Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health
Abstract
:1. Introduction
2. The Description of Mine Tailings and Tailings Dam
3. The Production of Mine Tailings
4. Characteristics of Mine Tailings
5. Management of Mine Tailings
6. Ecotoxicity
7. Metal Toxicity
8. Potentially Toxic Metals in Soil and Their Implications
9. Potentially Toxic Metals in Water and Their Implications
10. Potentially Toxic Metals in Plants and Their Implications
11. Potentially Toxic Metals in Human Health and Their Implications
12. Potentially Toxic Metals in Aquatic Environment and Their Implications
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bradl, H. (Ed.) Heavy Metals in the Environment: Origin, Interaction and Remediation; Academic Press: London, UK, 2002; p. 6. [Google Scholar]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Arruti, A.; Fernández-Olmo, I.; Irabien, A. Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J. Environ. Monit. 2010, 12, 1451–1458. [Google Scholar] [CrossRef]
- Sträter, E.; Westbeld, A.; Klemm, O. Pollution in coastal fog at Alto Patache, Northern Chile. Environ. Sci. Pollut. Res. Int. 2010, 19, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, R.; Rascher, J. A Strategy for the Management of Acid Mine Drainage from Gold Mines in Gauteng; CSIR: Pretoria, South Africa, 2007. [Google Scholar]
- Okereafor, G.U.; Mulaba-Bafubiandi, A.F.; Mavumengwana, V. Possible heavy metals transportation and ground erosion during heavy rainfall in rural Mangweni (Tzaneen, Limpopo Province, South Africa). South Afr. Inst. Min. Metall. 2017, 515–522. [Google Scholar]
- Ebenebe, P.C.; Shale, K.; Sedibe, M.; Tikilili, P.; Achilonu, M.C. South African Mine Effluents: Heavy Metal Pollution and Impact on the Ecosystem. Int. J. Chem. Sci. 2017, 15, 198. [Google Scholar]
- Sharma, O.P.; Rajesh Jain, K.S.; Sharma, P.K. Heavy metals accumulation in soils irrigated by municipal and industrial effluent. J. Environ. Sci. Eng. 2004, 46, 65–73. [Google Scholar]
- Vousta, D.; Gramanis, A.; Samara, C. Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter. Environ. Poll. 1996, 94, 325–335. [Google Scholar]
- Acosta, J.A.; Arocena, J.M.; Faz, A. Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia. Chemosphere 2015, 138, 1014–1020. [Google Scholar] [CrossRef]
- Akpor, O.B.; Muchie, M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Int. J. Phys. Sci. 2010, 5, 1807–1817. [Google Scholar]
- Choong, T.S.; Chuah, T.G.; Robiah, Y.; Koay, F.G.; Azni, I. Arsenic toxicity health hazards and removal techniques from water: An overview. Desalination 2007, 217, 139–166. [Google Scholar] [CrossRef]
- Department of Minerals and Energy (DME). Mineral and Petroleum Resource Development Bill; Government Gazette: Pretoria, South Africa, 2002. [Google Scholar]
- Ndlovu, S.; Simate, G.S.; Matinde, E. Waste Production and Utilization in the Metal Extraction Industry; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498767293. [Google Scholar]
- Fraser Institute. How Are Waste Materials Managed at Mine Sites? Fraser Institute: Vancouver, BC, Canada, 2012. [Google Scholar]
- International Institute for Environment and Development (IIED). Mining for the Future–Appendix A: Large Volume Waste Working Paper; IIED: London, UK, 2002. [Google Scholar]
- Vick, S.G. Planning, Design, and Analysis of Tailings Dams, 2nd ed.; BiTech Publishers Ltd.: Vancouver, BC, Canada, 1990; p. 369. ISBN 0921095120. [Google Scholar]
- Jakubick, A.T.; McKenna, G.; Robertson, A.M. Stabilisation of tailings deposits: International experience. In Proceedings of the Mining and the Environment III, Sudbury, ON, Canada, 25–28 May 2003. [Google Scholar]
- Ritcey, G.M. Tailings management: Problems and Solutions in the Mining Industry; Elsevier: New York, NY, USA, 1989. [Google Scholar]
- Blight, G.E. Management and operational background to three tailings dam failure in South Africa. In Slope Stability in Surface Mining; Hustrulid, W.A., McCarter, M.K., van Amponsah-Dacosta, D.J.A., Zyl, F., Eds.; Society for Mining, Metallurgy and Exploration, Inc.: Littleton, CO, USA, 2001; pp. 383–390. [Google Scholar]
- Maya, M.; Musekiwa, C.; Mthembi, P.; Crowley, M. Remote sensing and geochemistry techniques for the assessment of coal mining pollution, Emalahleni (Witbank), Mpumalanga. South Afr. J. Geomat. 2015, 4, 174–188. [Google Scholar] [CrossRef] [Green Version]
- European Commission (EC). Draft Reference Document on Best Available Techniques for Management of Tailings and Waste-Rock in Mining Activities; European Commission, Edificio EXPO: Seville, Spain, 2004; p. 563. [Google Scholar]
- Franks, D.M.; Boger, D.V.; Côte, C.M.; Mulligan, D.R. Sustainable development principles for the disposal of mining and mineral processing wastes. Resour. Policy 2011, 36, 114–122. [Google Scholar] [CrossRef]
- Davies, M.P.; Rice, S. An alternative to conventional tailings management “Dry stack” filtered tailings. In Proceedings of the Tailings and Mine Waste’01; Balkema Publishing: Fort Collins, CO, USA, 2001; pp. 411–420. [Google Scholar]
- Vega, F.; Covelo, E.; Andrade, M.; Marcet, P. Relationships between heavy metals content and soil properties in mine soils. Anal. Chim. Acta 2004, 524, 141–150. [Google Scholar] [CrossRef]
- Blight, G.; Fourie, A. Catastrophe revisited-disastrous flow failures of mine and municipal solid waste. Geotech. Geol. Eng. 2005, 23, 219–248. [Google Scholar] [CrossRef]
- Vega, F.A.; Covelo, E.F.; Andrade, M. Competitive sorption and desorption of heavy metals in mine soils: Influence of mine soil characteristics. J. Colloid Interface Sci. 2006, 298, 582–592. [Google Scholar] [CrossRef]
- Rafiei, B.; Bakhtiari Nejad, M.; Hashemi, M.; Khodaei, A. Distribution of heavy metals around the Dashkasan Au mine. Int. J. Environ. Res. 2010, 4, 647–654. [Google Scholar]
- Okereafor, G.; Makhatha, M.; Mekuto, L.; Mavumengwana, V. Evaluation of trace elemental levels as pollution indicators in an abandoned gold mine dump in Ekuhurleni area, South Africa. In Trace Elements in the Environment–New Approaches and Recent Advances; Intechopen: London, UK, 2019; ISBN 978-1-83880-332-2. [Google Scholar]
- Mitileni, C.; Gumbo, J.; Muzerengi, C.; Dacosta, F. The distribution of toxic metals in sediments: Case study of new union gold mine tailings, Limpopo, South Africa. In Mine Water—Managing the Challenges; IMWA: Aachen, Germany, 2011. [Google Scholar]
- Harish, E.; David, M. Assessment of potentially toxic cyanide from the gold and copper mine ore tailings of Karnataka, India. Int. J. Sci. Technol. 2015, 3, 171–178. [Google Scholar]
- SANS. Code of Practice for Mine Residue Deposits; South African Bureau of Standards: Pretoria, South Africa, 1998; p. 129. ISBN 0626117003. [Google Scholar]
- Bruulsema, T. Managing nutrients to mitigate soil pollution. Environ. Pollut. 2018, 243, 1602–1605. [Google Scholar] [CrossRef]
- Drobnik, T.; Greiner, L.; Keller, A.; Grêt-Regamey, A. Soil quality indicators—From soil functions to ecosystem services. Ecol. Indic. 2018, 94, 151–169. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Sun, J.Y.; Xu, X.J.; Yu, H.W. Integration of chemical and toxicological tools to assess the bioavailability of copper derived from different copper-based fungicides in soil. Ecotoxicol. Environ. Saf. 2018, 161, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.S.; Christofoletti, C.A.; Bozzatto, V.; Fontanetti, C.S. The use of diplopods in soil ecotoxicology—A review. Ecotoxicol. Environ. Saf. 2014, 103, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Teresa, M.; Vasconcelos, S.D.; Tavares, H.M. Trace element concentrations in blood and hair of young apprentices of a technical-professional school. Sci. Total Env. 1997, 205, 189–199. [Google Scholar] [CrossRef]
- Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207. [Google Scholar] [CrossRef]
- Xie, Y.; Fan, J.; Zhu, W.; Amombo, E.; Lou, Y.; Chen, L.; Fu, J. Effect of heavy metals pollution on soil microbial diversity and Bermudagrass genetic variation. Front. Plant Sci. 2016, 7, 755. [Google Scholar] [CrossRef]
- Bajkić, S.; Narančić, T.; Ðokić, L.; Ðorđević, D.; Nikodinović-Runić, J.; Morić, I.; Vasiljević, B. Microbial diversity and isolation of multiple metal-tolerant bacteria from surface and underground pits within the copper mining and smelting complex bor. Arch. Biol. Sci. 2013, 65, 375–386. [Google Scholar]
- Xie, X.; Zhu, W.; Liu, N.; Liu, J. Bacterial community composition in reclaimed and unreclaimed tailings of Dexing copper mine, China. Afr. J. Biotechnol. 2013, 12, 4841–4849. [Google Scholar]
- Aycicek, M.; Kaplan, O.; Yaman, M. Effect of cadmium on germination, seedling growth and metal contents of sunflower (Helianthus annus L.). Asian J. Chem. 2008, 20, 2663–2672. [Google Scholar]
- Aschner, M. Neurotoxic mechanism of fish-bone methylmetry. Environ. Toxicol. Phamacol. 2002, 12, 101–102. [Google Scholar] [CrossRef]
- Rajaganapathy, V.; Xavier, F.; Sreekumar, D.; Mandal, P.K. Heavy metal contamination in soil, water and fodder and their presence in livestock and products: A Review. J. Environ. Sci. Technol. 2011, 4, 234–249. [Google Scholar]
- Yao, J.; Tian, L.; Wang, Y.; Djah, A.; Wang, F.; Chen, H.; Su, C.; Zhuang, R.; Zhou, Y.; Choi, M.M.F.; et al. Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: An in vitro approach. Ecotoxicol. Environ. Saf. 2008, 69, 89–95. [Google Scholar] [CrossRef]
- Wood, J.M. Biological cycles for toxic elements in the environment. Science 1974, 183, 1049–1052. [Google Scholar] [CrossRef]
- Chao, S.; LiQin, J.; WenJun, Z. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ. Skept. Crit. 2014, 3, 24–38. [Google Scholar]
- Lee, D.H.; Zo, Y.G.; Kim, S.J. Non-radioactive methods to study genetic Profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl. Environ. Microbiol. 1996, 62, 3112–3120. [Google Scholar] [CrossRef] [Green Version]
- Aceves, M.B.; Grace, C.; Ansorena, J.; Brookes, P.C. Soil microbial biomass and organic C in a gradient of zinc concentration in soils around a mine spoil tip. Soil Biol. Biochem. 1999, 31, 867–876. [Google Scholar] [CrossRef]
- Kandeler, E.; Lurienegger, G.; Schwarz, S. Influence of heavy metals on the functional diversity of soil microbial communities. Biol. Fertil. Soils 1997, 23, 299–306. [Google Scholar] [CrossRef]
- Chander, K.; Brookes, P.C.; Harding, S.A. Microbial biomass dynamics following addition of metal-enriched sewage sludge to a sandy loam. Soil Biol. Biochem. 1995, 27, 1409–1421. [Google Scholar] [CrossRef]
- Fliepbach, A.; Martens, R.; Reber, H. Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol. Biochem. 1994, 26, 1201–1205. [Google Scholar] [CrossRef]
- Yu, L.; Yan-bin, W.; Xin, G.; Yi-bing, S.; Gang, W. Risk assessment of heavy metals in soils and vegetables around non-ferrous metals mining and smelting sites, Baiyin, China. J. Environ. Sci. 2006, 18, 1124–1134. [Google Scholar]
- Fan, J.; He, Z.; Ma, L.Q.; Yang, Y.; Stofella, P.J. Impacts of calcium water treatment residue on the soil-water-plant system in citrus production. Plant Soil 2014, 374, 993–1004. [Google Scholar] [CrossRef]
- Jiang, H.; Li, T.; Han, X.; Yang, X.; He, Z.L. Effects of pH and low molecular weight organic acids on competitive adsorption and desorption of cadmium and lead in paddy soils. Environ. Monit. Assess. 2012, 184, 6325–6335. [Google Scholar] [CrossRef]
- Speira, T.W.; Kettlesb, H.A.; Percivalc, H.J.; Parshotam, A. Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts? Soil Biol. Biochem. 1999, 31, 1953–1961. [Google Scholar] [CrossRef]
- Percival, H.J.; Speir, T.W.; Parshotam, A. Soil solution chemistry of contrasting soils amended with heavy metals. Aust. J. Soil Res. 1999, 37, 993–1004. [Google Scholar] [CrossRef]
- Santanu, B.; Chumki, B. The impact of heavy metal contamination on soil health. In Managing Soil Health for Sustainable Agriculture Volume 2: Monitoring and Management; Reicosky, D., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; ISBN 9781786761927. [Google Scholar]
- Zhang, Z.J.; Lu, Q.F.; Fang, F. Effect of mecury on the growth and physiological function of wheat seedlings. Chin. J. Environ. Sci. 1989, 10, l0–l13. [Google Scholar]
- Qin, T.C.; Wu, Y.S.; Wang, H.X. Effect of cadmium, lead and their interactions on the physiological and biochemical characteristics of Brassica chinensis. Acta Ecol. Sin. 1994, 14, 46–49. [Google Scholar]
- Acar, Y.B.; Alshawabkeh, A.N. Principles of electrokinetic remediation. Environ. Sci. Technol. 1993, 27, 2638–2647. [Google Scholar] [CrossRef]
- Kale, H. Response of roots of trees to heavy metals. Environ. Exp. Bot. 1993, 33, 99–119. [Google Scholar] [CrossRef]
- Robert, L.; Jones, P.D. Blood lead levels and blood lead the change tendency of the test in the United States from 1998 to 2004. Pediatrics 2009, 4, 502–514. [Google Scholar]
- Yabe, J.; Ishizuka, M.; Umemura, T. Current Levels of Heavy metal contamination in Africa. J. Vet. Med Sci. 2010, 72, 1257–1263. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Guidelines for Drinking Water Quality; World Health Organization: Geneva, Switzerland, 1995; p. 121. [Google Scholar]
- Department of Water Affairs and Forestry (DWAF). Olifants Water Management Area: Internal Strategic Perspective; Report P WMA 04/0000/00/0304; Department of Water Affairs and Forestry: Pretoria, Gauteng, South Africa, 2004. [Google Scholar]
- Environmental Mining Council of British Colombia (EMCBC). Acid mine drainage: Mining and water pollution issues in British Colombia; EMCBC: British Colombia, BC, Canada, 2001. [Google Scholar]
- Raj, B.G.; Patnaik, M.C.; Babu, S.P.; Kalakumare, B.; Singh, M.V.; Shylaja, J. Heavy metal contaminants in water-soil-plant-animal continuum due to pollution of Musi river around Hyderabad in India. Indian J. Anim. Sci. 2006, 76, 131–133. [Google Scholar]
- Basu, A.; Phipps, S.; Long, R.; Essegbey, G.; Basu, N. Identification of response options to artisanal and small-scale gold mining (ASGM) in Ghana via the delphi process. Int. J. Environ. Res. Public Health 2015, 12, 11345–11363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibb, H.; O’Leary, K.G. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environ. Health Perspect. 2014, 122, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Bahnasawy, M.; Khidr, A.; Dheina, N. Assessment of heavy metal concentrations in water, plankton, and fish of Lake Manzala. Egypt. Turk. J. Zool. 2011, 35, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Gupta, A.K.; Chattree, A.; Tripathi, R.M. A Review on the detection of heavy metals in water bodies, fish organs, sediment riverbeds. Int. J. Cur. Res. Rev. 2013, 5, 41–46. [Google Scholar]
- Nagajyoti, K.P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Misra, S.G.; Mani, D. Soil Pollution; Ashish Publishing House: Punjabi Bagh, India, 1991. [Google Scholar]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals; Hosam El-Din, M.S., Refaat, F.A., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Ghani, A. Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.). Iranian J. Toxicol. 2010, 3, 325–334. [Google Scholar]
- Moustakas, M.; Lanaras, T.; Symeonidis, L.; Karataglis, S. Growth and some photosynthetic characteristics of field grown Avena sative under copper and lead stress. Photosynthetica 1994, 30, 389–396. [Google Scholar]
- Van Assche, F.; Clijsters, H. Effects of metals on enzyme activity in plants. Plant Cell Env. 1990, 13, 195–206. [Google Scholar] [CrossRef]
- Prasad, K.V.S.K.; Pardha saradhi, P.; Sharmila, P. Concerted action of antioxidant enzyme and curtailed growth under zinc toxicity in Brassica juncea. Environ. Exp. Bot. 1999, 42, 1–10. [Google Scholar] [CrossRef]
- Doncheva, S.; Stoynova, Z.; Violeta, V. Influence of Succinate on zinc toxicity of pea plants. J. Plant Nutr. 2001, 24, 789–804. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Rodriquez-Serrano, M.; Corpas, F.J.; Gomez, M.; Del Rio, L.A.; Sandalio, L.M. Cadmium-induced subcellular accumulation of O2–and H2O2 in pea leaves. Plant Cell Env. 2004, 27, 1122–1134. [Google Scholar] [CrossRef]
- Fontes, R.L.S.; Cox, F.R. Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J. Plant Nutr. 1998, 21, 1723–1730. [Google Scholar] [CrossRef]
- Ebbs, S.D.; Kochian, L.V. Toxicity of zinc and copper to Brassica species: Implications for phytoremediation. J. Environ. Qual. 1997, 26, 776–781. [Google Scholar] [CrossRef]
- Yusuf, M.; Fariduddin, Q.; Varshney, P.; Ahmad, A. Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environ. Sci. Pollut. Res. 2012, 19, 8–18. [Google Scholar] [CrossRef]
- Thomas, F.; Malick, C.; Endreszl, E.C.; Davies, K.S. Distinct responses to copper stress in the halophyte, Mesembryan-themum crystallium. Physiol Plant 1998, 102, 360–368. [Google Scholar] [CrossRef]
- Demirevska-Kepova, K.; Simova-Stoilova, L.; Stoyanova, Z.; Holzer, R.; Feller, U. Biochemical changes in barley plants after excessive supply of copper and manganese. Environ. Exp. Bot. 2004, 52, 253–266. [Google Scholar] [CrossRef]
- Lewis, S.; Donkin, M.E.; Depledge, M.H. Hsp 70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aqua. Toxicol. 2001, 51, 277–291. [Google Scholar] [CrossRef]
- Hegedus, A.; Erdei, S.; Horvath, G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedings under cadmium stress. Plant Sci. 2001, 160, 1085–1093. [Google Scholar] [CrossRef]
- Ouzounidou, G. Change in chlorophyll fluorescence as a result of copper treatment: Dose response relations in Silene and Thlaspi. Photosynthetica 1994, 29, 455–462. [Google Scholar]
- Neelima, P.; Reddy, K.J. Interaction of copper and cadmium with seedlings growth and biochemical responses in Solanum melongena. Envi. Pollut. Technol. 2002, 1, 285–290. [Google Scholar]
- Israr, M.; Sahi, S.; Datta, R.; Sarkar, D. Bioaccumulation and physiological effects of mercury in Sesbania drummonii. Chemosphere 2006, 65, 591–598. [Google Scholar] [CrossRef]
- Kamal, M.; Ghalya, A.E.; Mahmouda, N.; Cote, R. Phytoaccumulation of heavy metals by aquatic plants. Environ. Intern. 2004, 29, 1029–1039. [Google Scholar] [CrossRef]
- Wang, Y.; Greger, M. Clonal differences in mercury tolerance, accumulation, and distribution in willow. J. Environ. Qual. 2004, 33, 1779–1785. [Google Scholar] [CrossRef]
- Zhou, Z.S.; Huang, S.Q.; Guo, K.; Mehta, S.K.; Zhang, P.C.; Yang, Z.M. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J. Inorg. Biochem. 2007, 101, 1–9. [Google Scholar] [CrossRef]
- Zhang, W.H.; Tyerman, S.D. Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol. 1999, 120, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Cargnelutti, D.; Tabaldi, L.A.; Spanevello, R.M.; Jucoski, G.O.; Battisti, V.; Redin, M.; Linares, C.E.B.; Dressler, V.L.; Flores, M.M.; Nicoloso, F.T.; et al. Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 2006, 65, 999–1106. [Google Scholar] [CrossRef]
- Messer, R.L.; Lockwood, P.E.; Tseng, W.Y.; Edwards, K.; Shaw, M.; Caughman, G.B.; Lewis, J.B.; Wataha, J.C. Mercury (II) alters mitochondrial activity of monocytes at sublethal doses via oxidative stress mechanisms. J. Biomed. Mat. Res. B. 2005, 75, 257–263. [Google Scholar] [CrossRef]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef] [Green Version]
- Sudhakar, C.; Symalabai, L.; Veeranjaveyuler, K. Lead tolerance of certain legume species grown on lead or tailing. Agri. Eco. Environ. 1992, 41, 253–261. [Google Scholar] [CrossRef]
- Reddy, A.M.; Kumar, S.G.; Jyotsnakumari, G.; Thimmanayak, S.; Sudhakar, C. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 2005, 60, 97–104. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and excluders strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 64–654. [Google Scholar] [CrossRef]
- Marin, A.R.; Pezeshki, S.R.; Masscheleyn, P.H.; Choi, H.S. Effect of dimethylarsinic acid (DMAA) on growth, tissue arsenic and photosynthesis of rice plants. J. Plant Nutr. 1993, 16, 865–880. [Google Scholar] [CrossRef]
- Abedin, M.J.; Cotter-Howells, J.; Meharg, A.A. Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 2002, 240, 311–319. [Google Scholar] [CrossRef]
- Barrachina, A.C.; Carbonell, F.B.; Beneyto, J.M. Arsenic uptake, distribution, and accumulation in tomato plants: Effect of arsenite on plant growth and yield. J. Plant Nutr. 1995, 18, 1237–1250. [Google Scholar] [CrossRef]
- Cox, M.S.; Bell, P.F.; Kovar, J.L. Differential tolerance of canola to arsenic when grown hydroponically or in soil. J. Plant Nutr. 1996, 19, 1599–1610. [Google Scholar] [CrossRef]
- Yourtchi, M.S.; Bayat, H.R. Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.). Int. J. Agric. Crop Sci. 2013, 6, 1099–1103. [Google Scholar]
- Jiang, W.; Liu, D.; Hou, W. Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic. Bioresour. Technol. 2001, 76, 9–13. [Google Scholar] [CrossRef]
- Wang, W.; Zou, J.; Duan, X.; Jiang, W.; Liu, D. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresour. Technol. 2007, 98, 82–88. [Google Scholar] [CrossRef]
- Jayakumar, K.; Rajesh, M.; Baskaran, L.; Vijayarengan, P. Changes in nutritional metabolism of tomato (Lycopersicon esculantum Mill.) plants exposed to increasing concentration of cobalt chloride. Int. J. Food Nutr. Saf. 2013, 4, 62–69. [Google Scholar]
- Jayakumar, K.; Jaleel, C.A.; Azooz, M.M. Phytochemical changes in green gram (Vigna radiata) under cobalt stress. Glob. J. Mol. Sci. 2008, 3, 46–49. [Google Scholar]
- Jayakumar, K.; Jaleel, C.A.; Vijayarengan, P. Changes in growth, biochemical constituents, and antioxidant potentials in radish (Raphanus sativus L.) under cobalt stress. Turk. J. Biol. 2007, 31, 127–136. [Google Scholar]
- Sharma, D.C.; Sharma, C.P. Chromium uptake and its effects on growth and biological yield of wheat. Cereal Res. Commun. 1993, 21, 317–322. [Google Scholar]
- Panda, S.K.; Patra, H.K. Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proc. Natl. Acad. Sci. USA 2000, 70, 75–80. [Google Scholar]
- Moral, R.; Pedreno, J.N.; Gomez, I.; Mataix, J. Effects of chromium on the nutrient element content and morphology of tomato. J. Plant Nutr. 1995, 18, 815–822. [Google Scholar] [CrossRef]
- Moral, R.; Gomez, I.; Pedreno, J.N.; Mataix, J. Absorption of Cr and effects on micronutrient content in tomato plant (Lycopersicum esculentum M.). Agrochimica 1996, 40, 132–138. [Google Scholar]
- Nematshahi, N.; Lahouti, M.; Ganjeali, A. Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur. J. Exp. Biol. 2012, 2, 969–974. [Google Scholar]
- Cook, C.M.; Kostidou, A.; Vardaka, E.; Lanaras, T. Effects of copper on the growth, photosynthesis and nutrient concentrations of Phaseolus plants. Photosynthetica 1997, 34, 179–193. [Google Scholar] [CrossRef]
- Kjaer, C.; Elmegaard, N. Effects of copper sulfate on black bindweed (Polygonum convolvulus L.). Ecotoxicol. Environ. Saf. 1996, 33, 110–117. [Google Scholar] [CrossRef]
- Sheldon, A.R.; Menzies, N.W. The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 2005, 278, 341–349. [Google Scholar] [CrossRef]
- Du, X.; Zhu, Y.G.; Liu, W.J.; Zhao, X.S. Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ. Exp. Bot. 2005, 54, 1–7. [Google Scholar] [CrossRef]
- Shekar, C.H.C.; Sammaiah, D.; Shasthree, T.; Reddy, K.J. Effect of mercury on tomato growth and yield attributes. Int. J. Pharma. Bio. Sci. 2011, 2, 358–364. [Google Scholar]
- Arya, S.K.; Roy, B.K. Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.). J. Environ. Biol. 2011, 32, 707–711. [Google Scholar] [PubMed]
- Asrar, Z.; Khavari-Nejad, R.A.; Heidari, H. Excess manganese effects on pigments of Mentha spicata at flowering stage. Arch. Agron. Soil Sci. 2005, 51, 101–107. [Google Scholar] [CrossRef]
- Doncheva, S.; Georgieva, K.; Vassileva, V.; Stoyanova, Z.; Popov, N.; Ignatov, G. Effects of succinate on manganese toxicity in pea plants. J. Plant Nutr. 2005, 28, 47–62. [Google Scholar] [CrossRef]
- Shenker, M.; Plessner, O.E.; Tel-Or, E. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity. J. Plant Physiol. 2004, 161, 197–202. [Google Scholar] [CrossRef]
- Sheoran, I.S.; Singal, H.R.; Singh, R. Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth. Res. 1990, 23, 345–351. [Google Scholar] [CrossRef]
- Khalid, B.Y.; Tinsley, J. Some effects of nickel toxicity on rye grass. Plant Soil 1980, 55, 139–144. [Google Scholar] [CrossRef]
- Pandolfini, T.; Gabbrielli, R.; Comparini, C. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ. 1992, 15, 719–725. [Google Scholar] [CrossRef]
- Barsukova, V.S.; Gamzikova, O.I. Effects of nickel surplus on the element content in wheat varieties contrasting in Ni resistance. Agrokhimiya 1999, 1, 80–85. [Google Scholar]
- Lin, Y.C.; Kao, C.H. Nickel toxicity of rice seedlings: Cell wall peroxidase, lignin, and NiSO4-inhibited root growth. Crop Environ. Bioinform. 2005, 2, 131–136. [Google Scholar]
- Hussain, A.; Abbas, N.; Arshad, F.; Akram, M.; Khan, Z.I.; Ahmad, K.; Mirzaei, F. Effects of diverse doses of lead (Pb) on different growth attributes of Zea mays L. Agric. Sci. 2013, 4, 262–265. [Google Scholar]
- Kabir, M.; Iqbal, M.Z.; Shafiq, M. Effects of lead on seedling growth of Thespesia populnea L. Adv. Environ. Biol. 2009, 3, 184–190. [Google Scholar]
- Manivasagaperumal, R.; Balamurugan, S.; Thiyagarajan, G.; Sekar, J. Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Curr. Bot. 2011, 2, 11–15. [Google Scholar]
- Bonnet, M.; Camares, O.; Veisseire, P. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J. Exp. Bot. 2000, 51, 945–953. [Google Scholar]
- Meharg, A.A. Arsenic in rice–understanding a new disaster for south-east Asia. Trends Plant. Sci. 2004, 9, 415–417. [Google Scholar] [CrossRef]
- Cheng, S.P. Heavy metal pollution in China: Origion, pattern and control. Environ. Sci. Pollut. Res. Int. 2003, 10, 192–198. [Google Scholar] [CrossRef]
- D’Souza, C.; Peretiatko, R. The nexus between industrialization and environment: A case study of Indian enterprises. Environ. Manag. Health 2002, 13, 80–97. [Google Scholar] [CrossRef]
- Vieira, C.; Morais, S.; Ramos, S.; Delerue-Matos, C.; Oliveira, M.B.P.P. Mercury, cadmium, lead and arsenic levels in three pelagic fish species from the Atlantic Ocean: Intra- and inter-specific variability and human health risks for consumption. Food Chem. Toxicol. 2011, 49, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Flora, S.J.S.; Mittal, M.; Mehta, A. Heavy metal induced oxidative stress and its reversal by chelation therapy. Ind. J. Med. Res. 2008, 128, 501–523. [Google Scholar]
- Jan, A.T.; Ali, A.; Haq, Q.M.R. Glutathione as an antioxidant in inorganic mercury induced nephrotoxicity. J. Postgrad. Med. 2011, 57, 72–77. [Google Scholar]
- Mahurpawar, M. Effects of Heavy metals on Human health. Int. J. Res. –GranthaalayahSoc. Issues Environ. Probl. 2015, 530, 1–7. [Google Scholar]
- Day, M. Lead in the Womb; New Scientist: London, UK, 1998; p. 7. [Google Scholar]
- Masters, R.D.; Hone, B.; Dosh, A. Environmental Pollution, Neurotoxicity and Criminal Violence. In Environmental Toxicology; Rose, J., Ed.; Gordon and Breach: London, UK, 1998. [Google Scholar]
- Gil, F.; Facio, A.; Villanueva, E.; Perez, M.L.; Tojo, R.; Gil, A. The Association of tooth lead content with dental health factors. Sci. Total Environ. 1996, 192, 183. [Google Scholar] [CrossRef]
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [Green Version]
- Baby, J.; RAJ, J.S.; Biby, E.T.; Sankarganesh, P.; Jeevitha, M.V.; Ajisha, S.U.; Rajan, S.S. Toxic effect of heavy metals on aquatic environment. Int. J. Biol. Chem. Sci. 2010, 4, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, P.J.; Dahl, R.; Grandjean, P.; Wahl, P.; White, R.F.; Sorensen, N. Cognitive Deficit in 7-Year-Old Children with Prenatal Exposure to Methylmercury. Neurotoxicology Teratol. 1997, 19, 417–428. [Google Scholar]
- Sobha, K.; Poornima, A.; Harini, P.; Veeraiah, K. A study on biochemical changes in the freshwater fish, catla catla (hamilton) exposed to the heavy metal toxicant cadmium chloride. Kathmandu Univ. J. Sci. Eng. Technol. 2007, 1, 1–11. [Google Scholar]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Rossman, T.G.; Uddin, A.N.; Burns, F.J. Evidence that arsenite acts as a cocarcinogen in skin cancer. Review. Toxicol. Appl. Pharmacol. 2004, 198, 394–404. [Google Scholar] [CrossRef]
- Smith, A.H.; Marshall, G.; Yuan, Y.; Ferreccio, C.; Liaw, J.; von Ehrenstein, O.; Steinmaus, C.; Bates, M.N.; Selvin, S. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ. Health Perspect. 2006, 114, 1293–1296. [Google Scholar] [CrossRef] [Green Version]
- Meliker, J.R.; Slotnick, M.J.; AvRuskin, G.A.; Schottenfeld, D.; Jacquez, G.M.; Wilson, M.L.; Goovaerts, P.; Franzblau, A.; Nriagu, J.O. Lifetime exposure to arsenic in drinking water and bladder cancer: A population-based case-control study in Michigan, USA. Cancer Causes Control. 2010, 21, 745–757. [Google Scholar] [CrossRef]
- Lin, H.J.; Sung, T.I.; Chen, C.Y.; Guo, H.R. Arsenic levels in drinking water and mortality of liver cancer in Taiwan. J. Hazard Mater. 2013, 262, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- García-Esquinas, E.; Pollán, M.; Umans, J.G.; Francesconi, K.A.; Goessler, W.; Guallar, E.; Howard, B.; Farley, J.; Best, L.G.; Navas-Acien, A. Arsenic exposure and cancer mortality in a US-based prospective cohort: The strong heart study. Cancer Epidemiol Biomarkers Prev. 2013, 22, 1944–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heck, J.E.; Park, A.S.; Qiu, J.; Cockburn, M.; Ritz, B. Risk of leukemia in relation to exposure to ambient air toxics in pregnancy and early childhood. Int. J. Hyg. Environ. Health. 2014, 217, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.Y.; Chou, H.Y.; The, H.W.; Chen, C.M.; Chen, C.J. The effects of chronic arsenic exposure from drinking water on the neurobehavioral development in adolescence. Neurotoxicology 2003, 24, 747–753. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Factor-Litvak, P.; van Geen, A.; Slavkovich, V.; LoIacono, N.J.; Cheng, Z.; Hussain, I.; et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 2004, 112, 1329–1333. [Google Scholar] [CrossRef] [Green Version]
- Nizam, S.; Kato, M.; Yatsuya, H.; Khalequzzaman, M.; Ohnuma, S.; Naito, H.; Nakajima, T. Differences in urinary arsenic metabolites between diabetic and non-diabetic subjects in Bangladesh. Int. J. Environ. Res. Public Health 2013, 10, 1006–1019. [Google Scholar]
- Lee, M.Y.; Bae, O.N.; Chung, S.M.; Kang, K.T.; Lee, J.Y.; Chung, J.H. Enhancement of platelet aggregation and thrombus formation by arsenic in drinking water: A contributing factor to cardiovascular disease. Toxicol. Appl. Pharmacol. 2002, 179, 83–88. [Google Scholar] [CrossRef]
- Hopenhayn, C.; Huang, B.; Christian, J.; Peralta, C.; Ferreccio, C.; Atallah, R.; Kalman, D. Profile of urinary arsenic metabolites during pregnancy. Environ. Health Perspect. 2003, 111, 1888–1891. [Google Scholar] [CrossRef] [Green Version]
- Seidal, K.; Jörgensen, N.; Elinder, C.G.; Sjögren, B.; Vahter, M. Fatal cadmium-induced pneumonitis. Scand. J. Work Environ. Health. 1993, 19, 429–431. [Google Scholar] [CrossRef] [Green Version]
- Nordberg, G.F. Cadmium and health in the 21st century-historical remarks and trends for the future. Biometals 2004, 17, 485–489. [Google Scholar] [CrossRef]
- Jin, T.; Nordberg, M.; Frech, W.; Dumont, X.; Bernard, A.; Ye, T.T.; Kong, Q.; Wang, Z.; Li, P.; Lundström, N.G.; et al. Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). Biometals 2002, 15, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Nogawa, K.; Kobayashi, E.; Okubo, Y.; Suwazono, Y. Environmental cadmium exposure, adverse effects and preventive measures in Japan. Biometals 2004, 17, 581–587. [Google Scholar] [CrossRef]
- Sheikh, I. Cobalt Poisoning: A Comprehensive Review of the Literature. J. Med Toxicol. Clin. Forensic Med. 2016, 2, 1–6. [Google Scholar] [CrossRef]
- Johansson, S.; Svensson, H.; Denekamp, J. Timescale of evolution of late radiation injury after postoperative radiotherapy of breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 745–750. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Dayan, A.D.; Paine, A.J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Hum. Exp. Toxicol. 2001, 20, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.W.; Collins, S.A.; Resneck, J.S., Jr.; Bolognia, J.L.; Hodge, J.A.; Rohrer, T.A.; Nerenz, D.R. The burden of skin disease in the United States. J. Am. Acad. Dermatol. 2017, 76, 958–972. [Google Scholar] [CrossRef] [Green Version]
- Brutti, C.S.; Bonamigo, R.R.; Cappelletti, T.; Martins-Costa, G.M.; Menegat, A.P. Occupational and non-occupational allergic contact dermatitis and quality of life: A prospective study. Bras. Derm. 2013, 88, 670–671. [Google Scholar] [CrossRef]
- Gibb, H.J.; Lees, P.S.J.; Pinsky, P.F.; Rooney, B.C. Lung cancer among workers in chromium chemical production. Am. J. Ind. Med. 2000, 38, 115–126. [Google Scholar] [CrossRef]
- Basile, D.P.; Anderson, M.D.; Sutton, T.A. Pathophysiology of Acute Kidney Injury. Compr. Physiol. 2012, 2, 1303–1353. [Google Scholar]
- Abdel-Gadir, A.; Berber, R.; Porter, J.B.; Quinn, P.D.; Suri, D.; Kellman, P.; Hart, A.J.; Moon, J.C.; Manisty, C.; Skinner, J.A. Detection of metallic cobalt and chromium liver deposition following failed hip replacement using T2* and R2 magnetic resonance. J. Cardiovasc. Magn. Reson. 2016, 18, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, R.R. Adverse hematological effects of hexavalent chromium: An overview. Interdiscip. Toxicol. 2016, 9, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for Copper.; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2004. [Google Scholar]
- Aston, N.S.; Watt, N.; Morton, I.E.; Tanner, M.S.; Evans, G.S. Copper toxicity affects proliferation and viability of human hepatoma cells (HepG2 line). Hum. Exp. Toxicol. 2000, 19, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Kodama, H.; Fujisawa, C.; Bhadhprasit, W. Inherited Copper Transport Disorders: Biochemical Mechanisms, Diagnosis, and Treatment. Curr. Drug Metab. 2012, 13, 237–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridges, C.C.; Zalups, R.K. Transport of inorganic mercury and methylmercury in target tissues and organs-Review. J. Toxicol. Environ. Health B. Crit. Rev. 2010, 13, 385–410. [Google Scholar] [CrossRef]
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E.R. Environmental mercury and its toxic effects. J. Prev. Med. Public Health. 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Andreoli, V.; Sprovieri, F. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview. Int. J. Environ. Res. Public Health. 2017, 14, 93. [Google Scholar] [CrossRef] [Green Version]
- Engwa, G.A.; Ferdinand, P.U.; Nwalo, F.N.; Unachukwu, M.N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World-New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; Intechopen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Hamada, A.J.; Esteves, S.C.; Agarwal, A. A comprehensive review of genetics and genetic testing in azoospermia. Clinics 2013, 68, 39–60. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Mo, X.A.; Du, F.Q.; Fu, X.; Zhu, X.Y.; Gao, H.Y.; Xie, J.L.; Liao, F.L.; Pira, E.; Zheng, W. Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: A case of 17-year follow-up study. J. Occup. Environ. Med. 2006, 48, 644–649. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, W. Cardiovascular toxicities upon manganese exposure. Cardiovasc. Toxicol. 2005, 5, 345–354. [Google Scholar] [CrossRef]
- Spangler, A.H.; Spangler, J.G. Groundwater manganese and infant mortality rate by county in North Carolina: An ecological analysis. Ecohealth 2009, 6, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanahban, V.; Diamond, M.P.; Puscheck, E.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunderman, F.W.; Dingle, B.; Hopfer, S.M.; Swift, T. Acute nickel toxicity in electroplating workers who accidentally ingested a solution of nickel sulfate and nickel chloride. Am. J. Indust. Med. 1988, 14, 257–266. [Google Scholar] [CrossRef]
- Rendall, R.E.G.; Phillips, J.I.; Renton, K.A. Death following exposure to fine particulate nickel from a metal arc process. Ann. Occup. Hyg. 1994, 38, 921–930. [Google Scholar] [PubMed]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress–A Review. Indian J. Med. Res. 2008, 128, 412–425. [Google Scholar] [PubMed]
- Zdrojewicz, Z.; Popowicz, E.; Winiarski, J. Nickel-role in human organism and toxic effects. Pol. Merkur. Lekarski. 2016, 41, 115–118. [Google Scholar]
- Martin, S.; Griswold, W. Human health effects of heavy metals. Environ. Sci. Technol. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Teo, J.; Goh, K.; Ahuja, A.; Ng, H.; Poon, W. Intracranial vascular calcifications, glioblastoma multiforme, and lead poisoning. Am. J. Neuroradiol. 1997, 18, 576–579. [Google Scholar]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [Green Version]
- Igic, P.G.; Lee, E.; Harper, W.; Roach, K.W. Toxic effects associated with consumption of zinc. Mayo Clin. Proc. 2002, 77, 713–716. [Google Scholar] [CrossRef] [Green Version]
- Barceloux, D.G.; Barceloux, D. Zinc. J. Toxicol. : Clin. Toxicol. 1999, 37, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Yum, S.; Park, H.S.; Lee, T.K.; Ryu, J.C. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Comp. Biochem. Physiol. Part C 2009, 149, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Ayandiran, T.A.; Fawole, O.O.; Adewoye, S.O.; Ogundiran, M.A. Bioconcentration of metals in the body muscle and gut of Clarias gariepinus exposed to sublethal concentrations of soap and detergent effluent. J. Cell Anim. Biol. 2009, 3, 113–118. [Google Scholar]
- Fatima, M.; Usmani, N.; Hossain, M.M. Heavy Metal in Aquatic Ecosystem Emphasizing its Effect on Tissue Bioaccumulation and Histopathology: A Review. J. Environ. Sci. Technol. 2014, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fatima, M.; Usmani, N. Histopathology and bioaccumulation of heavy metals (Cr, Ni and Pb) in fish (Channa striatus and Heteropneustes fossilis) tissue: A study for toxicity and ecological impacts. Pak. J. Biol. Sci. 2013, 16, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Taweel, A.; Shuhaimi-Othman, M.; Ahmad, A.K. Heavy metals concentration in different organs of tilapia fish (Oreochromis niloticus) from selected areas of Bangi, Selangor, Malaysia. Afr. J. Biotechnol. 2011, 10, 11562–11566. [Google Scholar]
- Akan, J.C.; Abdulrahman, F.I.; Sodipo, O.A.; Akandu, P.I. Bioaccumulation of some heavy metals of six freshwater fishes caught from Lake Chad in Doron Buhari, Maiduguri, Borno State, Nigeria. J. Applied Sci. Environ. Sanitat. 2009, 4, 103–114. [Google Scholar]
- Soliman, Z.I. A study of Heavy Metals Pollution in some Aquatic Organisms in Suez Canal in Port-Said Harbour. J. Appl. Sci. Res. 2006, 2, 657–663. [Google Scholar]
Toxic Metal | Plant | Toxic Effect on Plant | Reference |
---|---|---|---|
As | Rice (Oryza sativa) | Reduced leaf area and dry matter production; reduction in seed germination; decrease in seedling height | [103,104] |
Tomato (Lycopersicon esculentum) | Drop in fruit yield; reduction in leaf fresh weight | [105] | |
Canola (Brassica napus) | Restricted growth; chlorosis; wilting | [106] | |
Cd | Wheat (Triticum sp.) | Decline in seed germination; reduction in nutrient content of plant | [107] |
Garlic (Allium sativum) | Reduced shoot development; Cd buildup | [108] | |
Maize (Zea mays) | Reduced shoot development; inhibition of root growth | [109] | |
Co | Tomato (Lycopersicon esculentum) | Reduction in plant nutrient content | [110] |
Mung bean (Vigna radiata) | Decline in antioxidant enzyme actions; reduction in plant sugar, starch, amino acids and protein content | [111] | |
Radish (Raphanus sativus) | Decline in shoot length, root length and total leaf area; reduction in chlorophyll content, plant nutrient content, antioxidant enzyme activities, decrease in plant sugar, amino acid and protein content | [112] | |
Cr | Wheat (Triticum sp.) | Stunted shoot and root growth | [113,114] |
Tomato (Lycopersicon esculentum) | Reduction in plant nutrient acquisition | [115,116] | |
Onion (Allium cepa) | Inhibition of germination process; plant biomass reduction | [117] | |
Cu | Bean (Phaseolus vulgaris) | Buildup of Cu in plant roots; root malformation and reduction | [118] |
Black bindweed (Polygonum convolvulus) | Plant death; reduced biomass and seed production | [119] | |
Rhodes grass (Chloris gayana) | Stunted root development | [120] | |
Hg | Rice (Oryza sativa) | Reduction in plant height; reduced tiller and panicle formation; reduced yield; bioaccumulation in shoot and root of seedlings | [121] |
Tomato (Lycopersicon esculentum) | Decrease in the percentage of germination; reduced plant height; reduction in flowering and fruit weight; chlorosis | [122] | |
Mn | Broad bean (Vicia faba) | Manganese accumulation in shoot and root; chlorosis. | [123] |
Spearmint (Mentha spicata) | Reduction in the content of chlorophyll and carotenoid. | [124] | |
Pea (Pisum sativum) | Reduction in relative growth rate and photosynthetic activities. | [125] | |
Tomato (Lycopersicon esculentum) | Slower plant growth; reduction in the concentration of chlorophyll. | [126] | |
Ni | Pigeon pea (Cajanus cajan) | Drop in chlorophyll content and stomatal conductance; decreased enzyme activity which affected Calvin cycle and CO2 fixation. | [127] |
Rye grass (Lolium perenne) | Reduction in plant nutrient acquisition; decrease in shoot yield; chlorosis. | [128] | |
Wheat (Triticum sp.) | Reduction in acquisition of plant nutrient. | [129,130] | |
Rice (Oryza sativa) | Stunted root development. | [131] | |
Pb | Maize (Zea mays) | Reduction in germination percentage; suppressed growth; reduced plant biomass; decrease in plant protein content. | [132] |
Portia tree (Thespesia populnea) | Drop in number of leaves and leaf area; reduced plant height; decrease in plant biomass. | [133] | |
Oat (Avena sativa) | Inhibition of enzyme activity which affected CO2 fixation. | [78] | |
Zn | Cluster bean (Cyamopsis tetragonoloba) | Reduction in germination percentage; reduced plant height and biomass; decrease in chlorophyll, carotenoid, sugar, starch and amino acid content. | [134] |
Pea (Pisum sativum) | Reduction in chlorophyll content; alteration in structure of chloroplast; reduction in photosystem II activity; reduced plant growth. | [81] | |
Rye grass (Lolium perenne) | Accumulation of Zn in plant leaves; growth reduction; decrease in plant nutrient content; reduced efficiency of photosynthetic energy conversion | [135] |
Toxic Metal | Toxic Effect on Humans | Reference |
---|---|---|
As | Cancer of the skin, lungs, bladder, prostrate and blood (Leukemia) | [151,152,153,154,155,156] |
Neurobehavioral abnormalities during puberty and adulthood | [157,158] | |
Diabetes and cardiovascular disorders | [159,160] | |
Increased fetal mortality and preterm birth in pregnancy | [161] | |
Cd | Shortness of breath, lung edema and destruction of mucous membranes | [162] |
Acute vomiting and diarrhoea | [163] | |
Kidney and bone damage | [164,165] | |
Co | Decreased pulmonary function, increased frequency of cough, respiratory inflammation and pulmonary fibrosis | [166] |
Myelopathy, brachial plexus neuropathy and vocal cord paresis | [167] | |
Hearing and visual impairment | [168] | |
Cr | Pulmonary irritant effects such as asthma, chronic bronchitis, chronic irritation, chronic pharyngitis, chronic rhinitis, congestion and hyperemia, polyps of the upper respiratory tract, tracheobronchitis and ulceration of the nasal mucosa with possible septal perforation | [169] |
Irritant and allergic contact dermatitis | [170,171] | |
Respiratory system cancers such as lungs, nasal and sinus cancers | [172] | |
Acute tubular necrosis and acute renal failure | [173] | |
Derangement of liver cells, necrosis, lymphocytic and histiocytic infiltration, and increases in Kupffer cells | [174] | |
Decreased haemoglobin content and hematocrit and increased total white blood cell counts, reticulocyte counts and plasma haemoglobin | [175] | |
Cu | Irritation of the nose, mouth and eyes; headaches; dizziness; nausea; vomiting; stomach cramps; and diarrhea | [176] |
Liver and kidney damage and even death | [177] | |
Wilson’s Disease that is characterized by hepatic cirrhosis, brain damage, demyelization, renal disease and copper deposition in the cornea | [178] | |
Hg | Neurological and behavioural disorders such as tremors, insomnia, memory loss, neuromuscular effects, headaches, and cognitive and motor dysfunction | [179] |
Red blood cell accumulation (competes with iron for haemoglobin binding) and inhibition of myelin synthesis in developing fetus and children | [180] | |
Immune, enzyme and genetic alterations | [181,182] | |
Young’s syndrome (Azoospermia sinopulmonary infections) | [183] | |
Mn | Parkinsonian syndromes | [184] |
Alteration in cardiovascular function | [185] | |
Increased infant mortality, hallucinations, forgetfulness and nerve damage | [186] | |
Impotence and loss of libido in men | [187] | |
Ni | Nausea, vomiting, abdominal pain, diarrhea, headache, cough, shortness of breath and giddiness | [188] |
Death due to nickel-induced Adult Respiratory Distress Syndrome (ARDS), chronic bronchitis, reduced lung function, and cancer of the lung and nasal sinus | [189] | |
Allergic skin reaction | [190] | |
Genotoxicity haematotoxicity, teratogenicity, immunotoxicity and carcinogenicity | [191] | |
Pb | Headache, loss of appetite, abdominal pain, fatigue, sleeplessness, hallucinations, vertigo, renal dysfunction, hypertension, arthritis, birth defects, mental retardation, autism, psychosis, allergies, paralysis, weight loss, dyslexia, hyperactivity, muscular weakness, kidney damage, brain damage, coma and death | [192] |
Disruption of the intracellular second messenger systems resulting in the alteration of the functioning of the central nervous system | [193] | |
Zn | Respiratory disorder from inhalation of zinc smoke, epigastric pains, risks of prostate cancer and lethargy | [194] |
Copper deficiency | [195] | |
Irritation and corrosion of the gastrointestinal tract, acute renal tubular necrosis and interstitial nephritis | [196] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. Int. J. Environ. Res. Public Health 2020, 17, 2204. https://doi.org/10.3390/ijerph17072204
Okereafor U, Makhatha M, Mekuto L, Uche-Okereafor N, Sebola T, Mavumengwana V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. International Journal of Environmental Research and Public Health. 2020; 17(7):2204. https://doi.org/10.3390/ijerph17072204
Chicago/Turabian StyleOkereafor, Uchenna, Mamookho Makhatha, Lukhanyo Mekuto, Nkemdinma Uche-Okereafor, Tendani Sebola, and Vuyo Mavumengwana. 2020. "Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health" International Journal of Environmental Research and Public Health 17, no. 7: 2204. https://doi.org/10.3390/ijerph17072204
APA StyleOkereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. International Journal of Environmental Research and Public Health, 17(7), 2204. https://doi.org/10.3390/ijerph17072204