Determining the Influencing Factors of Biogas Technology Adoption Intention in Pakistan: The Moderating Role of Social Media
Abstract
:1. Introduction
2. Literature Review
2.1. The Energy Situation in Pakistan
2.2. Biogas Potential in Pakistan
2.3. Norm Activation Model (NAM)
2.4. Research Framework and Hypothesis Development
2.5. Environmental Concerns
2.6. Perceived Consumer Effectiveness (PCE)
2.7. Moderating Role of Social Media
3. Methodology
3.1. Sample and Procedure
3.2. Measurement Items
4. Data Analysis using Structural Equation Modeling (PLS-SEM)
4.1. Measurement Model
4.2. Structural Model
4.3. Moderating Role of Social Media
5. Discussion
5.1. Practical Implications
5.2. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- Posts of statements referring to the environment appear in the newsfeed of my social media account.
- Posts to videos on environmentally damaging events due to non-renewable energy resources appear in the newsfeed of my social media account.
- Posts to links to renewable energy technologies websites appear in the newsfeed of my social media account.
- Adoption of biogas technology can lower the exhaustion of natural resources.
- Adoption of biogas technology can reduce harm to the environment.
- Adoption of biogas technology can mitigate global warming.
- I pay close attention to environmental protection and energy conservation.
- I have a sense of mission to save energy and protect the environment.
- I think the use of non-renewable energy resources can affect the environment pollution.
- I feel jointly responsible for the exhaustion of fossil fuels.
- I feel joint responsibility for the contribution of non-renewable energy resources usage to global warming.
- I feel joint responsibility for the contribution of non-renewable energy resources usage to local ecological damage.
- I feel joint responsibility for the negative consequences of non-renewable energy resources usage.
- Each person’s behavior can have a positive effect on society by adopting biogas technology.
- I feel I can help solve natural resource problem by adopting biogas technology.
- I can protect the environment by adopting biogas technology.
- There is not much that I can do about the environment (Reverse).
- I feel a moral obligation to conserve non-renewable energy resources and protect the environment no matter what other people do.
- I feel that it is important to use non-renewable energy resources as little as possible.
- I feel a moral obligation to use renewable energy resources instead of non-renewable energy resources.
- People like me should do everything they can do to decrease the use of non-renewable energy resources.”
References
- Zhou, K.; Yang, S.; Shen, C.; Ding, S.; Sun, C. Energy conservation and emission reduction of China’s electric power industry. Renew. Sustain. Energy Rev. 2015, 45, 10–19. [Google Scholar] [CrossRef]
- Amir, S.M.; Liu, Y.; Shah, A.A.; Khayyam, U.; Mahmood, Z. Empirical study on influencing factors of biogas technology adoption in Khyber Pakhtunkhwa, Pakistan. Energy Environ. 2019, 31, 1–22. [Google Scholar] [CrossRef]
- Yasmin, N.; Grundmann, P. Pre- and Post-Adoption Beliefs about the Diffusion and Continuation of Biogas-Based Cooking Fuel Technology in Pakistan. Energies 2019, 12, 3184. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.A.S. Introduction to special issue on new studies in EROI (Energy Return on Investment). Sustainability 2011, 3, 1773–1777. [Google Scholar] [CrossRef] [Green Version]
- Bianco, V.; Manca, O.; Nardini, S. Electricity consumption forecasting in Italy using linear regression models. Energy 2009, 34, 1413–1421. [Google Scholar] [CrossRef]
- Amigun, B.; Sigamoney, R.; von Blottnitz, H. Commercialisation of biofuel industry in Africa: A review. Renew. Sustain. Energy Rev. 2008, 12, 690–711. [Google Scholar] [CrossRef]
- Arshad, M.; Bano, I.; Khan, N.; Imran, M.; Younus, M. Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan. Renew. Sustain. Energy Rev. 2018, 81, 1–6. [Google Scholar] [CrossRef]
- Coyle, E.D.; Simmons, R.A. Understanding the Global Energy Crisis; Purdue University Press: West Lafayette, IN, USA, 2014. [Google Scholar]
- Garfi, M.; Castro, L.; Montero, N.; Escalante, H.; Ferrer, I. Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresour. Technol. 2019, 274, 541–548. [Google Scholar] [CrossRef]
- Iwaro, J.; Mwasha, A. Towards energy sustainability in the world: The implications of energy subsidy for developing countries. Int. J. Energy Environ. 2010, 1, 705–714. [Google Scholar]
- Uddin, W.; Khan, B.; Shaukat, N.; Majid, M.; Mujtaba, G.; Mehmood, A.; Ali, S.M.; Younas, U.; Anwar, M.; Almeshal, A.M.; et al. Biogas potential for electric power generation in Pakistan: A survey. Renew. Sustain. Energy Rev. 2016, 54, 25–33. [Google Scholar] [CrossRef]
- Han, J.; Mol, A.P.J.; Lu, Y.; Zhang, L. Small-scale bioenergy projects in rural China: Lessons to be learnt. Energy Policy 2008, 36, 2154–2162. [Google Scholar] [CrossRef]
- Irfan, M.; Zhao, Z.Y.; Panjwani, M.K.; Mangi, F.H.; Li, H.; Jan, A.; Ahmad, M.; Rehman, A. Assessing the energy dynamics of Pakistan: Prospects of biomass energy. Energy Rep. 2020, 6, 80–93. [Google Scholar] [CrossRef]
- IKessides, N. Chaos in power: Pakistan’s electricity crisis. Energy Policy 2013, 55, 271–285. [Google Scholar] [CrossRef]
- Yasar, A.; Nazir, S.; Tabinda, A.B.; Nazar, M.; Rasheed, R.; Afzaal, M. Socio-economic, health and agriculture benefits of rural household biogas plants in energy scarce developing countries: A case study from Pakistan. Renew. Energy 2017, 108, 19–25. [Google Scholar] [CrossRef]
- Yasmin, N.; Grundmann, P. Adoption and diffusion of renewable energy—The case of biogas as alternative fuel for cooking in Pakistan. Renew. Sustain. Energy Rev. 2019, 101, 255–264. [Google Scholar] [CrossRef]
- Martinez-Hernandez, E.; Amezcua-Allieri, M.A.; Sadhukhan, J.; Anell, J.A. Sugarcane Bagasse Valorization Strategies for Bioethanol and Energy Production. Sugarcane 2018. [Google Scholar] [CrossRef] [Green Version]
- Amjid, S.S.; Bilal, M.Q.; Nazir, M.S.; Hussain, A. Biogas, renewable energy resource for Pakistan. Renew. Sustain. Energy Rev. 2011, 15, 1–5. [Google Scholar] [CrossRef]
- Gupta, M.K. Handbook of Organic Farming and Bio-Fertilizers; ABD Publishers: Jaipur, India, 2007. [Google Scholar]
- Abbas, T.; Ali, G.; Adil, S.A.; Bashir, M.K.; Kamran, M.A. Economic analysis of biogas adoption technology by rural farmers: The case of Faisalabad district in Pakistan. Renew. Energy 2017, 107, 431–439. [Google Scholar] [CrossRef]
- Yadav, R. Altruistic or egoistic: Which value promotes organic food consumption among young consumers ? A study in the context of a developing nation. J. Retail. Consum. Serv. 2016, 33, 1–6. [Google Scholar] [CrossRef]
- Schwartz, S.H. Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. Adv. Exp. Soc. Psychol. 1992, 25, 1–65. [Google Scholar]
- Kareklas, I.; Carlson, J.R.; Muehling, D.D. ‘I eat organic for my benefit and yours’: Egoistic and altruistic considerations for purchasing organic food and their implications for advertising strategists. J. Advert. 2014, 43, 18–32. [Google Scholar] [CrossRef]
- Ansari, S.H.; Khan, M.S.; Haider, M.S.; Ahmad, A.; Ahmad, M.A. A study on economic feasibility of biogas plant for a small town | request pdf. Sci. Int. 2011, 23, 325–326. [Google Scholar]
- Schwartz, S.H. Normative influences on altruism. In Advances in Experimental Social Psychology; Elsevier: Amsterdam, The Netherlands, 1977; Volume 10. [Google Scholar]
- Song, Y.; Zhao, C.; Zhang, M. Does haze pollution promote the consumption of energy-saving appliances in China? An empirical study based on norm activation model. Resour. Conserv. Recycl. 2019, 145, 220–229. [Google Scholar] [CrossRef]
- Han, H. Travelers’ pro-environmental behavior in a green lodging context: Converging value-belief-norm theory and the theory of planned behavior. Tour. Manag. 2015, 47, 164–177. [Google Scholar] [CrossRef]
- Moser, A.K. Consumers’ purchasing decisions regarding environmentally friendly products: An empirical analysis of German consumers. J. Retail. Consum. Serv. 2016, 31, 389–397. [Google Scholar] [CrossRef]
- Khare, A. Antecedents to green buying behaviour: A study on consumers in an emerging economy. Mark. Intell. Plan. 2015, 33, 309–329. [Google Scholar] [CrossRef]
- Hynes, N.; Wilson, J. I do it, but don’t tell anyone! Personal values, personal and social norms: Can social media play a role in changing pro-environmental behaviours? Technol. Forecast. Soc. Chang. 2016, 111, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Jaini, A.; Quoquab, F.; Mohammad, J.; Hussin, N. ‘I buy green products, do you…?’: The moderating effect of eWOM on green purchase behavior in Malaysian cosmetics industry. Int. J. Pharm. Healthc. Mark. 2019. [Google Scholar] [CrossRef]
- Wamuyu, P.K. Leveraging Web 2.0 technologies to foster collective civic environmental initiatives among low-income urban communities. Comput. Human Behav. 2018, 85, 1–14. [Google Scholar] [CrossRef]
- Trivedi, R.H.; Patel, J.D.; Acharya, N. Causality analysis of media influence on environmental attitude, intention and behaviors leading to green purchasing. J. Clean. Prod. 2018, 196, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Bhutto, A.W.; Bazmi, A.A.; Zahedi, G. Greener energy: Issues and challenges for Pakistan—Biomass energy prospective. Renew. Sustain. Energy Rev. 2011, 15, 3207–3219. [Google Scholar] [CrossRef]
- Irfan, M.; Zhao, Z.Y.; Ahmad, M.; Rehman, A. A techno-economic analysis of off-grid solar PV system: A case study for Punjab Province in Pakistan. Processes 2019, 7, 708. [Google Scholar] [CrossRef] [Green Version]
- Ghafoor, A.; Munir, A. Design and economics analysis of an off-grid PV system for household electrification. Renew. Sustain. Energy Rev. 2015, 42, 496–502. [Google Scholar] [CrossRef]
- Asif, M. Sustainable energy options for Pakistan. Renew. Sustain. Energy Rev. 2009, 13, 903–909. [Google Scholar] [CrossRef]
- Butt, S.; Hartmann, I.; Lenz, V. Bioenergy potential and consumption in Pakistan. Biomass Bioenergy 2013, 58, 379–389. [Google Scholar] [CrossRef]
- Whiting, A.; Azapagic, A. Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 2014, 70, 181–193. [Google Scholar] [CrossRef]
- Jan, I.; Akram, W. Willingness of rural communities to adopt biogas systems in Pakistan: Critical factors and policy implications. Renew. Sustain. Energy Rev. 2018, 81, 1–8. [Google Scholar] [CrossRef]
- Ashraf, S.; Luqman, M.; Yousaf, Z.; Yaqoob, A. Determinants of Biogas Technology Adoption in Pakistan. Pakistan J. Sci. Ind. Res. Ser. A 2019, 62, 1–11. [Google Scholar]
- Javed, M.S.; Raza, R.; Hassan, I.; Saeed, R.; Shaheen, N.; Iqbal, J.; Shaukat, S.F. The energy crisis in Pakistan: A possible solution via biomass-based waste. J. Renew. Sustain. Energy 2016, 8, 043102. [Google Scholar] [CrossRef]
- Ghimire, P.C. Final Report on Technical Study of Biogas Plants Installed in Pakistan. Available online: https://bibalex.org/baifa/Attachment/Documents/172360.pdf (accessed on 18 March 2020).
- Schwartz, S.H.; Howard, J.A. A Normative Decision-Making Model of Altruism. Available online: https://www.semanticscholar.org/paper/A-Normative-Decision-Making-Model-of-Altruism-Schwartz-Howard/6c216e91935e53153633a8d07531ed03af4c269b (accessed on 18 March 2020).
- van der Werff, E.; Steg, L. One model to predict them all: Predicting energy behaviours with the norm activation model. Energy Res. Soc. Sci. 2015, 6, 8–14. [Google Scholar] [CrossRef]
- Wittenberg, I.; Blobaum, A.; Matthies, E. Environmental motivations for energy use in PV households: Proposal of a modified norm activation model for the specific context of PV households. J. Environ. Psychol. 2018, 55, 110–120. [Google Scholar] [CrossRef]
- Lv, R.S.; Lu, H.N.; Hong, S. Research on affecting factors of energy saving behavior based on norm activation model. J. Arid L. Resour. Environ. 2016, 9, 14–18. [Google Scholar]
- Zhang, X.; Geng, G.; Sun, P. Determinants and implications of citizens environmental complaint in China: Integrating theory of planned behavior and norm activation model. J. Clean. Prod. 2017, 166, 148–156. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Zhao, K. Antecedents of citizens’ environmental complaint intention in China: An empirical study based on norm activation model. Resour. Conserv. Recycl. 2018, 134, 121–128. [Google Scholar] [CrossRef]
- de Groot, J.; Steg, L. Morality and prosocial behavior: The role of awareness, responsibility, and norms in the norm activation model. J. Soc. Psychol. 2009, 149, 425–449. [Google Scholar] [CrossRef] [PubMed]
- Hopper, J.R.; Nielsen, J.M. Recycling as altruistic behavior: Normative and Behavioral Strategies to Expand Participation in a Community Recycling Program. Environ. Behav. 1991, 23, 195–220. [Google Scholar] [CrossRef]
- Peters, A.; Gutscher, H.; Scholz, R.W. Psychological determinants of fuel consumption of purchased new cars. Transp. Res. Part F Traffic Psychol. Behav. 2011, 14, 229–239. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Zhan, W. How to activate moral norm to adopt electric vehicles in China? An empirical study based on extended norm activation theory. J. Clean. Prod. 2018, 172, 3546–3556. [Google Scholar] [CrossRef]
- Klockner, C.A.; Matthies, E. Structural modeling of car use on the way to the university in different settings: Interplay of norms, habits, situational restraints, and perceived behavioral control. J. Appl. Soc. Psychol. 2009, 39, 1807–1834. [Google Scholar] [CrossRef]
- Hunecke, M.; Blobaum, A.; Matthies, E.; Hoger, R. Responsibility and environment: Ecological norm orientation and external factors in the domain of travel mode choice behavior. Environ. Behav. 2001, 33, 830–852. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, S.M. Antecedents of green purchase behavior: An examination of collectivism, environmental concern, and PCE. Adv. Consum. Res. 2005, 32, 1–9. [Google Scholar]
- de Groot, J.; Steg, L. General beliefs and the theory of planned behavior: The role of environmental concerns in the TPB. J. Appl. Soc. Psychol. 2007, 37, 1817–1836. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.F.; Tung, P.J. Developing an extended Theory of Planned Behavior model to predict consumers’ intention to visit green hotels. Int. J. Hosp. Manag. 2014, 36, 221–230. [Google Scholar] [CrossRef]
- Wesley, S.C.; Lee, M.Y.; Kim, E.Y. The Role of Perceived Consumer Effectiveness and Motivational Attitude on Socially Responsible Purchasing Behavior in South Korea. J. Glob. Mark. 2012, 25, 29–44. [Google Scholar] [CrossRef]
- Tobler, C.; Visschers, V.H.M.; Siegrist, M. Eating green. Consumers’ willingness to adopt ecological food consumption behaviors. Appetite 2011, 57, 674–682. [Google Scholar] [CrossRef]
- Kinnear, T.C.; Taylor, J.R.; Ahmed, S.A.; Lynch, P.; Chandler, R.; En, N. Ecologically Concerned Consumers: Who Are They? J. Mark. 1974, 38, 1–5. [Google Scholar] [CrossRef]
- Straughan, R.D.; Roberts, J.A. Environmental segmentation alternatives: A look at green consumer behavior in the new millennium. J. Consum. Mark. 1999, 16, 558–575. [Google Scholar] [CrossRef]
- Kang, J.; Liu, C.; Kim, S.H. Environmentally sustainable textile and apparel consumption: The role of consumer knowledge, perceived consumer effectiveness and perceived personal relevance. Int. J. Consum. Stud. 2013, 37, 442–452. [Google Scholar] [CrossRef]
- Yu, T.Y.; Yu, T.K.; Chao, C.M. Understanding Taiwanese undergraduate students’ pro-environmental behavioral intention towards green products in the fight against climate change. J. Clean. Prod. 2017, 161, 390–402. [Google Scholar] [CrossRef]
- Wang, T. Social identity dimensions and consumer behavior in social media. Asia Pacific Manag. Rev. 2017, 22, 45–51. [Google Scholar] [CrossRef]
- Grevet, C.; Mankoff, J. Motivating Sustainable Behavior through Social Comparison on Online Social Visualization. Available online: https://pdfs.semanticscholar.org/693d/4134daad1f174a30d5205d335d395da00622.pdf (accessed on 18 March 2020).
- van Leeuwen, E.; Täuber, S. Demonstrating knowledge: The effects of group status on outgroup helping. J. Exp. Soc. Psychol. 2011, 47, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Han, R. The influence of place attachment on pro-environmental behaviors: The moderating effect of social media. Int. J. Environ. Res. Public Health 2019, 16, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muralidharan, S.; Rejón-Guardia, F.; Xue, F. Understanding the green buying behavior of younger Millennials from India and the United States: A structural equation modeling approach. J. Int. Consum. Mark. 2016, 28, 54–72. [Google Scholar] [CrossRef]
- Senbel, M.; Ngo, V.D.; Blair, E. Social mobilization of climate change: University students conserving energy through multiple pathways for peer engagement. J. Environ. Psychol. 2014, 38, 84–93. [Google Scholar] [CrossRef]
- Grainger, M.J.; Stewart, G.B. The jury is still out on social media as a tool for reducing food waste a response to Young et al. (2017). Resour. Conserv. Recycl. 2017, 122, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Young, C.W.; Russell, S.V.; Barkemeyer, R. Social media is not the ‘silver bullet’ to reducing household food waste, a response to Grainger and Stewart (2017). Resour. Conserv. Recycl. 2017, 122, 405–406. [Google Scholar] [CrossRef]
- Calder, B.J.; Phillips, L.W.; Tybout, A.M. Designing Research for Application. J. Consum. Res. 1981, 8, 197–207. [Google Scholar] [CrossRef]
- Gautam, R.; Baral, S.; Herat, S. Biogas as a sustainable energy source in Nepal: Present status and future challenges. Renew. Sustain. Energy Rev. 2009, 13, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage: Thousand Oaks, CA, USA, 2016; p. 45. [Google Scholar]
- Zhang, Y.; Wang, Z.; Zhou, G. Antecedents of employee electricity saving behavior in organizations: An empirical study based on norm activation model. Energy Policy 2013, 62, 1120–1127. [Google Scholar] [CrossRef]
- Smith, J.R.; McSweeney, A. Charitable Giving: The Effectiveness of a Revised Theory of Planned Behaviour Model in Predicting Donating Intentions and Behaviour. J. Community Appl. Soc. Psychol. 2007, 17, 363–386. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Guo, D. Policy implications of the purchasing intentions towards energy-efficient appliances among China’s urban residents: Do subsidies work? Energy Policy 2017, 102, 430–439. [Google Scholar] [CrossRef]
- Oakley, R.L.; Salam, A.F. Examining the impact of computer-mediated social networks on individual consumerism environmental behaviors. Comput. Human Behav. 2014, 35, 516–526. [Google Scholar] [CrossRef]
- Sujata, M.; Khor, K.S.; Ramayah, T.; Teoh, A.P. The role of social media on recycling behaviour. Sustain. Prod. Consum. 2019, 20, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Brislin, R.W. Back-Translation for Cross-Cultural Research. J. Cross. Cult. Psychol. 1970, 1, 185–216. [Google Scholar] [CrossRef]
- Richter, N.; Cepeda-Carrion, G.; Roldán, J.; Ringle, C. European management research using Partial Least Squares Structural Equation Modeling (PLS-SEM). Eur. Manag. J. 2016, 34, 589–597. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W.; Newsted, P.R. Structural equation modeling analysis with small samples using partial least squares. Stat. Strateg. Small Sample Res. 1999, 1, 307–341. [Google Scholar]
- Ramayah, T.; Ahmad, N.H.; Halim, H.A.; Zainal, S.R.M.; Lo, M.C. Discriminant analysis: An illustrated example. African J. Bus. Manag. 2010, 4, 1654–1667. [Google Scholar]
- Osborne, J.W. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 1–9. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 2009, 20, 277–319. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–151. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM) An emerging tool in business research. Pract. Assess. Res. Eval. 2014, 2, 1–45. [Google Scholar]
- Anderson, J.C.; Gerbing, D.W. Structural Equation Modeling in Practice: A Review and Recommended Two-Step Approach. Psychl. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Gold, A.H.; Malhotra, A.; Albert, H. Knowledge Management: An Organizational Capabilities Perspective. J. Manag. Inf. Syst. 2001, 18, 185–214. [Google Scholar] [CrossRef]
- Akbar, A.; Ali, S.; Ahmad, M.A.; Akbar, M.; Danish, M. Understanding the Antecedents of Organic Food Consumption in Pakistan: Moderating Role of Food Neophobia. Int. J. Environ. Res. Public Health 2019, 16, 4043. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; New York University: New York, NY, USA, 1988. [Google Scholar]
- Ghimire, P.C. SNV supported domestic biogas programmes in Asia and Africa. Renew. Energy 2013, 49, 90–94. [Google Scholar] [CrossRef]
- Boers, W.; Esthete, G. Biogas in Ethiopia: From Skepticism to Enthusiasm. Available online: https://bibalex.org/baifa/en/resources/document/283954 (accessed on 18 March 2020).
- Park, J.; Ha, S. Understanding Consumer Recycling Behavior: Combining the Theory of Planned Behavior and the Norm Activation Model. Fam. Consum. Sci. Res. J. 2014, 42, 278–291. [Google Scholar] [CrossRef]
- Shin, Y.H.; Im, J.; Jung, S.E.; Severt, K. The theory of planned behavior and the norm activation model approach to consumer behavior regarding organic menus. Int. J. Hosp. Manag. 2018, 69, 21–29. [Google Scholar] [CrossRef]
- Shi, H.; Fan, J.; Zhao, D. Predicting household PM2.5-reduction behavior in Chinese urban areas: An integrative model of Theory of Planned Behavior and Norm Activation Theory. J. Clean. Prod. 2017, 145, 64–73. [Google Scholar] [CrossRef]
- Vermeir, I.; Verbeke, W. Sustainable food consumption among young adults in Belgium: Theory of planned behaviour and the role of confidence and values. Ecol. Econ. 2008, 64, 542–553. [Google Scholar] [CrossRef]
- Gallivan, M.J.; Spitler, V.K.; Koufaris, M. Does information technology training really matter? A social information processing analysis of coworkers’ influence on IT usage in the workplace. J. Manag. Inf. Syst. 2005, 22, 153–192. [Google Scholar] [CrossRef]
- Young, S.D.; Jordan, A.H. The influence of social networking photos on social norms and sexual health behaviors. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, A.M.; Sulaiman, A.; Jaafar, N.I. Understanding civic engagement behaviour on facebook from a social capital theory perspective. Behav. Inf. Technol. 2014, 34, 1–14. [Google Scholar] [CrossRef]
- Elliot, S. Transdisciplinary perspectives on environmental sustainability: A resource base and framework for it-enabled business transformation appendix A methodological details. MIS Q. 2011, 35, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Diouf, B.; Miezan, E. The biogas initiative in developing countries, from technical potential to failure: The case study of Senegal. Renew. Sustain. Energy Rev. 2019, 101, 248–254. [Google Scholar] [CrossRef]
Variables | Characteristics | Frequency | Percentage |
---|---|---|---|
Gender | Male | 117 | 61.26 |
Female | 74 | 38.74 | |
Age | Less than 20 | 26 | 13.61 |
21–30 | 58 | 30.37 | |
31–45 | 42 | 21.99 | |
46–55 | 35 | 18.32 | |
56–65 | 19 | 9.95 | |
65 and above | 11 | 5.76 | |
Income | Less than 50,000 | 35 | 18.32 |
50,001–75,000 | 62 | 32.46 | |
75,001–100,000 | 46 | 24.08 | |
100,001–125,000 | 33 | 17.28 | |
125,001–and over | 15 | 7.86 | |
Head of Cattle | 5–10 | 38 | 19.90 |
11–15 | 48 | 25.13 | |
16–20 | 65 | 34.03 | |
21–25 | 18 | 9.42 | |
26– and above | 22 | 11.52 | |
Cultivate Land area | 12.5–20 | 43 | 22.52 |
21–30 | 82 | 42.93 | |
31–40 | 40 | 20.94 | |
41– and above | 26 | 13.61 |
Constructs | Item | Loading | CR | AVE |
---|---|---|---|---|
Personal norm | PN1 | 0.732 | 0.836 | 0.562 |
PN2 | 0.680 | |||
PN3 | 0.809 | |||
PN4 | 0.732 | |||
Awareness of consequences | AC1 | O.806 | 0.833 | 0.625 |
AC2 | 0.803 | |||
AC3 | 0.761 | |||
Ascription of responsibility | AR1 | 0.745 | 0.840 | 0.569 |
AR2 | 0.768 | |||
AR3 | 0.713 | |||
AR4 | 0.788 | |||
Environmental concern | EC1 | 0.809 | 0.843 | 0.642 |
EC2 | 0.785 | |||
EC3 | 0.809 | |||
Perceived consumer effectiveness | PCE1 | 0.644 | 0.851 | 0.590 |
PCE2 | 0.819 | |||
PCE3 | 0.832 | |||
PCE4 | 0.764 | |||
Social media | SM1 | 0.828 | 0.847 | 0.648 |
SM2 | 0.821 | |||
SM3 | 0.765 | |||
Intention to adopt Biogas Technology | IN1 | 0.826 | 0.809 | 0.518 |
IN2 | 0.734 | |||
IN3 | 0.560 | |||
IN4 | 0.734 |
Constructs | AR | AC | EC | IN | PCE | PN | SM |
---|---|---|---|---|---|---|---|
AR | |||||||
AC | 0.481 | ||||||
EC | 0.455 | 0.586 | |||||
IN | 0.440 | 0.663 | 0.543 | ||||
PCE | 0.373 | 0.565 | 0.445 | 0.521 | |||
PN | 0.614 | 0.557 | 0.478 | 0.812 | 0.488 | ||
SM | 0.585 | 0.548 | 0.431 | 0.869 | 0.575 | 0.889 |
Hypothesis | Relationship | Path Coefficient | Std. Error | t Value | p-Value | Supported | R2 | Q2 | f2 |
---|---|---|---|---|---|---|---|---|---|
H1 | PN→IN | 0.309 | 0.043 | 7.119 | 0.000 | Yes | 0.468 | 0.237 | 0.099 |
H2 | AC→PN | 0.186 | 0.046 | 4.102 | 0.000 | Yes | 0.179 | 0.037 | |
H3 | AR→PN | 0.311 | 0.045 | 6.940 | 0.000 | Yes | 0.118 | ||
H4 | EC→PN | 0.126 | 0.043 | 2.795 | 0.000 | Yes | 0.018 | ||
H5 | PCE→PN | 0.162 | 0.040 | 4.015 | 0.000 | Yes | 0.031 | ||
H6 | Moderating effect SM→IN | 0.084 | 0.024 | 3.173 | 0.001 | Yes | 0.478 | 0.019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Ali, S.; Akbar, A.; Rasool, F. Determining the Influencing Factors of Biogas Technology Adoption Intention in Pakistan: The Moderating Role of Social Media. Int. J. Environ. Res. Public Health 2020, 17, 2311. https://doi.org/10.3390/ijerph17072311
Wang Z, Ali S, Akbar A, Rasool F. Determining the Influencing Factors of Biogas Technology Adoption Intention in Pakistan: The Moderating Role of Social Media. International Journal of Environmental Research and Public Health. 2020; 17(7):2311. https://doi.org/10.3390/ijerph17072311
Chicago/Turabian StyleWang, Zanxin, Saqib Ali, Ahsan Akbar, and Farhan Rasool. 2020. "Determining the Influencing Factors of Biogas Technology Adoption Intention in Pakistan: The Moderating Role of Social Media" International Journal of Environmental Research and Public Health 17, no. 7: 2311. https://doi.org/10.3390/ijerph17072311
APA StyleWang, Z., Ali, S., Akbar, A., & Rasool, F. (2020). Determining the Influencing Factors of Biogas Technology Adoption Intention in Pakistan: The Moderating Role of Social Media. International Journal of Environmental Research and Public Health, 17(7), 2311. https://doi.org/10.3390/ijerph17072311