Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Discrete Choice Experiment
2.2. Setting
2.3. Attributes and Levels
2.4. Experiment Design
2.5. Survey and Data Collection
2.6. Statistical Analysis
ß5* IN 15% +ß6* IN 20% + ß7 * IN 25% + ß8* IN 30% +
ß9* LO Suburb + ß10 * LO Downtown
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Oi, J.C.; Rozelle, S.; Zhou, X. Growing Pains: Tensions and Opportunity in China’s Transformation; Walter, H., Ed.; Shorenstein Asia-Pacific Research Center: Stanford, CA, USA; Baltimore, MD, USA, 2010. [Google Scholar]
- Yip, W.; Fu, H.; Chen, A.T. 10 years of health-care reform in China: Progress and gaps in Universal Health Coverage. Lancet 2019, 394, 1192–1204. [Google Scholar] [CrossRef]
- Yip, W.; Hsiao, W.C. What drove the cycles of Chinese health system reforms? Heal. Syst. Reform 2015, 1, 52–61. [Google Scholar] [CrossRef]
- Cai, Y.; Wen, C.; Tang, L. Exploration and Consideration of the Medical Alliance Modes. Iran J. Public Health 2018, 47, 1160–1165. [Google Scholar] [PubMed]
- Master, R.J. Massachusetts Medicaid and the Community Medical Alliance: A new approach to contracting and care delivery for medicaid-eligible populations with AIDS and severe physical disability. Am. J. Manag. Care 1998, 4, SP90-8. [Google Scholar] [PubMed]
- Granderson, G. The Impacts of Hospital Alliance Membership, Alliance Size, and Repealing Certificate of Need Regulation, on the Cost Efficiency of Non-profit Hospitals. Manag. Decis. Econ. 2011, 32, 159–173. [Google Scholar] [CrossRef]
- Fu, H.; Li, L.; Li, M. An evaluation of systemic reforms of public hospitals: The Sanming model in China. Health Policy Plan 2017, 32, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, X.; Birch, S. People-centred integrated care in urban China/Soins integres axes sur l’etre humain en Chine urbaine/Atencion integrada centrada en las personas en las zonas urbanas de China. (Policy & practice). Bull. World Health Organ 2018, 96, 843. [Google Scholar] [CrossRef]
- Shi, L.; Song, K.; Rane, S. Factors associated with job satisfaction by Chinese primary care providers. Prim Health Care Res Dev. 2014, 15, 46–57. [Google Scholar] [CrossRef] [Green Version]
- The State Council of China. The State of Council’s guidelines on the development of medical alliance. 2017. Available online: http://www.gov.cn/zhengce/content/2017-04/26/content_5189071.htm (accessed on 15 February 2020).
- Lancsar, E.; Louviere, J. Conducting Discrete Choice Experiments to Inform Healthcare Decision Making. Pharmacoeconomics 2008, 26, 661–677. [Google Scholar] [CrossRef]
- Green, C.; Gerard, K. Exploring the social value of health-care interventions: A stated preference discrete choice experiment. Health Econ. 2009, 18, 951–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendts, G.; Jan, S.; Beck, M.J.; Howard, K. Preferences for the emergency department or alternatives for older people in aged care: A discrete choice experiment. Age Ageing 2017, 46, 124–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duane, B.; Mylene, L. A review of the application and contribution of discrete choice experiments to inform human resources policy interventions. Hum. Resour. Health 2009, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Street, D.J. The Construction of Optimal Stated Choice Experiments: Theory and Methods, 1st ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Zheng, H.; Shao, H.; Zhou, Y. Burnout Among Chinese Adult Reconstructive Surgeons: Incidence, Risk Factors, and Relationship With Intraoperative Irritability. J. Arthroplasty 2018, 33, 1253–1257. [Google Scholar] [CrossRef] [PubMed]
- Dolea, C.; Stormont, L.; Braichet, J.-M. Evaluated strategies to increase attraction and retention of health workers in remote and rural areas. Bull. World Health Organ. 2010, 88, 379. [Google Scholar] [CrossRef] [PubMed]
- Reimann, S.; Alfermann, D. Female Doctors in Conflict: How Gendering Processes in German Hospitals Influence Female Physicians’ Careers. Gender Issues 2018, 35, 52–70. [Google Scholar] [CrossRef]
- Mushfiqur, R.; Mordi, C.; Oruh, E.; Nwagbara, U.; Mordi, T.; Turner, I.M. The impacts of work-life-balance (WLB) challenges on social sustainability: The experience of Nigerian female medical doctors. Empl. Relat. 2018, 40, 868–888. [Google Scholar] [CrossRef]
- Mcclelland, L.; Holland, J.; Lomas, J.-P.; Redfern, N.; Plunkett, E. A national survey of the effects of fatigue on trainees in anaesthesia in the UK. Anaesthesia 2017, 72, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Quine, S.; Bernard, D.; Booth, M.; Kang, M.; Usherwood, T.; Alperstein, G.; Bennett, D. Health and access issues among Australian adolescents: A rural-urban comparison. Rural Remote Health 2003, 3, 245. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Li, L.; Bian, Y. Gender differences in job quality and job satisfaction among doctors in rural western China. BMC Health Serv. Res. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Mcgowan, Y.; Humphries, N.; Burke, H.; Conry, M.; Morgan, K. Through doctors’ eyes: A qualitative study of hospital doctor perspectives on their working conditions. Br. J. Health Psychol. 2013, 18, 874–891. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Schoenstein, M.; Buchan, J. Geographic Imbalances in Doctor Supply and Policy Responses; OECD Health Working Papers, No. 69; OECD Publishing: Paris, France, 2014. [Google Scholar] [CrossRef]
- Akhigbe, A.O.; Omuemu, V.O. Knowledge, attitudes and practice of breast cancer screening among female health workers in a Nigerian urban city. BMC Cancer 2009, 9, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcgrail, M.R.; Russell, D.J. Australia’s rural medical workforce: Supply from its medical schools against career stage, gender and rural-origin. Aust. J. Rural Health 2017, 25, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.M.; Li, S.; Yang, R.; Liu, T.; Chen, G. Job preferences for medical students in China A discrete choice experiment. Med. 2018, 97. [Google Scholar] [CrossRef]
- Rechel, B.; Džakula, A.; Duran, A.; Fattore, G.; Edwards, N.; Grignon, M.; Ricciardi, W. Hospitals in rural or remote areas: An exploratory review of policies in 8 high-income countries. Health Policy (New York) 2016, 120, 758–769. [Google Scholar] [CrossRef]
- Reed Johnson, F.; Lancsar, E.; Marshall, D.; Kilambi, V.; Mühlbacher, A.; Regier, D.A.; Bridges, J.F. Constructing Experimental Designs for Discrete-Choice Experiments: Report of the ISPOR Conjoint Analysis Experimental Design Good Research Practices Task Force. Value Heal. 2013, 16, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Kleij, K.-S.; Tangermann, U.; Amelung, V.E.; Krauth, C. Patients’ preferences for primary health care—A systematic literature review of discrete choice experiments. (Report). BMC Health Serv. Res. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Economics; Academic Press: New York, NY, USA, 1974; pp. 105–142. [Google Scholar] [CrossRef]
- Hauber, A.B.; Gonzalez, J.; Groothuis-Oudshoorn, C.; Prior, T.; Marshall, D.A.; Cunningham, C.; Bridges, J.F. Statistical Methods for the Analysis of Discrete Choice Experiments: A Report of the ISPOR Conjoint Analysis Good Research Practices Task Force. Value Heal. 2016, 19, 300–315. [Google Scholar] [CrossRef] [Green Version]
- Annual doctor report in China. 2018. Available online: https://file.medtrib.cn/pdf/1bb75dd4-1f21-4784-8f36-18547c9576b1/ (accessed on 15 February 2020).
- Cappuccio, F.P. Optimising rotas, not doctors’ behaviour, will improve safety. BMJ 2018, 361. [Google Scholar] [CrossRef]
- China Hospital Association. The ‘brain drain’ of medical talents in county-level hospitals in China. Available online: http://www.cha.org.cn/plus/view.php?aid=10261 (accessed on 15 February 2020).
- Hoyal, F.M.D. Retensions of rural doctors. Aust. J. Rural Health 1995, 3, 2–9. [Google Scholar] [CrossRef]
- Rémuzat, C.; Toumi, M. Health care system inefficiencies related to medicines: Any potential room for improvement? Value Heal. 2016, 19, A497. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed17&NEWS=N&AN=613234755 (accessed on 15 February 2020).
- Soekhai, V.; Bekker-Grob, E.; Ellis, A.; Vass, C.M. Discrete Choice Experiments in Health Economics: Past, Present and Future. Pharmacoeconomics 2019, 37, 201–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Attribute | Level |
---|---|
Increment in working time per week |
|
Increment in the income per month |
|
Location of working hospital |
|
Plan A* | Plan B | |
---|---|---|
Increment in working time per week | 5 h more | 2 h more |
Increment in the income per month | 30% more | 15% more |
The location of working hospital | suburb | downtown |
WHICH PLAN YOU PREFER | □ | □ |
n = 311 | % = 100 | Questionnaire | ||||
---|---|---|---|---|---|---|
Ver1 | Ver2 | χ2/F-Value | p-Value | |||
Sex | ||||||
Male | 190 | 61.09 | 83 | 107 | 1.04 | 0.309 |
Female | 121 | 38.91 | 60 | 61 | ||
Educational level | ||||||
Bachelor | 149 | 48.38 | 71 | 78 | 5.98 | 0.051 |
Master | 105 | 34.09 | 54 | 51 | ||
Ph.D | 54 | 17.53 | 17 | 37 | ||
Medical career grades | ||||||
Resident | 90 | 28.94 | 48 | 42 | 6.26 | 0.1 |
Resident specialist | 105 | 33.76 | 52 | 53 | ||
Associate consultant | 80 | 25.72 | 29 | 51 | ||
Consultant | 36 | 11.58 | 14 | 22 | ||
Ward’s leader | ||||||
Yes | 132 | 43.28 | 53 | 79 | 3.09 | 0.08 |
No | 173 | 56.72 | 87 | 86 | ||
Income | ||||||
Lower than average | 148 | 47.59 | 72 | 76 | 0.85 | 0.65 |
Equal to average | 139 | 44.69 | 61 | 78 | ||
Higher than average | 24 | 7.72 | 10 | 14 | ||
Age (mean, sd) | 38.86 | 8.83 | 36.03 | 37.57 | 2.35 | 0.126 |
Working years (mean, sd) | 11.91 | 8.82 | 11.34 | 12.37 | 0.96 | 0.328 |
Attribute Levels | Beta | Std. Err. | OR | 95% C.I. | p-Value |
---|---|---|---|---|---|
Constant (ß0) | −0.27 | 0.04 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.46 | 0.09 | 1.58 | 1.32, 1.88 | <0.001 |
3 h (ß2) | 0.70 | 0.08 | 2.02 | 1.72, 2.39 | <0.001 |
2 h (ß3) | 1.01 | 0.09 | 2.75 | 2.23, 3.32 | <0.001 |
1 h (ß4) | 1.40 | 0.09 | 4.07 | 3.42, 4.85 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.29 | 0.07 | 1.33 | 1.16, 1.54 | <0.001 |
20% (ß6) | 0.80 | 0.08 | 2.29 | 1.9, 2.64 | <0.001 |
25% (ß7) | 0.89 | 0.07 | 2.44 | 2.1, 2.83 | <0.001 |
30% (ß8) | 1.19 | 0.11 | 3.30 | 2.64, 4.14 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.31 | 0.08 | 1.36 | 1.16, 1.58 | <0.001 |
Downtown (ß10) | 0.75 | 0.09 | 2.11 | 1.73, 2.56 | <0.001 |
Scenario Description (Attributes/Levels) | ||||||
---|---|---|---|---|---|---|
Ranked by Probability | Time Increment | Income Increment | Working Place | Utility | Probability (%) | Cumulative Probability (%) |
1 | 1 h | 30% | Downtown | 3.07 | 5.37 | 5.37 |
2 | 1 h | 25% | Downtown | 2.77 | 3.98 | 9.35 |
3 | 1 h | 20% | Downtown | 2.68 | 3.64 | 12.99 |
4 | 2 h | 30% | Downtown | 2.68 | 3.64 | 16.63 |
5 | 1 h | 30% | Suburb | 2.63 | 3.46 | 20.09 |
6 | 2 h | 25% | Downtown | 2.38 | 2.69 | 22.78 |
7 | 3 h | 30% | Downtown | 2.37 | 2.67 | 25.45 |
8 | 1 h | 25% | Suburb | 2.33 | 2.56 | 28.02 |
9 | 1 h | 30% | County | 2.32 | 2.54 | 30.55 |
10 | 2 h | 20% | Downtown | 2.29 | 2.46 | 33.02 |
66 | 5 h | 20% | County | 0.53 | 0.42 | 97.05 |
67 | 4 h | 10% | Suburb | 0.5 | 0.41 | 97.46 |
68 | 4 h | 15% | County | 0.48 | 0.4 | 97.86 |
69 | 5 h | 10% | Downtown | 0.48 | 0.4 | 98.26 |
70 | 3 h | 10% | County | 0.43 | 0.38 | 98.65 |
71 | 5 h | 15% | Suburb | 0.33 | 0.35 | 98.99 |
72 | 4 h | 10% | County | 0.19 | 0.3 | 99.30 |
73 | 5 h | 10% | Suburb | 0.04 | 0.26 | 99.56 |
74 | 5 h | 15% | County | 0.02 | 0.25 | 99.81 |
75 | 5 h | 10% | County | -0.27 | 0.19 | 100.00 |
Attribute Levels | Beta | Std. Err. | OR | 95%C.I. | p-Value |
---|---|---|---|---|---|
Male | |||||
Constant (ß0) | −0.28 | 0.06 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.27 | 0.11 | 1.31 | 1.05, 1.65 | 0.017 |
3 h (ß2) | 0.46 | 0.11 | 1.59 | 1.3, 1.95 | <0.001 |
2 h (ß3) | 0.74 | 0.12 | 2.11 | 1.67, 2.66 | <0.001 |
1 h (ß4) | 1.13 | 0.11 | 3.10 | 2.48, 3.86 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.29 | 0.09 | 1.28 | 1.07, 1.54 | <0.001 |
20% (ß6) | 0.77 | 0.11 | 2.15 | 1.75, 2.66 | <0.001 |
25% (ß7) | 0.91 | 0.09 | 2.49 | 2.05, 3.03 | <0.001 |
30% (ß8) | 1.16 | 0.15 | 3.19 | 2.41, 4.26 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.15 | 0.09 | 1.16 | 0.96, 1.42 | 0.124 |
Downtown (ß10) | 0.43 | 0.12 | 1.53 | 1.21, 1.95 | <0.001 |
Female | |||||
Constant (ß0) | −0.27 | 0.07 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.76 | 0.15 | 2.13 | 1.6, 2.83 | <0.001 |
3 h (ß2) | 1.10 | 0.16 | 3.02 | 2.32, 3.94 | <0.001 |
2 h (ß3) | 1.48 | 0.14 | 4.37 | 3.22, 5.93 | <0.001 |
1 h (ß4) | 1.89 | 0.15 | 6.63 | 4.9, 8.94 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.35 | 0.12 | 1.42 | 1.13, 1.79 | 0.003 |
20% (ß6) | 0.89 | 0.14 | 2.43 | 1.84, 3.22 | <0.001 |
25% (ß7) | 0.90 | 0.13 | 2.47 | 1.93, 3.16 | <0.001 |
30% (ß8) | 1.30 | 0.19 | 3.67 | 2.53, 5.31 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.61 | 0.14 | 1.84 | 1.4, 2.41 | <0.001 |
Downtown (ß10) | 1.33 | 0.17 | 3.78 | 2.69, 5.26 | <0.001 |
Attribute Levels | Beta | Std. Err. | OR | 95% C.I. | p-Value |
---|---|---|---|---|---|
Junior staff | |||||
Constant (ß0) | −0.24 | 0.05 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.54 | 0.11 | 1.72 | 1.38, 2.16 | <0.001 |
3 h (ß2) | 0.86 | 0.10 | 2.21 | 1.8, 2.69 | <0.001 |
2 h (ß3) | 1.02 | 0.12 | 2.76 | 2.2, 3.49 | <0.001 |
1 h (ß4) | 1.35 | 0.11 | 3.87 | 3.1, 4.81 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.25 | 0.09 | 1.28 | 1.08, 1.52 | 0.005 |
20% (ß6) | 0.73 | 0.11 | 2.08 | 1.68, 2.59 | <0.001 |
25% (ß7) | 0.86 | 0.09 | 2.35 | 1.95, 2.83 | <0.001 |
30% (ß8) | 1.09 | 0.14 | 2.98 | 2.25, 3.97 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.21 | 0.10 | 1.24 | 1.01, 1.51 | 0.036 |
Downtown (ß10) | 0.72 | 0.12 | 2.05 | 1.6, 2.64 | 0.001 |
Senior staff | |||||
Constant (ß0) | −0.29 | 0.07 | <0.001 | ||
Working time | |||||
4 h (ß1) | 0.33 | 0.15 | 1.39 | 1.03, 1.86 | 0.032 |
3 h (ß2) | 0.57 | 0.14 | 1.76 | 1.34, 2.34 | <0.001 |
2 h (ß3) | 1.02 | 0.16 | 2.78 | 2.03, 3.82 | <0.001 |
1 h (ß4) | 1.49 | 0.15 | 4.46 | 3.32, 5.99 | <0.001 |
Monthly income increment | |||||
15% (ß5) | 0.34 | 0.12 | 1.41 | 1.11, 1.79 | 0.005 |
20% (ß6) | 0.93 | 0.14 | 2.54 | 1.93, 3.35 | <0.001 |
25% (ß7) | 0.97 | 0.13 | 2.63 | 2.03, 3.42 | <0.001 |
30% (ß8) | 1.39 | 0.29 | 4.04 | 2.77, 5.87 | <0.001 |
Working place | |||||
Suburb (ß9) | 0.47 | 0.13 | 1.60 | 1.25, 2.05 | <0.001 |
Downtown (ß10) | 0.79 | 0.16 | 2.22 | 1.63, 3 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.H.; Zhou, L.; Li, Y.; Wang, D. Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment. Int. J. Environ. Res. Public Health 2020, 17, 2215. https://doi.org/10.3390/ijerph17072215
Xu RH, Zhou L, Li Y, Wang D. Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment. International Journal of Environmental Research and Public Health. 2020; 17(7):2215. https://doi.org/10.3390/ijerph17072215
Chicago/Turabian StyleXu, Richard Huan, Lingming Zhou, Yong Li, and Dong Wang. 2020. "Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment" International Journal of Environmental Research and Public Health 17, no. 7: 2215. https://doi.org/10.3390/ijerph17072215
APA StyleXu, R. H., Zhou, L., Li, Y., & Wang, D. (2020). Doctor’s Preference in Providing Medical Service for Patients in the Medical Alliance: A Pilot Discrete Choice Experiment. International Journal of Environmental Research and Public Health, 17(7), 2215. https://doi.org/10.3390/ijerph17072215