Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Department of Health and Human Services. E-Cigarette Use among Youth and Young Adults: A Report of the Surgeon General. 2016. Available online: https://www.cdc.gov/tobacco/data_statistics/sgr/e-cigarettes/pdfs/2016_sgr_entire_report_508.pdf (accessed on 23 January 2020).
- Cullen, K.A.; Ambrose, K.; Gentzke, A.S.; Apelberg, B.J.; Jamal, A.; King, B.A. Notes from the Field: Increase in use of electronic cigarettes and any tobacco product among middle and high school students—United States, 2011–2018. MMWR Morbid. Mortal. Wkly. Rep. 2018, 67, 1276–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Chen, W.; Liao, J.; Matsuo, T.; Ito, K.; Fowles, J.; Shusterman, D.; Mendell, M.; Kumagai, K. A device-independent evaluation of carbonyl emissions from heated electronic cigarette solvents. PLoS ONE 2017, 12, e0169811. [Google Scholar] [CrossRef] [PubMed]
- Higham, A.; Rattray, N.; Dewhurst, J.; Trivedi, D.; Fowler, S.; Goodacre, R.; Singh, D. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir. Res. 2016, 17, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheffler, S.; Dieken, H.; Krischenowski, O.; Aufderheide, M. Cytotoxic evaluation of e-liquid aerosol using different lung-derived cell models. Int. J. Environ. Res. Pub. Health 2015, 12, 12466–12474. [Google Scholar] [CrossRef]
- Gerloff, J.; Sundar, I.; Freter, R.; Sekera, E.; Freidman, A.; Robinson, R.; Pagano, T.; Rahman, I. Inflammatory response and barrier dysfunction by different e-cigarette flavoring chemicals identified by gas chromatography–mass spectrometry in e-liquids and e-vapors on human lung epithelial cells and fibroblasts. Appl. In Vitro Toxicol. 2017, 3, 28–40. [Google Scholar] [CrossRef]
- Lim, H.; Kim, S. Inhalation of e-cigarette cartridge solution aggravates allergen-induced airway inflammation and hyper-responsiveness in mice. Toxicol. Res. 2014, 30, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Morris, A.; Olgun, N.; Attfield, K.; Fowles, J.; Leonard, S. Effects of E-Cigarette Flavoring Chemicals on Human Macrophages and Bronchial Epithelial Cells. In Proceedings of the Society of Toxicology Annual Meeting, Bethesda, MD, USA, 10–14 March 2019. [Google Scholar]
- Behar, R.; Davis, B.; Wang, Y.; Bahl, V.; Lin, S.; Talbot, P. Identification of toxicants in cinnamon-flavored electronic cigarette refill fluids. Toxicol. In Vitro 2014, 28, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Putzhammer, R.; Doppler, C.; Jakschitz, T.; Heinz, K.; Forste, J.; Danzl, K.; Messner, B.; Bernhard, D. Vapours of US and EU market leader electronic cigarette brands and liquids are cytotoxic for human vascular endothelial cells. PLoS ONE 2016, 11, e0157337. [Google Scholar] [CrossRef]
- Cho, J.; Paik, S. Association between electronic cigarette use and asthma among high school students in South Korea. PLoS ONE 2016, 11, e0151022. [Google Scholar] [CrossRef]
- Schweitzer, R.; Wills, T.A.; Tam, E.; Pagano, I.; Choi, K. E-cigarette use and asthma in a multiethnic sample of adolescents. Prev. Med. 2017, 105, 226–231. [Google Scholar] [CrossRef]
- Madison, M.C.; Landers, C.T.; Gu, B.-H. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J. Clin. Investig. 2019, 129, 4290–4304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Centers for Disease Control and Prevention. Outbreak of Lung Injury Associated with the Use of E-Cigarette, or Vaping, Products. Available online: https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html (accessed on 23 January 2020).
- Hess, C.; Olmedo, P.; Navas-Acien, A.; Goessler, W.; Cohen, J.; Rule, A. E-cigarettes as a source of toxic and potentially carcinogenic metals. Environ. Res. 2017, 152, 221–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmedo, P.; Goessler, W.; Tanda, S.; Grau-Perez, M.; Jarmul, S.; Aherrera, A.; Chen, R.; Hilpert, M.; Cohen, J.; Navas-Acien, A. Metal concentrations in e-cigarette liquid and aerosol samples: The contribution of metallic coils. Environ. Health Perspect. 2018, 126, 027010. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and silicate particles including nanoparticles are present in electronic cigarette cartomizer fluid and aerosol. PLoS ONE 2013, 8, e57987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.; Bozhilov, K.; Ghai, S.; Talbot, P. Elements including metals in the atomizer and aerosol of disposable electronic cigarettes and electronic hookahs. PLoS ONE 2017, 12, e0175430. [Google Scholar] [CrossRef]
- Goniewicz, M.; Knysak, J.; Gawron, M.; Kosmider, L.; Sobczak, A.; Kurek, J.; Prokopowicz, A.; Jablonska-Czapla, M.; Rosik-Dulewska, C.; Havel, C. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Kamilari, E.; Farsalinos, K.; Poulas, K.; Kontoyannis, C.; Orkoula, M. Detection and quantitative determination of heavy metals in electronic cigarette refill liquids using Total Reflection X-ray Fluorescence Spectrometry. Food Chem. Toxicol. 2018, 116, 233. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Ruprecht, A.; DeMarco, C.; Pozzi, P.; Boffi, R. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: Comparison of emission rates and secondhand exposure. Environ. Sci. Process. Impacts 2014, 16, 2259–2267. [Google Scholar] [CrossRef]
- Zhao, D.; Navas-Acien, A.; Ilievski, V.; Slavkovich, V.; Olmedo, P.; Adria-Mora, B.; Domingo-Relloso, A.; Aherrera, A.; Kleiman, N.; Rule, A. Metal concentrations in electronic cigarette aerosol: Effect of open-system and closed-system devices and power settings. Environ. Res. 2019, 174, 125–134. [Google Scholar] [CrossRef]
- Mikheev, V.; Brinkman, M.; Granville, C.; Gordon, S.; Clark, P. Real-time measurement of electronic cigarette aerosol size distribution and metals content analysis. Nicotine Tob. Res. 2016, 18, 1895–1902. [Google Scholar] [CrossRef] [Green Version]
- Gaur, S.; Agnihotri, R. Health effects of trace metals in electronic cigarette aerosols—A systematic review. Biol. Trace Elem. Res. 2019, 188, 295–315. [Google Scholar] [CrossRef] [PubMed]
- Elliot, D.; Shah, R.; Hess, C.; Elicker, B.; Henry, T.; Rule, A.; Chen, R.; Golozer, M.; Jones, K. Giant cell interstitial pneumonia secondary to cobalt exposure from e-cigarette use. Eur. Respir. J. 2019, 54, 6. [Google Scholar]
- United States Environmental Protection Agency. Integrated Risk Information System (IRIS). 2019. Available online: https://www.epa.gov/iris (accessed on 6 June 2019).
- Office of Environmental Health Hazard Assessment (OEHHA); California Environmental Protection Agency (CalEPA). Cancer Potency Factors. 2011. Available online: www.oehha.ca.gov (accessed on 21 October 2019).
- OEHHA; CalEPA. OEHHA Acute, 8-hour and Chronic Reference Exposure Level (REL) Summary. 2019. Available online: https://oehha.ca.gov/air/general-info/oehha-acute-8-hour-and-chronic-reference-exposure-level-rel-summary (accessed on 20 February 2020).
- Canadavapes Website. Available online: https://canadavapes.com/ (accessed on 21 October 2019).
- Dautzenberg, B.; Bricard, D. Real-time characterization of e-cigarettes use: The 1 million puffs study. J. Add. Res. Ther. 2015, 6, 4172. [Google Scholar] [CrossRef]
- EPA. Exposure Factors Handbook 2011 Edition (Final); EPA/600/R-09/052F; US Environmental Protection Agency: Washington, DC, USA, 2011. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=20563 (accessed on 14 February 2020).
- EPA. National Ambient Air Quality Standard for Lead. 2016. Available online: https://www.epa.gov/lead-air-pollution/national-ambient-air-quality-standards-naaqs-lead-pb (accessed on 12 December 2019).
- OEHHA. Lead and lead compounds (Maximum Allowed Daily Limit). 2001. Available online: https://oehha.ca.gov/chemicals/lead-and-lead-compounds (accessed on 1 March 2020).
- EPA. National Air Toxics Assessment. 2014. Available online: https://www.epa.gov/national-air-toxics-assessment/nata-frequent-questions#risk2 (accessed on 12 December 2019).
- Farsalinos, K.E.; Rodu, B. Metal emissions from e-cigarettes: A risk assessment analysis of a recently-published study. Inhal. Toxicol. 2018, 30, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Chiba, M.; Masironi, R. Toxic and trace elements in tobacco and tobacco smoke. Bull. World Health Org. 1992, 70, 269–275. [Google Scholar]
- Na, C.; Jo, S.; Kim, K.; Sohn, J.; Son, Y. The transfer characteristics of heavy metals in electronic cigarette e-liquid. Environ. Res. 2019, 174, 152–159. [Google Scholar] [CrossRef]
- Visser, W.; Klerx, W.; Cremers, H.W.; Ramlal, R.; Schwillens, P.; Talhout, R. The Health Risks of Electronic Cigarette Use to Bystanders. Int. J. Environ. Res. Pub. Health 2019, 16, 1525. [Google Scholar] [CrossRef] [Green Version]
- Badea, M.; Luzardo, O.; Gonzales-Antuna, A.; Zumbado, M.; Rogozea, L.; Floroian, L.; Alexandrescu, D.; Moga, M.; Gaman, L.; Radoi, M. Body burden of toxic metals and rare earth elements in non-smokers, cigarette smokers and electronic cigarette users. Environ. Res. 2018, 166, 269–275. [Google Scholar] [CrossRef]
- Aherrera, A.; Olmedo, P.; Grau-Perez, M.; Tanda, S.; Goessler, W.; Jarmul, S.; Chen, R.; Cohen, J.; Rule, A.; Navas-Acien, A. The association of e-cigarette use with exposure to nickel and chromium: A preliminary study of non-invasive biomarkers. Environ. Res. 2017, 159, 313–320. [Google Scholar] [CrossRef]
- Chang, X.; Zhu, A.; Liu, F.; Zhu, L.; Su, L.; Liu, S.; Zhou, H.; Sun, Y.; Han, A. Nickel oxide nanoparticles induced pulmonary fibrosis via TGF-1 activation in rats. Hum. Exp. Toxicol. 2017, 36, 802–812. [Google Scholar] [CrossRef]
- Mo, Y.; Jiang, M.; Zhang, Y.; Wan, R.; Li, J.; Zhong, C. Comparative mouse lung injury by nickel nanoparticles with differential surface modification. J. Nanobiotechnol. 2019, 17, 2. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. E-cigarettes: An Evidence Update. Report for Public Health England. 2015. Available online: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/457102/Ecigarettes_an_evidence_update_A_report_commissioned_by_Public_Health_England_FINAL.pdf (accessed on 6 July 2019).
Study. | Metric | Metals (Range) | Comments |
---|---|---|---|
Aerosol Studies | |||
Williams 2013 [17] | Aerosol: μg/10 puffs | Cr (0.007) | Single brand/design. Cartomizer |
Ni (0.005) | |||
Mn (0.002) | |||
Pb (0.017) | |||
Cu (0.002) | |||
Zn (0.058) | |||
Sn (0.037) | |||
Al (0.394) | |||
Fe (0.52) | |||
Ba (0.012) | |||
Goniewicz 2014 [19] | Aerosol: μg/10 puffs | Ni (0.007–0.019) | 12 e-cigarettes from Poland and the UK |
Cd (0.001–0.015) | |||
Pb (0.002–0.038) | |||
Mikheev 2016 [23] | Aerosol: ng/mg TPM | Cr (1.0–3.0) | Blu brand, 7 flavors |
Ni (0.1–0.2) | |||
Pb nd | |||
Cd nd | |||
Mn nm | |||
Cu (0.6–0.7) | |||
Zn (2.0–3.0) | |||
Sn (0.08–0.09) | |||
Sb (0.1–0.4) | |||
As (0.07–0.09) | |||
Gaur 2019 [24] | Aerosol: μg/10 puffs | Cr (0.007–0.2) | Review of 12 studies |
Ni (0.005–0.007) | |||
Mn (0.002–0.035) | |||
Pb (0.002–0.038) | |||
Cd (0.0004–0.0146) | |||
Cu (0.011–2.2) | |||
Sn (0.036–6.0) | |||
Al (0.266–0.394) | |||
Liquid Studies | |||
Hess 2017 [15] | Liquid: μg/L | Cr (56–726) | Cigalike refill liquids, N = 5 |
Ni (58–15400) | |||
Mn (26–918) | |||
Pb (4.98–1630) | |||
Cd (0.2–12.4) | |||
Olmedo 2018 [16] | Liquid: μg/L | Cr (55.4) | Multiple types of device. N = 56 aerosols and dispensers, N = 49 tanks |
Ni (233) | |||
Mn (31.9) | |||
Pb (40.2) | |||
Cu (148) | |||
Zn (426) | |||
Sn (20.3) | |||
Cd (0.126) | |||
Sb (0.563) | |||
Al (31.2) | |||
Fe (382) | |||
Kamilari 2018 [20] | Liquid: μg/L | Cr (4–32) | Refill liquids, N = 22 |
Ni (2–92) | |||
Pb (1–11) | |||
Cd (4.8–175) | |||
As (nd–4) | |||
Zhao 2019 [22] | Liquid (from aerosol): μg/L | Cr (0.39–15.6) | Range of medians of 2 closed and 2 open devices |
Ni (1.3–2148) | |||
Mn (0.39–64) | |||
Pb (0.9–541) | |||
Cd (0.04–0.16) | |||
Cu (6.0–542) | |||
Sb (0.15–4.6) | |||
Sn (0.35–322) | |||
Zn (683–3114) | |||
Fe (3.4–153) | |||
Al (4.1–17.7) |
Cancer Potency (μg/kg/day)−1 | Unit Risk (μg/m3)−1 | Non-Cancer REL (μg/m3) | Target System | |
---|---|---|---|---|
Cr | 0.51a | 0.15a 0.012b | 0.2a 0.008b (soluble) 0.1b (particulate) | Respiratory system |
Ni (subsulfide) | 0.00091a | 0.00026a 0.00048b | 0.014a | Respiratory, immunologic systems |
Pb | 0.000042a | 0.000015a | 0.5 (μg/d) (MADL)a 0.15 (AAQS)b | CNS, reproductive, development |
As | 0.012a 0.0015b | 0.0033a 0.0043b | 0.015a | Development, cardiovascular, CNS, respiratory |
Cd | 0.015a | 0.0042a 0.0018b | 0.02 a | Kidney |
Mn | NA | NA | 0.09a 0.05b | CNS |
Estimated intakes* (μ g/kg/day) | Cancer Risks | Non-Cancer Hazard Quotients | |||||
---|---|---|---|---|---|---|---|
Range | Low | High | Ave | Low | High | Ave | |
Cr | 1.1 × 10−5 to 6.0 × 10−2 | 5.68 × 10−6 | 3.07 × 10−2** | 3.10 × 10−3 | 1.95 × 10−4 | 1.06 × 10+0 | 1.06 × 10−1 |
Ni | 3.7 × 10−5 to 6.5 × 10−1 | 3.38 × 10−8 | 5.88 × 10−4 | 5.24 × 10−5 | 9.29 × 10−3 | 1.61 × 10+2 | 1.44 × 10+1 |
Pb | 1.4 × 10−5 to 5.0 × 10−2 | 5.71 × 10−10 | 1.96 × 10−6 | 2.87 × 10−7 | 1.90 × 10−3a | 6.54 × 10+0 | 9.58 × 10−1 |
Cd | 3.6 × 10−6 to 3.5 × 10−4 | 5.40 × 10−8 | 5.12 × 10−5 | 1.23 × 10−5 | 6.30 × 10−4 | 5.98 × 10−1 | 1.43 × 10−1 |
As | 0 to 1.1 × 10−4 | - | 1.37 × 10−6 | 6.86 × 10−7 | - | 2.67 × 10−2 | 2.67 × 10−2 |
Mn | 3.1 × 10−5 to 2.6 × 10−2 | NA | NA | NA | 1.21 × 10−3 | 1.02 × 10+0 | 1.84 × 10−1 |
Estimated Intakes* (μg/kg/day) | Cancer Risks | Non-Cancer Hazard Quotients | |||||
---|---|---|---|---|---|---|---|
Range | Low | High | Ave | Low | High | Ave | |
Cr | 1.1 × 10−5 to 6.0 × 10−2 | 4.68 × 10−7 | 2.53 × 10−3** | 2.55 × 10−4 | 3.90 × 10−4 | 2.11 × 10+0 | 2.13 × 10−1 |
Ni | 3.7 × 10−5 to 6.5 × 10−1 | 6.24 × 10−8 | 1.08 × 10−3 | 9.67 × 10−5 | - | - | - |
Pb | 1.4 × 10−5 to 5.0 × 10−2 | 5.71 × 10−10 | 1.96 × 10−6 | 2.87 × 10−7 | 3.17 × 10−4a | 1.09 × 10+0a | 1.61 × 10−1a |
Cd | 3.6 × 10−6 to 3.5 × 10−4 | 2.27 × 10−8 | 2.15 × 10−5 | 5.15 × 10−6 | 7.20 × 10−6 | 6.83 × 10−3 | 1.64 × 10−3 |
As | 0 to 1.1 × 10−4 | - | 1.72 × 10−6 | 8.60 × 10−7 | - | 3.81 × 10−4 | 1.90 × 10−4 |
Mn | 3.1 × 10−5 to 2.6 × 10−2 | NA | NA | NA | 2.18 × 10−3 | 1.84 × 10+0 | 3.32 × 10−1 |
Endpoint | Low | Average | High | Metals |
---|---|---|---|---|
Respiratory | 9.5 × 10−3 | 14.5 | 162 | Cr, Ni |
CNS | 3.0 × 10−2 | 1.2 | 7.6 | Pb, Mn, As |
Reproduction | 2.9 × 10−2 | 9.8 × 10−1 | 6.6 | Pb, As |
Renal | 6.3 × 10−4 | 1.4 × 10−1 | 6.0 × 10−1 | Cd |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fowles, J.; Barreau, T.; Wu, N. Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols. Int. J. Environ. Res. Public Health 2020, 17, 2146. https://doi.org/10.3390/ijerph17062146
Fowles J, Barreau T, Wu N. Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols. International Journal of Environmental Research and Public Health. 2020; 17(6):2146. https://doi.org/10.3390/ijerph17062146
Chicago/Turabian StyleFowles, Jefferson, Tracy Barreau, and Nerissa Wu. 2020. "Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols" International Journal of Environmental Research and Public Health 17, no. 6: 2146. https://doi.org/10.3390/ijerph17062146
APA StyleFowles, J., Barreau, T., & Wu, N. (2020). Cancer and Non-Cancer Risk Concerns from Metals in Electronic Cigarette Liquids and Aerosols. International Journal of Environmental Research and Public Health, 17(6), 2146. https://doi.org/10.3390/ijerph17062146