 0.0% | 22.0 ± 0.3% |
Time (h) | Activated Carbon | Zero-Valent Iron |
---|---|---|
0 | 100.0 ± 1.2% | 100.0 ± 1.4% |
1 | 55.7 ± 0.3% | 83.6 ± 2.1% |
2 | 26.7 ± 0.2% | 64.5 ± 0.9% |
4 | 12.9 ± 0.1% | 47.8 ± 1.2% |
7 | 11.7 ± 0.1% | 18.7 ± 0.8% |
16 | 11.9 ± 0.0% | 16.9 ± 0.2% |
Parameters | Activated Carbon | |
---|---|---|
1N-pyr | Pyr | |
Regression equation | Ct = 38.34e−0.90t | Ct = 45.38e−0.46t |
Determinant Coefficient (R2) | 0.9880 | 0.9427 |
Rate constant (k) | 0.90 | 0.46 |
Half-life (T1/2, day−1) | 0.8 | 1.5 |
Removal rate (%) | 88.1 | 78.0 |
Zero-valent iron | ||
1N-pyr | Pyr | |
Regression equation | Ct = 42.84e−0.34t | |
Determinant Coefficient (R2) | 0.8578 | |
Rate constant (k) | 0.34 | |
Half-life (T1/2, day−1) | 2.0 | |
Removal rate (%) | 83.0 | |
Scallion | ||
1N-pyr | Pyr | |
Regression equation | Ct = 30.6e−0.03t | Ct = 37.1e−0.06t |
Determinant Coefficient (R2) | 0.9973 | 0.9960 |
Rate constant (k) | 0.03 | 0.06 |
Half-life (T1/2, day−1) | 23.1 | 11.6 |
Removal rate (%) | 55.0 | 77.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Huang, Y.; Zhang, M.; Gao, Y.; Pan, C.; Deng, K.; Fan, B. Remediation of 1-Nitropyrene in Soil: A Comparative Study with Pyrene. Int. J. Environ. Res. Public Health 2020, 17, 1914. https://doi.org/10.3390/ijerph17061914
Li S, Huang Y, Zhang M, Gao Y, Pan C, Deng K, Fan B. Remediation of 1-Nitropyrene in Soil: A Comparative Study with Pyrene. International Journal of Environmental Research and Public Health. 2020; 17(6):1914. https://doi.org/10.3390/ijerph17061914
Chicago/Turabian StyleLi, Shuo, Yatao Huang, Minhui Zhang, Yanchen Gao, Canping Pan, Kailin Deng, and Bei Fan. 2020. "Remediation of 1-Nitropyrene in Soil: A Comparative Study with Pyrene" International Journal of Environmental Research and Public Health 17, no. 6: 1914. https://doi.org/10.3390/ijerph17061914
APA StyleLi, S., Huang, Y., Zhang, M., Gao, Y., Pan, C., Deng, K., & Fan, B. (2020). Remediation of 1-Nitropyrene in Soil: A Comparative Study with Pyrene. International Journal of Environmental Research and Public Health, 17(6), 1914. https://doi.org/10.3390/ijerph17061914