Neighborhood Walkability and Active Transportation: A Correlation Study in Leisure and Shopping Purposes
Abstract
:1. Introduction
2. Research Background
3. Materials and Methods
3.1. Study Area
3.2. Measures
3.2.1. Individual-level Variables (Level 1)
3.2.2. Neighborhood-level Variables (Level 2)
3.3. Data Analysis
4. Results
4.1. Descriptive Statistics of Variables
4.2. Results of Multilevel Logistic Models: Odds of Active Transportation for Leisure and Shopping Purposes
4.2.1. Odds of Active Transportation for Leisure Purposes
4.2.2. Odds of Active Transportation for Shopping Purposes
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Carr, L.J.; Dunsiger, S.I.; Marcus, B.H. Validation of walk score for estimating access to walkable amenities. Br. J. Sports Med. 2010, 45, 1144–1148. [Google Scholar] [CrossRef] [PubMed]
- Shashank, A.; Schuurman, N. Unpacking walkability indices and their inherent assumptions. Health Place 2019, 55, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Nykiforuk, C.I.J.; McGetrick, J.A.; Crick, K.; Johnson, J.A. Check the Score: Field Validation of Street Smart Walk Score in Alberta, Canada. Prev. Med. Rep. 2016, 4, 532–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, F.; Cambra, P.; Gonçalves, A.B. Measuring walkability for distinct pedestrian groups with a participatory assessment method: A case study in Lisbon. Landsc. Urban Plan. 2017, 157, 282–296. [Google Scholar] [CrossRef]
- Wang, Y.; Chau, C.K.; Ng, W.Y.; Leung, T.M. A review on the effects of physical built environment attributes on enhancing walking and cycling activity levels within residential neighborhoods. Cities 2016, 50, 1–15. [Google Scholar] [CrossRef]
- Powell, K.E.; Paluch, A.E.; Blair, S.N. Physical activity for health: What kind? How much? How intense? On top of what? Annu. Rev. Public Health 2011, 32, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Reyer, M.; Fina, S.; Siedentop, S.; Schlicht, W. Walkability is only part of the story: Walking for transportation in Stuttgart, Germany. Int. J. Environ. Res. Public Health 2014, 11, 5849–5865. [Google Scholar] [CrossRef]
- Hakim, A.A.; Petrovitch, H.; Burchfiel, C.M.; Ross, G.W.; Rodriguez, B.L.; White, L.R.; Yano, K.; Curb, J.D.; Abbott, R.D. Effects of walking on mortality among nonsmoking retired men. N. Engl. J. Med. 1998, 338, 94–99. [Google Scholar] [CrossRef]
- Manson, J.E.; Hu, F.B.; Rich-Edwards, J.W.; Colditz, G.A.; Stampfer, M.J.; Willett, W.C.; Speizer, F.E.; Hennekens, C.H. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N. Engl. J. Med. 1999, 341, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Brownson, R.C.; Housemann, R.A.; Brown, D.R.; Jackson-Thompson, J.; King, A.C.; Malone, B.R.; Sallis, J.F. Promoting physical activity in rural communities. Am. J. Prev. Med. 2000, 18, 235–241. [Google Scholar] [CrossRef]
- Ohmatsu, S.; Nakano, H.; Tominaga, T.; Terakawa, Y.; Murata, T.; Morioka, S. Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion. Behav. Brain Res. 2014, 270, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Kario, K.; Schwartz, J.E.; Davidson, K.W.; Pickering, T.G. Gender differences in associations of diurnal blood pressure variation, awake physical activity, and sleep quality with negative affect. Hypertension 2001, 38, 997–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vancampfort, D.; Probst, M.; Adriaens, A.; Pieters, G.; De Hert, M.; Stubbs, B.; Soundy, A.; Vanderlinden, J. Changes in physical activity, physical fitness, self-perception and quality of life following a 6-month physical activity counseling and cognitive behavioral therapy program in outpatients with binge eating disorder. Psychiatry Res. 2014, 219, 361–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, A.L.; Trivedi, M.H.; O’Neal, H.A. Physical activity dose-response effects on outcomes of depression and anxiety. Med. Sci. Sports Exerc. 2001, 33, S587–S597. [Google Scholar] [CrossRef]
- Sallis, J.F.; Frank, L.D.; Saelens, B.E.; Kraft, M.K. Active transportation and physical activity: Opportunities for collaboration on transportation and public health research. Transp. Res. Part A Policy Pract. 2004, 38, 249–268. [Google Scholar] [CrossRef]
- Schmid, T.L.; Pratt, M.; Howze, E. Policy as intervention: Environmental and policy approaches to the prevention of cardiovascular disease. Am. J. Public Health 1995, 85, 1207–1211. [Google Scholar] [CrossRef] [Green Version]
- King, A.C.; Jeffery, R.W.; Fridinger, F.; Dusenbury, L.; Provence, S.; Hedlund, S.A.; Spangler, K. Environmental and policy approaches to cardiovascular disease prevention through physical activity: Issues and opportunities. Health Educ. Q. 2016, 22, 499–511. [Google Scholar] [CrossRef]
- Sallis, J.; Bauman, A.; Pratt, M. Environmental and policy interventions to promote physical activity. Am. J. Prev. Med. 1998, 15, 379–397. [Google Scholar] [CrossRef]
- Frank, L.D.; Schmid, T.L.; Sallis, J.F.; Chapman, J.; Saelens, B.E. Linking objectively measured physical activity with objectively measured urban form. Am. J. Prev. Med. 2005, 28, 117–125. [Google Scholar] [CrossRef]
- Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Conway, T.L.; Hess, P.M. The development of a walkability index: Application to the neighborhood quality of life study. Br. J. Sports Med. 2009, 44, 924–933. [Google Scholar] [CrossRef]
- Lefebvre-Ropars, G.; Morency, C.; Singleton, P.A.; Clifton, K.J. Spatial transferability assessment of a composite walkability index: The pedestrian index of the environment (pie). Transp. Res. Part D Transp. Environ. 2017, 57, 378–391. [Google Scholar] [CrossRef] [Green Version]
- Porta, S.; Renne, J.L. Linking urban design to sustainability: Formal indicators of social urban sustainability field research in Perth, Western Australia. Urban Des. Int. 2005, 10, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Kuzmyak, J.R.; Baber, C.; Savory, D. Use of walk opportunities index to quantify local accessibility. Transp. Res. Rec. J. Transp. Res. Board 2006, 1977, 145–153. [Google Scholar] [CrossRef]
- Buck, C.; Pohlabeln, H.; Huybrechts, I.; De Bourdeaudhuij, I.; Pitsiladis, Y.; Reisch, L.; Pigeot, I. Development and application of a moveability index to quantify possibilities for physical activity in the built environment of children. Health Place 2011, 17, 1191–1201. [Google Scholar] [CrossRef]
- Walk Score Methodology. Available online: http://pubs.cedeus.cl/omeka/files/original/b6fa690993d59007784a7a26804d42be.pdf (accessed on 15 December 2017).
- Hirsch, J.A.; Moore, K.A.; Evenson, K.R.; Rodriguez, D.A.; Roux, A.V.D. Walk score® and transit score® and walking in the multi-ethnic study of atherosclerosis. Am. J. Prev. Med. 2013, 45, 158–166. [Google Scholar] [CrossRef] [Green Version]
- de Sa, E.; Ardern, C.I. Neighbourhood walkability, leisure-time and transport-related physical activity in a mixed urban–rural area. PeerJ 2014, 2, e440. [Google Scholar] [CrossRef] [Green Version]
- Van Dyck, D.; Cerin, E.; Conway, T.L.; De Bourdeaudhuij, I.; Owen, N.; Kerr, J.; Cardon, G.; Frank, L.D.; Saelens, B.E.; Sallis, J.F. Perceived neighborhood environmental attributes associated with adults’ leisure-time physical activity: Findings from Belgium, Australia and the USA. Health Place 2013, 19, 59–68. [Google Scholar] [CrossRef]
- Thielman, J.; Rosella, L.; Copes, R.; Lebenbaum, M.; Manson, H. Neighborhood walkability: Differential associations with self-reported transport walking and leisure-time physical activity in canadian towns and cities of all sizes. Prev. Med. 2015, 77, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Manaugh, K.; El-Geneidy, A. Validating walkability indices: How do different households respond to the walkability of their neighborhood? Transp. Res. Part D Transp. Environ. 2011, 16, 309–315. [Google Scholar] [CrossRef]
- Habibian, M.; Hosseinzadeh, A. Walkability index across trip purposes. Sustain. Cities Soc. 2018, 42, 216–225. [Google Scholar] [CrossRef]
- Knuiman, M.W.; Christian, H.E.; Divitini, M.L.; Foster, S.A.; Bull, F.C.; Badland, H.M.; Giles-Corti, B. A longitudinal analysis of the influence of the neighborhood built environment on walking for transportation: The reside study. Am. J. Epidemiol. 2014, 180, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Lin, C.-Y.; Lai, T.-F.; Chen, Y.-J.; Kim, B.; Park, J.-H. Walk score® and its associations with older adults’ health behaviors and outcomes. Int. J. Environ. Res. Public Health 2019, 16, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazumdar, S.; Learnihan, V.; Cochrane, T.; Phung, H.; O’Connor, B.; Davey, R. Is walk score associated with hospital admissions from chronic diseases? Evidence from a cross-sectional study in a high socioeconomic status Australian city-state. BMJ Open 2016, 6, e012548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauterkus, S.Y.; Miller, N. Residential land values and walkability. J. Sustain. Real Estate 2011, 3, 23–43. [Google Scholar] [CrossRef]
- Washington, E.; Dourado, E. The premium for walkable development under land use regulations. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Pivo, G. Walk score: The significance of 8 and 80 for mortgage default risk in multifamily properties. J. Sustain. Real Estate 2014, 6, 187–210. [Google Scholar] [CrossRef]
- Winters, M.; Barnes, R.; Venners, S.; Ste-Marie, N.; McKay, H.; Sims-Gould, J.; Ashe, M.C. Older adults’ outdoor walking and the built environment: Does income matter? BMC Public Health 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Towne, S.D.; Won, J.; Lee, S.; Ory, M.G.; Forjuoh, S.N.; Wang, S.; Lee, C. Using walk score™ and neighborhood perceptions to assess walking among middle-aged and older adults. J. Community Health 2016, 41, 977–988. [Google Scholar] [CrossRef]
- Wasfi, R.A.; Dasgupta, K.; Eluru, N.; Ross, N.A. Exposure to walkable neighbourhoods in urban areas increases utilitarian walking: Longitudinal study of Canadians. J. Transp. Health 2016, 3, 440–447. [Google Scholar] [CrossRef]
- Méline, J.; Chaix, B.; Pannier, B.; Ogedegbe, G.; Trasande, L.; Athens, J.; Duncan, D.T. Neighborhood walk score and selected cardiometabolic factors in the French record cohort study. BMC Public Health 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Wasfi, R.A.; Dasgupta, K.; Orpana, H.; Ross, N.A. Neighborhood walkability and body mass index trajectories: Longitudinal study of canadians. Am. J. Public Health 2016, 106, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, F. Built environment and obesity by urbanicity in the U.S. Health Place 2015, 34, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, G.; Blackstaffe, A.; Nettel-Aguirre, A.; Csizmadi, I.; Sandalack, B.; Uribe, F.; Rayes, A.; Friedenreich, C.; Potestio, M. The independent associations between walk score® and neighborhood socioeconomic status, waist circumference, waist-to-hip ratio and body mass index among urban adults. Int. J. Environ. Res. Public Health 2018, 15, 1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Kim, Y.; Shin, H.-R.; Lee, B.; Shin, A.; Jung, K.-W.; Jee, S.H.; Kim, D.H.; Yun, Y.H.; Park, S.K.; et al. Population-attributable causes of cancer in Korea: Obesity and physical inactivity. PLoS ONE 2014, 9, e90871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Glance at Local Health Statistics. Available online: https://chs.cdc.go.kr/chs/stats/statsMain.do (accessed on 20 March 2018).
- Kim, E.J. Development and application of healthy city indicators and index: Case of Seoul metropolitan area. Korea Spat. Plan. Rev. 2012, 72, 161–180. [Google Scholar] [CrossRef]
- Kim, E.J.; Kang, M. Effects of built environmental factors on obesity and self-reported health status in Seoul metropolitan area using spatial regression model. Korea Spat. Plan. Rev. 2011, 68, 85–98. [Google Scholar] [CrossRef]
- Kim, T.; Kim, E. Healthy-friendly environmental correlates of population health. Korea Spat. Plan. Rev. 2014, 81, 185–200. [Google Scholar]
- Kim, T.H.; Kim, E.J.; Jun, H.S. Directions of establishing a guideline for healthy cities. J. Korea Plan. Assoc. 2014, 49, 127. [Google Scholar] [CrossRef]
- Walkable City, Seoul. Available online: http://english.seoul.go.kr/policy-information/urban-planning/walkable-city-seoul/you-walk-more-seoul-becomes-happier/ (accessed on 3 December 2019).
- Kim, E.J.; Kim, J.; Kim, H. Does environmental walkability matter? The role of walkable environment in active commuting. Int. J. Environ. Res. Public Health 2020, 17, 1261. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Diez-Roux, A.V. Walking distance by trip purpose and population subgroups. Am. J. Prev. Med. 2012, 43, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Korea Transport Database. Available online: https://www.ktdb.go.kr/www/selectPbldataChargerWebList.do?key=12 (accessed on 15 May 2019).
- Maas, C.J.; Hox, J.J. Robustness issues in multilevel regression analysis. Stat. Neerl. 2004, 58, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Maas, C.J.; Hox, J.J. Sufficient sample sizes for multilevel modeling. Methodology 2005, 1, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Łaszkiewicz, E. Sample size and structure for multilevel modelling: Monte carlo investigation for the balanced design. Metod. Ilościowe W Bad. Ekon. 2013, 14, 19–28. [Google Scholar]
- Kreft, I. Are Multilevel Techniques Necessary? An Overview, Including Simulation Studies; California State University: Los Angeles, CA, USA, 1996. [Google Scholar]
- Hox, J. Multilevel modeling: When and why. In Classification, Data Analysis, and Data Highways; Springer: Berlin/Heidelberg, Germany, 1998; pp. 147–154. [Google Scholar]
- 2016 Passenger Travel Surveys. Available online: https://www.ktdb.go.kr/common/pdf/web/viewer.html?file=/DATA/pblcte/20170529040735516.pdf (accessed on 15 March 2019).
- Kim, E.J.; Won, J.; Kim, J. Is seoul walkable? Assessing a walkability score and examining its relationship with pedestrian satisfaction in Seoul, Korea. Sustainability 2019, 11, 6915. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Kim, Y.-J. A reliability check of walkability indices in Seoul, Korea. Sustainability 2019, 12, 176. [Google Scholar] [CrossRef] [Green Version]
- Boisjoly, G.; Wasfi, R.; El-Geneidy, A. How much is enough? Assessing the influence of neighborhood walkability on undertaking 10-minutes walks. J. Transp. Land Use 2018, 11. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, D.A.; Evenson, K.R.; Diez Roux, A.V.; Brines, S.J. Land use, residential density, and walking. Am. J. Prev. Med. 2009, 37, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Duncan, M.J.; Winkler, E.; Sugiyama, T.; Cerin, E.; duToit, L.; Leslie, E.; Owen, N. Relationships of land use mix with walking for transport: Do land uses and geographical scale matter? J. Urban Health 2010, 87, 782–795. [Google Scholar] [CrossRef] [Green Version]
- McCormack, G.R.; Shiell, A.; Giles-Corti, B.; Begg, S.; Veerman, J.; Geelhoed, E.; Amarasinghe, A.; Emery, J.C. The association between sidewalk length and walking for different purposes in established neighborhoods. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- National Spatial Data Infrastructure Portal. Available online: http://data.nsdi.go.kr/dataset (accessed on 15 March 2018).
- Szumilas, M. Explaining odds ratios. J. Can. Acad. Child Adolesc. Psychiatry 2010, 19, 227–229. [Google Scholar]
- Sommet, N.; Morselli, D. Keep calm and learn multilevel logistic modeling: A simplified three-step procedure using stata, r, mplus, and spss. Int. Rev. Soc. Psychol. 2017, 30, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Heck, R.H.; Tomas, S.L. An Introduction to Multilevel Modeling Techniques: Mlm and Sem Approaches Using Mplus, 3rd ed.; Routledge/Taylor & Francis Group: New York, NY, USA, 2015. [Google Scholar]
- Hox, J.J.; Moerbeek, M.; Van de Schoot, R. Multilevel Analysis: Techniques and Applications; Routledge: New York, NY, USA, 2010. [Google Scholar]
- Hughes, L.C.; Anderson, R.A. Issues regarding aggregation of data in nursing systems research. J. Nurs. Meas. 1994, 2, 79–101. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. A primer on multilevel modeling. Hum. Commun. Res. 2006, 32, 385–410. [Google Scholar] [CrossRef]
- Brown, B.B.; Yamada, I.; Smith, K.R.; Zick, C.D.; Kowaleski-Jones, L.; Fan, J.X. Mixed land use and walkability: Variations in land use measures and relationships with bmi, overweight, and obesity. Health Place 2009, 15, 1130–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerin, E.; Lee, K.-Y.; Barnett, A.; Sit, C.H.P.; Cheung, M.-C.; Chan, W.-M.; Johnston, J.M. Walking for transportation in Hong Kong Chinese urban elders: A cross-sectional study on what destinations matter and when. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- KOSIS. Available online: http://kosis.kr/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ZTITLE&parmTabId=M_01_01#SelectStatsBoxDiv (accessed on 27 May 2019).
Variable | Measurement | Data Source |
---|---|---|
Dependent Variable | ||
Travel mode | Binary: 0 = Motorized mode, 1 = Nonmotorized mode | Household Travel Diary Survey from the Korea Transport Database [54] |
Individual Variables (Level 1) | ||
Age | Continuous: Age | Household Travel Diary Survey from the Korea Transport Database [54] |
Gender | Binary: 0 = male, 1 = female | |
Income | Ordinal: 1 = less than 1 million won, 2 = 1–2 million won, 3 = 2–3 million won, 4 = 3–5 million won, 5 = 5–10 million won, 6 = more than 10 million won | |
Car ownership | Binary: 0 = no, 1 = yes | |
Neighborhood Variables (Level 2) | ||
Walkability Score | Continuous: Walkability Score | Kim et al. [61] |
Land use mix 1 | Continuous: 0 (single use)–1 (perfect mixing) | National Spatial Data Infrastructure Portal [67] |
Sidewalk length | Continuous: Length of sidewalk per square kilometer |
Variable | Measurement | Leisure Purpose | Shopping Purpose | ||
---|---|---|---|---|---|
% | Mean (SD) | % | Mean (SD) | ||
Dependent Variable | |||||
Travel mode | Binary: | ||||
0 = Motorized mode | 18.2% | 23.2% | |||
1 = Nonmotorized mode | 81.8% | 76.8% | |||
Individual Variables (Level 1) | |||||
Age | Continuous: Age | 61.1 (16.7) | 53.5 (15.1) | ||
Gender | Binary: | ||||
0 = male | 38.7% | 9.1% | |||
1 = female | 61.4% | 90.9% | |||
Income | Ordinal: Household income level | 4 1 | 3 2 | ||
Car ownership | Binary: | ||||
0 = no | 45.2% | 36.7% | |||
1 = yes | 54.8% | 63.3% | |||
Neighborhood Variables (Level 2) | |||||
Walkability Score | Continuous: Walkability Score | 67.55(9.0) | 67.71 (9.8) | ||
Land use mix 3 | Continuous: 0 (single use)–1 (perfect mixing) | 0.52(0.3) | 0.53 (0.3) | ||
Sidewalk length 3 | Continuous: Length of sidewalk per square kilometer | 1.99(0.6) | 1.95 (0.6) |
Variable | Odds of Nonmotorized Trip for Leisure Purpose | Odds of Nonmotorized Trip for Shopping Purpose | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model L–1 | Model L–2 | Model S–1 | Model S–2 | |||||||||||||
OR | p-Value | 95% CI | OR | p-Value | 95% CI | OR | p-Value | 95% CI | OR | p-Value | 95% CI | |||||
Lower | Upper | Lower | Upper | Lower | Upper | Lower | Upper | |||||||||
Intercept. | 1.662 | 0.266 | 0.766 | 2.557 | 1.540 | 0.375 | 0.587 | 2.493 | 0.879 | 0.785 | −0.051 | 1.809 | 0.871 | 0.789 | −0.138 | 1.881 |
Individual Variables (Level 1) | ||||||||||||||||
Age | 1.012 *** | <0.001 | 1.008 | 1.017 | 1.013 *** | 0.000 | 1.008 | 1.017 | 1.004 | 0.227 | 0.997 | 1.011 | 1.003 | 0.374 | 0.996 | 1.010 |
Gender (reference: male) | 1.043 | 0.600 | 0.885 | 1.202 | 1.050 | 0.547 | 0.892 | 1.208 | 1.755 *** | <0.001 | 1.473 | 2.036 | 1.735 *** | 0.000 | 1.444 | 2.026 |
Income | 1.044 | 0.248 | 0.971 | 1.117 | 1.043 | 0.263 | 0.969 | 1.116 | 0.996 | 0.925 | 0.904 | 1.087 | 0.983 | 0.731 | 0.886 | 1.080 |
Car Ownership (reference: no) | 0.519 *** | <0.001 | 0.301 | 0.736 | 0.523 *** | 0.000 | 0.306 | 0.739 | 0.646 *** | <0.001 | 0.407 | 0.885 | 0.652 *** | 0.001 | 0.410 | 0.894 |
Neighborhood Variables (Level 2) | ||||||||||||||||
Walkability Score | 1.009 | 0.145 | 0.997 | 1.020 | 1.009 | 0.178 | 0.996 | 1.022 | 1.015 * | 0.013 | 1.003 | 1.026 | 1.018 ** | 0.008 | 1.005 | 1.031 |
Land use mix 1 | 1.082 | 0.699 | 0.681 | 1.483 | 0.944 | 0.789 | 0.518 | 1.369 | ||||||||
Sidewalk length 1 | 1.000 | 1.000 | 0.797 | 1.203 | 0.949 | 0.646 | 0.727 | 1.172 | ||||||||
ICC | 9.3% | 9.2% | 4.5% | 4.7% | ||||||||||||
N | 5742 | 3722 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.J.; Kim, J.; Kim, H. Neighborhood Walkability and Active Transportation: A Correlation Study in Leisure and Shopping Purposes. Int. J. Environ. Res. Public Health 2020, 17, 2178. https://doi.org/10.3390/ijerph17072178
Kim EJ, Kim J, Kim H. Neighborhood Walkability and Active Transportation: A Correlation Study in Leisure and Shopping Purposes. International Journal of Environmental Research and Public Health. 2020; 17(7):2178. https://doi.org/10.3390/ijerph17072178
Chicago/Turabian StyleKim, Eun Jung, Jiyeong Kim, and Hyunjung Kim. 2020. "Neighborhood Walkability and Active Transportation: A Correlation Study in Leisure and Shopping Purposes" International Journal of Environmental Research and Public Health 17, no. 7: 2178. https://doi.org/10.3390/ijerph17072178
APA StyleKim, E. J., Kim, J., & Kim, H. (2020). Neighborhood Walkability and Active Transportation: A Correlation Study in Leisure and Shopping Purposes. International Journal of Environmental Research and Public Health, 17(7), 2178. https://doi.org/10.3390/ijerph17072178