Dynamic Transmission of Staphylococcus Aureus in the Intensive Care Unit
Abstract
:1. Introduction
2. Methods
2.1. Setting
2.2. Environmental Screening
2.3. Patients, Visitors and Staff
2.4. Staphylococcal Genotyping
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dancer, S.J. Importance of the environment in MRSA acquisition: The case for hospital cleaning. Lancet Infect. Dis. 2008, 8, 101–113. [Google Scholar] [CrossRef]
- Adams, C.E.; Smith, J.; Robertson, C.; Watson, V.; Dancer, S.J. Examining the relationship between surface bioburden and frequently touched sites in Intensive Care. J. Hosp. Infect. 2017, 95, 76–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.; Adams, C.E.; King, M.-F.; Robertson, C.; Noakes, C.; Dancer, S.J. Is there a relationship between airborne and surface microbes in the critical care environment? J. Hosp. Infect. 2018, 100, e123–e129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancer, S.J.; Adams, C.E.; Smith, J.; Pichon, B.; Kearns, A.; Morrison, D. Tracking Staphylococcus aureus in ICU using Whole-Genome Sequencing. J. Hosp. Infect. 2019, 103, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Bogusz, A.; Stewart, M.; Hunter, J.; Yip, B.; Reid, D.; Robertson, C. How quickly do hospital surfaces become contaminated after detergent cleaning? Healthc. Infect. 2013, 18, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Pasquarella, C.; Pitzurra, O.; Svino, A. The index of microbial air contamination. J. Hosp. Infect. 2000, 46, 241–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquarella, C.; Vitali, P.; Saccani, E.; Manotti, P.; Boccuni, C.; Ugolotti, M. Microbial air monitoring in operating theatres: Experience at the University Hospital of Parma. J. Hosp. Infect. 2012, 81, 50–57. [Google Scholar] [CrossRef] [PubMed]
- NHS Scotland National Infection Prevention and Control Manual (NIPCM). 2012. Available online: http://www.nipcm.scot.nhs.uk (accessed on 18 March 2020).
- Harmsen, D.; Claus, H.; Witte, W.; Rothganger, J.; Claus, H.; Turnwald, D. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahuerta-Marin, A.; Guelbenzu-Gonzalo, M.; Pichon, B.; Allen, A.; Doumith, M.; Lavery, J.F. First report of lukM-positive livestock-associated methicillin-resistant Staphylococcus aureus CC30 from fattening pigs in Northern Ireland. Vet. Microbiol. 2016, 182, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Coll, F.; Harrison, E.M.; Toleman, M.S.; Reuter, S.; Raven, K.E.; Blane, B. Longitudinal genomic surveillance of MRSA in the UK reveals transmission patterns in hospitals and the community. Sci. Transl. Med. 2017, 9, 413. [Google Scholar] [CrossRef] [Green Version]
- White, L.; Dancer, S.J.; Robertson, C.; MacDonald, J. Are hygiene standards useful in assessing infection risk? Am. J. Infect. Control 2008, 36, 381–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluytmans, J.A.; van Belkum, A.; Verbrugh, H. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 1997, 10, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.M.; Ludden, C.; Brodrick, H.J.; Blane, B.; Brennan, G.; Morris, D. Transmission of methicillin-resistant Staphylococcus aureus in long-term care facilities and their related healthcare networks. Genome Med. 2016, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dancer, S.J.; Kramer, A. Four steps to clean hospitals: Look; Plan; Clean; and Dry. J. Hosp. Infect. 2019, 103, e1–e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birnbach, D.J.; Rosen, L.F.; Fitzpatrick, M.; Arheart, K.L.; Munoz-Price, L.S. An evaluation of hand hygiene in an intensive care unit: Are visitors a potential vector for pathogens? J. Infect. Public Health 2015, 8, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Site | No Growth | Scanty Growth < 2.5 cfu/cm2 | Light Growth > 2.5–12 cfu/cm2 | Moderate Growth > 12–40 cfu/cm2 | Heavy Growth > 40 cfu/cm2 | No. of Hygiene Fails (>2.5 cfu/cm2) |
---|---|---|---|---|---|---|
Infusion Pump | 16 | 47 MSSA | 22 | 13 MSSA | 2 | 37/100: 37% |
Cardiac Monitor | 45 | 28 | 16 MSSA | 9 | 2 | 27/100: 27% |
Right Bedrail | 6 | 38 | 17 | 27 | 12 MSSA | 56/100: 56% |
Over-bed Table | 13 | 35 | 33 MSSA | 16 MSSA | 3 | 52/100: 52% |
Left Bedrail | 6 | 31 | 26 | 25 MSSA × 2 | 12 MSSA & MRSA | 63/100: 63% |
Passive Air Sampling n = 40 | No Growth | Scanty Growth 0–2 cfu/plate | Light Growth > 2–10 cfu/plate | Moderate Growth > 10–40 cfu/plate | Heavy Growth > 40 cfu/plate | No. of Hygiene Fails > 2 cfu/plate/h |
Air settle cfu/plate/h | 1 | 19 MSSA | 18 | 2 | 0 | 20/40 = 50% |
Active Air Sampling n = 40 | No Growth | Scanty Growth 0–2 cfu/m3 | L. Growth > 2–10 cfu/m3 | Mod. Growth > 10–40 cfu/m3 | Heavy Growth > 40 cfu/m3 | No. of Hygiene Fails > 10 cfu/m3 |
Air sampler cfu/m3 | 1 | 6 | 18 MSSA × 2 | 15 MSSA | 0 | 15/40 = 37.5% |
WGS Category | Transmission Pathway | Lineage (MLST-CC) | Patients and Sites Involved | Days between Clusters | No. SNP Differences |
---|---|---|---|---|---|
Highly likely [10] | 1. Autogenous | 8 | Nose & Resp | 2 | <5 |
2. Pt ↔ fomite (touch site) | 5 | Pt. 2 Resp, bed 3 → IVP, bed 3 | 3 | <5 | |
3. Pt ↔ fomite (touch site) | 5 | Pt. 2 Resp, bed 3 ↔ R/Rail, bed 3 | 3 | <5 | |
4. Autogenous | 15 | Nose & Resp | 5 | <5 | |
5. Autogenous | 15 | Nose ↔ CLT | 5 | <25 | |
6. Autogenous | 22 (MRSA) | Pt. 4 Per & Pt. 4 DRF | 2 | <5 | |
7. Autogenous | 22 (MRSA) | Nose & Resp | 2 | 0 | |
8. Autogenous | 22 | Nose & Resp | 1 | <5 | |
9. Pt ↔ fomite (touch site) | 22 (MRSA) | L/Rail ↔ Pt. 4 Per & Pt. 4 DRF | 1 | <5 | |
10. Autogenous | 30 | Resp & Nose | 4 | <5 | |
11. Autogenous | 30 | Nose & Resp | 2 | <5 | |
12. Autogenous | 30 | Pt. 7 Nose & Pt. 7 Per/Wound | 5 | <5 | |
13. Autogenous | 30 | Nose & Wound | 1 | <5 | |
14. Autogenous | 45 | Nose ↔ Resp | 1 | <25 | |
15. Autogenous | 45 | Nose ↔ Resp | 2 | <5 | |
16. Autogenous | 45 | Resp ↔ Nose | 2 | <25 | |
17. Autogenous | 45 | Pt. 3 Per ↔ Pt. 3 Wound | 3 | <5 | |
18. Air ↔ fomite | 45 | Air, beds 5–7 ↔ L/Rail, bed 7 | 0 | <5 | |
19. Fomite ↔ fomite | 45 | Table ↔ CM | 0 | 0 | |
20. Autogenous | 7 | Pt. 6 nose ↔ Pt. 6 CLT | 8 | <10 | |
21. Autogenous | 34 | Nose ↔ Resp ↔ Thr | 2 | <25 | |
22. Autogenous | 59 | Nose ↔ Resp | 5 | <25 | |
23. Autogenous | 59 | Nose ↔ Resp | 0 | <25 | |
24. Autogenous | 188 | Resp ↔ Nose | 0 | <10 | |
25. Autogenous | 121 | Abscess ↔ Nose | 2 | <10 | |
26.Staff hand ↔ air | 25 | Hand ↔ Air, beds 5–7 | 43 | <5 | |
27. Staff hand ↔ air | 25 | Hand ↔ Air, beds 8–10 | 43 | <5 | |
Possible | 28. Pt ↔ Pt Cross-infection | 59 | Wound ↔ Nose & Resp | 2 | <25 |
29. Pt ↔ Pt Cross-infection | 1 | Nose ↔ Nose | 4 | <25 | |
Uncertain [14] | 30. Pt ↔ fomite (touch site) | 5 | Resp, bed 2 ↔ L/Rail, bed 2 | 4 | <50 |
31. Staff hand ↔ air | 5 | Hand ↔ Settle plate | 50 | <25 | |
32. Pt ↔ Pt Cross-infection | 22 (MRSA) | Per ↔ Nose | 161 | <25 | |
33. Pt ↔ Pt Cross-infection | 22 (MRSA) | Nose ↔ Nose | 3 | <25 | |
34. Fomite ↔ fomite | 30 | L/Rail, bed 4 ↔ Table, bed 7 | 0 | <25 | |
Presumed (Phenotypic and epidemiologic relationships only) | 1. Autogenous * | 30 | Pt. 5 Nose → Pt. 5 Resp Matching antibiograms | 1 | N/A |
2. Autogenous * | 45 | Pt. 8 Nose→ Pt. 8 Wound Matching antibiograms | 4 | N/A | |
3. Autogenous * | 1 | Nose → Wound Matching antibiograms | 0 | N/A | |
4. Pt ↔ Pt Cross-infection *# | 7 | Pt. 6 Nose/CLT → Pt. 9 Resp | 48 | N/A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, C.E.; Dancer, S.J. Dynamic Transmission of Staphylococcus Aureus in the Intensive Care Unit. Int. J. Environ. Res. Public Health 2020, 17, 2109. https://doi.org/10.3390/ijerph17062109
Adams CE, Dancer SJ. Dynamic Transmission of Staphylococcus Aureus in the Intensive Care Unit. International Journal of Environmental Research and Public Health. 2020; 17(6):2109. https://doi.org/10.3390/ijerph17062109
Chicago/Turabian StyleAdams, Claire E., and Stephanie J. Dancer. 2020. "Dynamic Transmission of Staphylococcus Aureus in the Intensive Care Unit" International Journal of Environmental Research and Public Health 17, no. 6: 2109. https://doi.org/10.3390/ijerph17062109
APA StyleAdams, C. E., & Dancer, S. J. (2020). Dynamic Transmission of Staphylococcus Aureus in the Intensive Care Unit. International Journal of Environmental Research and Public Health, 17(6), 2109. https://doi.org/10.3390/ijerph17062109