Exposure to Chinese Famine in Fetal Life and the Risk of Dysglycemiain Adulthood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Related Definitions
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Report on Diabetes. World Health Organization. 2016. Available online: https://apps.who.int/iris/handle/10665/204871 (accessed on 25 April 2019).
- Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, W.Y.; Lee, Y.K.; Samy, A.L. Non-communicable diseases in the Asia-Pacific region: Prevalence, risk factors and community-based prevention. Int. J. Occup. Med. Environ. Health 2015, 28, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roseboom, T.J.; Painter, R.C.; van Abeelen, A.F.; Veenendaal, M.V.; de Rooij, S.R. Hungry in the womb: What are the consequences? Lessons from the Dutch famine. Maturitas 2011, 70, 141–145. [Google Scholar] [CrossRef]
- Van Abeelen, A.F.; Veenendaal, M.V.; Painter, R.C.; de Rooij, S.R.; Dijkgraaf, M.G.; Bossuyt, P.M.; Elias, S.G.; Grobbee, D.E.; Uiterwaal, C.S.; Roseboom, T.J. Survival effects of prenatal famine exposure. Am. J. Clin. Nutr. 2012, 95, 179–183. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, H.; Wang, Y.; Liu, Y. Early life factors and type 2 diabetes mellitus. J. Diabetes Res. 2013, 2013. [Google Scholar] [CrossRef]
- Barker, D.J. The long-term outcome of retarded fetal growth. Schweiz. Med. Wochenschr. 1999, 129, 189–196. [Google Scholar] [CrossRef]
- Barker, D.J. The fetal origins of type 2 diabetes mellitus. Ann. Intern. Med. 1999, 130, 322–324. [Google Scholar] [CrossRef]
- Liu, L.; Wang, W.; Sun, J.; Pang, Z. Association of famine exposure during early life with the risk of type 2 diabetes in adulthood: A meta-analysis. Eur. J. Nutr. 2018, 57, 741–749. [Google Scholar] [CrossRef]
- Kung, J.; Lin, J. The causes of China’s Great Leap famine, 1959-1961. Econ. Dev. Cult. Chang. 2003, 52, 51–73. [Google Scholar] [CrossRef]
- Tao, Y.D. China’s agricultural crisis and famine of 1959~1961: A survey and comparison of Soviet. Comp. Econ. Stud. 2008, 50, 1–29. [Google Scholar] [CrossRef]
- Liu, L.; Pang, Z.C.; Sun, J.P.; Xue, B.; Wang, S.J.; Ning, F.; Qiao, Q. Exposure to famine in early life and the risk of obesity in adulthood in Qingdao: Evidence from the 1959-1961 Chinese famine. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Wang, X.; Han, B.; Li, Q.; Chen, Y.; Zhu, C.; Chen, Y.; Xia, F.; Cang, Z.; Zhu, C.; et al. Is Exposure to Famine in Childhood and Economic Development in Adulthood Associated with Diabetes? J. Clin. Endocrinol. Metab. 2015, 100, 4514–4523. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, Y.; Qi, L.; Jaddoe, V.W.; Feskens, E.J.; Yang, X.; Ma, G.; Hu, F.B. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 2010, 59, 2400–2406. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Ma, G.; Piao, J.; Zhang, J.; Yu, D.; He, Y.; Huo, J.; Hu, X.; Yang, Z.; Yang, X. Scheme of the 2010-2012 Chinese nutrition and health surveillance. Chin. J. Preval. Med. 2016, 50, 204–207. [Google Scholar] [CrossRef]
- Luo, Z.H.; Mu, R.; Zhang, X.B. Famine and overweight in China. Rev. Agric. Econ. 2006, 28, 296–304. [Google Scholar] [CrossRef]
- Rui, Q.S.; Wei, D.; Lei, L.; Jia, Y.Q.; Jian, G.; Yun, L.Z.; Shan, S.D.; Tian, S.H.; Xiu, Y.P.; Chang, H.S.; et al. Low-carbohydrate, high-protein, high-fat diets rich in livestock, poultry and their products predict impending risk of type 2 diabetes in chinese individuals that exceed their calculated caloric requirement. Nutrients 2018, 10, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Venn, B.J.; Mann, J.I. Cereal grains, legumes and diabetes. Eur. J. Clin. Nutr. 2004, 58, 1443–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.B.; Yang, T.B.; Li, F.R.; Wang, H. Whole-grain intake and risk of type 2 diabetes. Am. J. Clin. Nutr. 2016, 104, 1722–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Chinese Nutrition Society. Dietary Guidelines for Chinese Residents; People’s Medical Publishing House: Beijing, China, 2016; pp. 3–88. ISBN 978-7-117-22214-3. [Google Scholar]
- World Health Organization. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications: Report of a WHO Consultation. In Part 1, Diagnosis and Classification of Diabetes Mellitus; World Health Organization: Geneva, Switzerland, 1999; Available online: https://apps.who.int/iris/handle/10665/66040 (accessed on 3 September 2018).
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome. Available online: http://www.idf.org/webdata/docs/Metabolic_syndrome_definition.pdf (accessed on 3 September 2018).
- Wang, N.; Cheng, J.; Han, B.; Li, Q.; Chen, Y.; Xia, F.; Jiang, B.; Jensen, M.D.; Lu, Y. Exposure to severe famine in the prenatal or postnatal period and the development of diabetes in adulthood: An observational study. Diabetologia 2017, 60, 262–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Liu, S.; Li, S.; Feng, R.; Na, L.; Chu, X.; Wu, X.; Niu, Y.; Sun, Z.; Han, T.; et al. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: A population-based cohort study of families in Suihua, China. Am. J. Clin. Nutr. 2017, 105, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, Y.; Han, X.; Liu, B.; Hu, H.; Wang, F.; Li, X.; Yang, K.; Yuan, J.; Yao, P.; et al. Exposure to the Chinese Famine in Childhood Increases Type 2 Diabetes Risk in Adults. J. Nutr. 2016, 146, 2289–2295. [Google Scholar] [CrossRef] [Green Version]
- Lumey, L.H.; Khalangot, M.D.; Vaiserman, A.M. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932–33: A retrospective cohort study. Lancet Diabetes Endocrinol. 2015, 3, 787–794. [Google Scholar] [CrossRef]
- Keinan, L.; Shasha, H.; Eilat, S.; Edri, A.; Shasha, S.M. Chronic health conditions in Jewish Holocaust survivors born during World War II. Isr. Med. Assoc. J. 2015, 17, 206–212. [Google Scholar]
- Van Abeelen, A.F.; Elias, S.G.; Bossuyt, P.M.; Grobbee, D.E.; van der Schouw, Y.T.; Roseboom, T.J.; Uiterwaal, C.S. Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes 2012, 61, 2255–2260. [Google Scholar] [CrossRef] [Green Version]
- Portrait, F.; Teeuwiszen, E.; Deeg, D. Early life undernutrition and chronic diseases at older ages: The effects of the Dutch famine on cardiovascular diseases and diabetes. Soc. Sci. Med. 2011, 73, 711–718. [Google Scholar] [CrossRef]
- Hochberg, Z.; Feil, R.; Constancia, M.; Fraga, M.; Junien, C.; Carel, J.C.; Boileau, P.; Le Bouc, Y.; Deal, C.L.; Lillycrop, K.; et al. Child health, developmental plasticity, and epigenetic programming. Endocr. Rev. 2011, 32, 159–224. [Google Scholar] [CrossRef] [PubMed]
- Green, A.S.; Rozance, P.J.; Limesand, S.W. Consequences of a compromised intrauterine environment on islet function. J. Endocrinol. 2010, 205, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [Green Version]
- Ong, T.P.; Ozanne, S.E. Developmental programming of type 2 diabetes: Early nutrition and epigenetic mechanisms. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Langley-Evans, S.C.; Bellinger, L.; McMullen, S. Animal models of programming: Early life influences on appetite and feeding behaviour. Matern. Child Nutr. 2005, 1, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Lopez, M.T.; Arco, R.; Decara, J.; Vazquez, M.; Rivera, P.; Blanco, R.N.; Alen, F.; Gomez, D.H.R.; Suarez, J.; Rodriguez, D.F.F. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators. Front. Behav. Neurosci. 2016, 10, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobi, E.W.; Lumey, L.H.; Talens, R.P.; Kremer, D.; Putter, H.; Stein, A.D.; Slagboom, P.E.; Heijmans, B.T. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum. Mol. Genet. 2009, 18, 4046–4053. [Google Scholar] [CrossRef] [PubMed]
- Ketut, S.; Pande, D.; Made, S.S.; Tuty, K. Age is an Important Risk Factor for Type 2 Diabetes Mellitus and Cardiovascular Diseases, Glucose Tolerance, Sureka Chackrewarthy, IntechOpen. Available online: https://www.intechopen.com/books/glucose-tolerance/age-is-an-important-risk-factor-for-type-2-diabetes-mellitus-and-cardiovascular-diseases (accessed on 25 March 2020).
Variables | Total | Exposed | Control | P Value |
---|---|---|---|---|
Sample size | 7830 | 4081 | 3749 | |
Gender | 0.409 | |||
Male | 3323(42.4%) | 1750(42.9%) | 1573(42.0%) | |
Female | 4507(57.6%) | 2331(57.1%) | 2176(58.0%) | |
Age | 49.7 ± 1.5 | 50.9 ± 1.0 | 48.4 ± 0.8 | <0.001 |
Education | <0.001 | |||
Primary school and low | 2362(30.2%) | 1279(31.3%) | 1083(28.9%) | |
Junior middle school | 3047(38.9%) | 1415(34.7%) | 1632(43.5%) | |
High school and above | 2421(30.9%) | 1387(34.0%) | 1034(27.6%) | |
Economic | 0.037 | |||
Low | 3711(47.4%) | 1961(48.1%) | 1750(46.7%) | |
Middle | 2869(36.6%) | 1457(35.7%) | 1412(37.7%) | |
High | 791(10.1%) | 439(10.8%) | 352(9.4%) | |
Smoke | 0.117 | |||
No | 5352(68.4%) | 2747(67.3%) | 2605(69.5%) | |
Yes | 2460(31.4%) | 1324(32.4%) | 1136(30.3%) | |
Drinking | 0.124 | |||
No | 4927(62.9%) | 2537(62.2%) | 2390(63.8%) | |
Yes | 2886(36.9%) | 1532(37.5%) | 1354(36.1%) | |
Physical exercise | 0.154 | |||
No | 1804(91.0%) | 909(91.7%) | 895(90.3%) | |
Yes | 164(8.3%) | 74(7.5%) | 90(9.1%) | |
Sedentary time | 2.0(2.0,3.0) | 2.0(2.0,3.0) | 2.0(2.0,3.0) | 0.234 |
Whole cereal and beans intake levels | 0.013 | |||
Insufficient | 4724(60.3%) | 2413(59.1%) | 2311(61.6%) | |
Sufficient | 565(7.2%) | 311(7.6%) | 254(6.8%) | |
Very sufficient | 151(1.9%) | 94(2.3%) | 57(1.5%) | |
Livestock and poultry intake levels | 0.441 | |||
Insufficient | 1881(24.0%) | 991(24.3%) | 890(23.7%) | |
Sufficient | 1224(15.6%) | 643(15.8%) | 581(15.5%) | |
Excessive | 2335(29.8%) | 1184(29.0%) | 1151(30.7%) | |
Body mass index(kg/m2) | 24.3 ± 3.4 | 24.4 ± 3.4 | 24.3 ± 3.4 | 0.256 |
Fasting plasma glucose (mmol/L) 1 | 5.4 ± 1.3 | 5.4 ± 1.3 | 5.3 ± 1.2 | 0.111 |
Type 2 diabetes | 0.016 | |||
No | 7375(94.2%) | 3819(93.6%) | 3556(94.9%) | |
Yes | 455(5.8%) | 262(6.4%) | 193(5.1%) | |
Impaired glucose tolerance | 0.544 | |||
No | 6996(94.9%) | 3617(94.7%) | 3379(95.0%) | |
Yes | 379(5.1%) | 202(5.3%) | 177(5.0%) | |
Impaired fasting glucose | 0.256 | |||
No | 6881(93.3%) | 3551(93.0%) | 3330(93.6%) | |
Yes | 494(6.7%) | 268(7.0%) | 226(6.4%) |
Variables | Unadjusted | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|---|
Fasting plasma glucose | |||||
β | 0.04 | 0.05 | 0.05 | 0.05 | 0.04 |
P value | 0.107 | 0.104 | 0.079 | 0.072 | 0.118 |
Type 2 diabetes | |||||
ORs (95%CI) | 1.26(1.04,1.53) | 1.24(1.02,1.50) | 1.25(1.03,1.52) | 1.25(1.03,1.52) | 1.23(1.01,1.50) |
P value | 0.016 | 0.030 | 0.023 | 0.024 | 0.042 |
Impaired glucose tolerance | |||||
ORs (95%CI) | 1.07(0.87,1.31) | 1.06(0.86,1.31) | 1.07(0.87,1.32) | 1.07(0.87,1.32) | 1.06(0.86,1.31) |
P value | 0.545 | 0.563 | 0.531 | 0.541 | 0.598 |
Impaired fasting glucose | |||||
ORs (95%CI) | 1.11(0.93,1.34) | 1.12(0.93,1.35) | 1.10(0.91,1.33) | 1.11(0.92,1.33) | 1.10(0.91,1.33) |
P value | 0.256 | 0.232 | 0.308 | 0.291 | 0.320 |
Variables | Unadjusted | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|---|
Moderate famine affected area | |||||
Fasting plasma glucose | |||||
β | 0.00 | –0.01 | –0.01 | –0.01 | –0.02 |
P value | 0.962 | 0.724 | 0.753 | 0.882 | 0.607 |
Type 2 diabetes | |||||
ORs (95%CI) | 1.13 (0.89,1.44) | 1.11 (0.87,1.41) | 1.11 (0.87,1.42) | 1.11 (0.87,1.42) | 1.08 (0.84,1.39) |
P value | 0.304 | 0.409 | 0.403 | 0.402 | 0.564 |
Impaired glucose tolerance | |||||
ORs (95%CI) | 1.04 (0.80,1.34) | 1.04 (0.80,1.34) | 1.03 (0.79,1.34) | 1.02 (0.79,1.33) | 1.01 (0.77,1.31) |
P value | 0.783 | 0.795 | 0.826 | 0.858 | 0.959 |
Impaired fasting glucose | |||||
ORs (95%CI) | 1.21 (0.97,1.51) | 1.20 (0.96,1.50) | 1.18 (0.95,1.48) | 1.20 (0.96,1.51) | 1.18 (0.94,1.49) |
P value | 0.084 | 0.101 | 0.142 | 0.114 | 0.154 |
Sever famine affected area | |||||
Fasting plasma glucose | |||||
β | 0.09 | 0.08 | 0.09 | 0.09 | 0.08 |
P value | 0.011 | 0.012 | 0.007 | 0.010 | 0.014 |
Type 2 diabetes | |||||
ORs (95%CI) | 1.41 (1.13,1.76) | 1.40 (1.12,1.74) | 1.42 (1.13,1.78) | 1.42 (1.13,1.78) | 1.40 (1.11,1.76) |
P value | 0.002 | 0.003 | 0.002 | 0.002 | 0.004 |
Impaired glucose tolerance | |||||
ORs (95%CI) | 1.09 (0.85,1.39) | 1.09 (0.85,1.39) | 1.10 (0.86,1.42) | 1.10 (0.85,1.41) | 1.09 (0.85,1.40) |
P value | 0.512 | 0.516 | 0.458 | 0.472 | 0.511 |
Impaired fasting glucose | |||||
ORs (95%CI) | 0.99 (0.78,1.24) | 1.00 (0.80,1.26) | 1.00 (0.79,1.26) | 0.99 (0.78,1.25) | 0.98 (0.78,1.24) |
P value | 0.897 | 0.999 | 0.984 | 0.912 | 0.889 |
Variables | Unadjusted | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|---|
Male | |||||
Fasting plasma glucose | |||||
β | −0.01 | −0.01 | −0.01 | −0.01 | 0.00 |
P value | 0.831 | 0.868 | 0.896 | 0.898 | 0.952 |
Type 2 diabetes | |||||
ORs (95%CI) | 1.22 (0.93,1.61) | 1.20 (0.91,1.59) | 1.21 (0.91,1.60) | 1.20 (0.91,1.59) | 1.20 (0.90,1.59) |
P value | 0.147 | 0.185 | 0.183 | 0.191 | 0.222 |
Impaired glucose tolerance | |||||
ORs (95%CI) | 1.02 (0.74,1.40) | 1.02 (0.74,1.40) | 1.03 (0.74,1.42) | 1.04 (0.75,1.43) | 1.02 (0.74,1.42) |
P value | 0.902 | 0.906 | 0.865 | 0.826 | 0.895 |
Impaired fasting glucose | |||||
ORs (95%CI) | 0.90 (0.69,1.18) | 0.91 (0.69,1.19) | 0.88 (0.67,1.16) | 0.89 (0.67,1.17) | 0.89 (0.68,1.18) |
P value | 0.466 | 0.496 | 0.375 | 0.397 | 0.429 |
Female | |||||
Fasting plasma glucose | |||||
β | 0.08 | 0.08 | 0.09 | 0.09 | 0.08 |
P value | 0.026 | 0.025 | 0.020 | 0.016 | 0.037 |
Type 2 diabetes | |||||
ORs (95%CI) | 1.30 (0.99,1.70) | 1.28 (0.98,1.68) | 1.30 (0.99,1.71) | 1.30 (0.99,1.71) | 1.26 (0.96,1.66) |
P value | 0.058 | 0.070 | 0.060 | 0.060 | 0.101 |
Impaired glucose tolerance | |||||
ORs (95%CI) | 1.10 (0.84,1.45) | 1.09 (0.83,1.43) | 1.10 (0.83,1.44) | 1.09 (0.83,1.44) | 1.08 (0.82,1.43) |
P value | 0.490 | 0.551 | 0.516 | 0.543 | 0.580 |
Impaired fasting glucose | |||||
ORs (95%CI) | 1.32 (1.03,1.70) | 1.33 (1.03,1.71) | 1.32 (1.02,1.70) | 1.32 (1.02,1.71) | 1.31 (1.01,1.70) |
P value | 0.029 | 0.028 | 0.034 | 0.033 | 0.040 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Song, C.; Wang, M.; Gong, W.; Ma, Y.; Chen, Z.; Feng, G.; Wang, R.; Fang, H.; Fan, J.; et al. Exposure to Chinese Famine in Fetal Life and the Risk of Dysglycemiain Adulthood. Int. J. Environ. Res. Public Health 2020, 17, 2210. https://doi.org/10.3390/ijerph17072210
Zhang Y, Song C, Wang M, Gong W, Ma Y, Chen Z, Feng G, Wang R, Fang H, Fan J, et al. Exposure to Chinese Famine in Fetal Life and the Risk of Dysglycemiain Adulthood. International Journal of Environmental Research and Public Health. 2020; 17(7):2210. https://doi.org/10.3390/ijerph17072210
Chicago/Turabian StyleZhang, Yan, Chao Song, Meng Wang, Weiyan Gong, Yanning Ma, Zheng Chen, Ganyu Feng, Rui Wang, Hongyun Fang, Jing Fan, and et al. 2020. "Exposure to Chinese Famine in Fetal Life and the Risk of Dysglycemiain Adulthood" International Journal of Environmental Research and Public Health 17, no. 7: 2210. https://doi.org/10.3390/ijerph17072210
APA StyleZhang, Y., Song, C., Wang, M., Gong, W., Ma, Y., Chen, Z., Feng, G., Wang, R., Fang, H., Fan, J., & Liu, A. (2020). Exposure to Chinese Famine in Fetal Life and the Risk of Dysglycemiain Adulthood. International Journal of Environmental Research and Public Health, 17(7), 2210. https://doi.org/10.3390/ijerph17072210