Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Research Procedure
2.3. Measurement of Physical Fitness Variables
2.4. Blood Collection and Analysis
2.5. Taekwondo Training Intervention
2.6. Statistical Analysis
3. Results
3.1. Change in Physique and Physical Fitness
3.2. Changes in Oxidative Stress Biomarkers
3.3. Changes in Myokine Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, S.; Kelly, A.S. Review of childhood obesity: From epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014, 311, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health and Welfare; Korean Centers for Disease Control and Prevention. The Seventh Korea National Health and Nutrition Examination Survey (KNHANES); MHW; KCDC: Chungju City, Korea, 2019.
- Han, S.Y.; Kim, N.H.; Kim, D.H.; Han, K.; Kim, S.M. Relationship between urinary sodium-creatinine ratios and insulin resistance in Korean children and adolescents with obesity. J. Pediatr. Endocrinol. Metab. 2018, 31, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef] [PubMed]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef] [Green Version]
- Montero, D.; Walther, G.; Perez-Martin, A.; Roche, E.; Vinet, A. Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: Markers and effect of lifestyle intervention. Obes. Rev. 2012, 13, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Manna, P.; Jain, S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [Green Version]
- Nocella, C.; Cammisotto, V.; Pigozzi, F.; Borrione, P.; Fossati, C.; D’Amico, A.; Cangemi, R.; Peruzzi, M.; Gobbi, G.; Ettorre, E.; et al. Impairment between oxidant and antioxidant systems: Short- and long-term implications for athletes’ health. Nutrients 2019, 11, E1353. [Google Scholar] [CrossRef] [Green Version]
- Avloniti, A.; Chatzinikolaou, A.; Deli, C.K.; Vlachopoulos, D.; Gracia-Marco, L.; Leontsini, D.; Draganidis, D.; Jamurtas, A.Z.; Mastorakos, G.; Fatouros, I.G. Exercise-induced oxidative stress responses in the pediatric population. Antioxidants 2017, 6, E6. [Google Scholar] [CrossRef] [Green Version]
- Vincent, H.K.; Innes, K.E.; Vincent, K.R. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes. Metab. 2007, 9, 813–839. [Google Scholar] [CrossRef]
- Baghaiee, B.; Teixeira, A.M.B.; Tartibian, B. Moderate aerobic exercise increases SOD-2 gene expression and decreases leptin and malondialdehyde in middle-aged men. Sci. Sports 2016, 31, e54–e62. [Google Scholar] [CrossRef]
- Roh, H.T.; So, W.Y. The effects of aerobic exercise training on oxidant-antioxidant balance, neurotrophic factor levels, and blood-brain barrier function in obese and non-obese men. J. Sport Health Sci. 2017, 6, 447–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Feng, F.; Xiong, X.; Li, R.; Chen, N. Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity. J. Sports Sci. 2017, 35, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Gomarasca, M.; Banfi, G.; Lombardi, G. Myokines: The endocrine coupling of skeletal muscle and bone. Adv. Clin. Chem. 2020, 94, 155–218. [Google Scholar] [PubMed]
- Ost, M.; Coleman, V.; Kasch, J.; Klaus, S. Regulation of myokine expression: Role of exercise and cellular stress. Free Radic. Biol. Med. 2016, 98, 78–89. [Google Scholar] [CrossRef]
- Nadeau, L.; Aguer, C. Interleukin-15 as a myokine: Mechanistic insight into its effect on skeletal muscle metabolism. Appl. Physiol. Nutr. Metab. 2019, 44, 229–238. [Google Scholar] [CrossRef]
- Codella, R.; Terruzzi, I.; Luzi, L. Sugars, exercise and health. J Affect Disord. 2017, 224, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Jeremic, N.; Chaturvedi, P.; Tyagi, S.C. Browning of white fat: Novel insight into factors, mechanisms, and therapeutics. J. Cell Physiol. 2017, 232, 61–68. [Google Scholar] [CrossRef]
- Ma, A.W.W.; Fong, S.S.M.; Guo, X.; Liu, K.P.Y.; Fong, D.Y.T.; Bae, Y.H.; Yuen, L.; Cheng, Y.T.Y.; Tsang, W.W.N. Adapted taekwondo training for prepubertal children with developmental coordination disorder: A randomized, controlled trial. Sci. Rep. 2018, 8, 10330. [Google Scholar] [CrossRef] [Green Version]
- Lakes, K.D.; Bryars, T.; Sirisinahal, S.; Salim, N.; Arastoo, S.; Emmerson, N.; Kang, D.; Shim, L.; Wong, D.; Kang, C.J. The healthy for life taekwondo pilot study: A preliminary evaluation of effects on executive function and BMI, feasibility, and acceptability. Ment. Health Phys. Act. 2013, 6, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, S.S.; Lim, K. Effects of Taekwondo training on physical fitness factors in Korean elementary students: A systematic review and meta-analysis. J. Exerc. Nutrition. Biochem. 2019, 23, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Stebbins, C.L.; Chai, J.H.; Song, J.K. Taekwondo training and fitness in female adolescents. J. Sports Sci. 2011, 29, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.S.; Lee, S.Y.; Nam, C.M.; Choi, J.M.; Choe, B.K.; Seo, J.W.; Oh, K.; Jang, M.J.; Hwang, S.S.; Yoo, M.H.; et al. 2007 Korean national growth charts: Review of developmental process and an outlook. Korean J. Pediatr. 2008, 51, 1–25. [Google Scholar] [CrossRef]
- Asghari, J.M.; Sadeghi, B.H. Randomization: Techniques and software-aided implementation in medical studies. J. Clin. Res. Gov. 2015, 4, 1–6. [Google Scholar]
- Karvetti, R.L.; Knuts, L.R. Validity of the 24-hour dietary recall. J. Am. Diet. Assoc. 1985, 85, 1437–1442. [Google Scholar]
- Fraser, G.E.; Phillips, R.L.; Harris, R. Physical fitness and blood pressure in school children. Circulation 1983, 67, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Gibson, A.L.; Wagner, D.R.; Heyward, V.H. Advanced Fitness Assessment and Exercise Prescription, 8th ed.; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Paik, I.Y.; Jin, C.H.; Jin, H.E.; Kim, Y.I.; Cho, S.Y.; Roh, H.T.; Suh, A.R.; Suh, S.H. Effects of the NADPH oxidase p22phox C242T polymorphism on endurance exercise performance and oxidative DNA damage in response to aerobic exercise training. Mol. Cells. 2009, 27, 557–562. [Google Scholar] [CrossRef]
- Cho, S.Y.; So, W.Y.; Roh, H.T. The effects of taekwondo training on peripheral neuroplasticity-related growth factors, cerebral blood flow velocity, and cognitive functions in healthy children: A randomized controlled trial. Int. J. Environ. Res. Public Health 2017, 14, E454. [Google Scholar] [CrossRef]
- Roh, H.T.; Cho, S.Y.; So, W.Y. Taekwondo training improves mood and sociability in children from multicultural families in South Korea: A randomized controlled pilot study. Int. J. Environ. Res. Public Health 2018, 15, E757. [Google Scholar] [CrossRef] [Green Version]
- Fong, S.S.; Ng, G.Y. Does Taekwondo training improve physical fitness? Phys. Ther. Sport 2011, 12, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Staerck, C.; Gastebois, A.; Vandeputte, P.; Calenda, A.; Larcher, G.; Gillmann, L.; Papon, N.; Bouchara, J.P.; Fleury, M.J.J. Microbial antioxidant defense enzymes. Microb. Pathog. 2017, 110, 56–65. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, C.V.; Sales, M.M.; Rosa, T.S.; Lewis, J.E.; de Andrade, R.V.; Simões, H.G. The antioxidant effect of exercise: A systematic review and meta-analysis. Sports Med. 2017, 47, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Ji, L.L.; Leeuwenburgh, C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: A brief review. Med. Sci. Sports Exerc. 1999, 31, 987–997. [Google Scholar] [CrossRef]
- Azizbeigi, K.; Stannard, S.R.; Atashak, S.; Haghighi, M.M. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. J. Exerc. Sci. Fit. 2014, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shih, L.Y.; Liou, T.H.; Chao, J.C.; Kau, H.N.; Wu, Y.J.; Shieh, M.J.; Yeh, C.Y.; Han, B.C. Leptin, superoxide dismutase, and weight loss: Initial leptin predicts weight loss. Obesity 2006, 14, 2184–2192. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, C.; Weigert, C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb. Perspect. Med. 2017, 7, a029793. [Google Scholar] [CrossRef]
- Schnyder, S.; Handschin, C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone 2015, 80, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Krabbe, K.S.; Nielsen, A.R.; Krogh-Madsen, R.; Plomgaard, P.; Rasmussen, P.; Erikstrup, C.; Fischer, C.P.; Lindegaard, B.; Petersen, A.M.; Taudorf, S.; et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 2007, 50, 431–438. [Google Scholar] [CrossRef]
- Timmons, J.A.; Baar, K.; Davidsen, P.K.; Atherton, P.J. Is irisin a human exercise gene? Nature 2012, 488, E9–E10. [Google Scholar] [CrossRef] [PubMed]
- Kurdiova, T.; Balaz, M.; Mayer, A.; Maderova, D.; Belan, V.; Wolfrum, C.; Ukropec, J.; Ukropcova, B. Exercise-mimicking treatment fails to increase Fndc5 mRNA & irisin secretion in primary human myotubes. Peptides 2014, 56, 1–7. [Google Scholar] [PubMed]
- Arhire, L.I.; Mihalache, L.; Covasa, M. Irisin: A hope in understanding and managing obesity and metabolic syndrome. Front. Endocrinol. 2019, 10, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.H.; Zaichenko, L.; Brinkoetter, M.; Thakkar, B.; Sahin-Efe, A.; Joung, K.E.; Tsoukas, M.A.; Geladari, E.V.; Huh, J.Y.; Dincer, F.; et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 2013, 98, 4899–4907. [Google Scholar] [CrossRef] [PubMed]
- Palacios-González, B.; Vadillo-Ortega, F.; Polo-Oteyza, E.; Sánchez, T.; Ancira-Moreno, M.; Romero-Hidalgo, S.; Meráz, N.; Antuna-Puente, B. Irisin levels before and after physical activity among school-age children with different BMI: A direct relation with leptin. Obesity 2015, 23, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.B.; Kim, H.J.; Kang, J.H.; Park, S.I.; Park, K.H.; Lee, H.J. Association of circulating irisin levels with metabolic and metabolite profiles of Korean adolescents. Metabolism 2017, 73, 100–108. [Google Scholar] [CrossRef]
Group Variables | CG | EG | p |
---|---|---|---|
Number (boys/girls) | 10 (7/3) | 10 (7/3) | |
Age (years) | 12.50 ± 0.53 | 12.60 ± 0.52 | 0.673 |
School grades (unit) | 5.50 ± 0.53 | 5.60 ± 0.52 | 0.673 |
Height (cm) | 151.96 ± 6.87 | 153.07 ± 5.78 | 0.700 |
Weight (kg) | 54.99 ± 7.06 | 58.34 ± 7.13 | 0.305 |
BMI (kg/m2) | 23.74 ± 1.43 | 24.91 ± 1.90 | 0.137 |
BMI z-score | 1.44 ± 0.28 | 1.56 ± 0.33 | 0.398 |
BMI percentile (%) | 91.60 ± 4.31 | 93.24 ± 3.97 | 0.388 |
VO2 max (ml/kg/min) | 35.42 ± 5.20 | 36.64 ± 5.38 | 0.612 |
Grip strength (kg) | 20.49 ± 3.41 | 20.58 ± 3.47 | 0.954 |
Leg strength (kg) | 46.24 ± 9.70 | 46.85 ± 7.64 | 0.878 |
Sit-and-reach (cm) | 6.11 ± 6.87 | 6.09 ± 8.35 | 0.995 |
Sargent jump (cm) | 28.70 ± 6.55 | 28.60 ± 6.13 | 0.972 |
Stork stand test (sec) | 42.40 ± 34.40 | 39.70 ± 33.38 | 0.861 |
MDA (nmol/ml) | 5.20 ± 0.91 | 5.41 ± 1.40 | 0.697 |
SOD (U/ml) | 3.59 ± 0.62 | 3.34 ± 0.45 | 0.303 |
IL-15 (pg/ml) | 2.34 ± 0.58 | 2.25 ± 0.95 | 0.801 |
BDNF (ng/ml) | 26.58 ± 6.10 | 25.41 ± 5.36 | 0.654 |
Irisin (ng/ml) | 143.09 ± 30.17 | 145.81 ± 32.18 | 0.848 |
Myostatin (ng/ml) | 1.65 ± 0.43 | 1.70 ± 0.52 | 0.825 |
Constitution | Main Activity | |
---|---|---|
Warm-up (5 min) | Stretching | |
Main Exercise | Basal fitness training (10 min) | Push-up, Sit-up, Shuttle-run, Burpee test, Vertical jump, Jumping over a person |
Basic motion of Taekwondo (5 min) | Close stance, Parallel stance, Riding stance, Forward stance, Forward inflection stance, Backward inflection stance, Body punch in horse-riding stance | |
Poomsae (10 min) | Taegeuk chapter 1–8 | |
Kicking (10 min) | Kick (Front, Side, Round house, Downward), Step (Forward, Side, Backward), Practice mitt kicking | |
Taekwon gymnastics (15 min) | Gymnastics of Taekwondo motion to music | |
Cool-down (5 min) | Stretching |
Group Variables | CG | EG | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | F | p | |
Height (cm) | 151.96 ± 6.87 | 152.25 ± 6.77 | 153.07 ± 5.78 | 153.83 ± 5.97 | 2.551 | 0.128 |
Weight (kg) | 54.99 ± 7.06 | 55.34 ± 6.51 | 58.34 ± 7.13 | 55.99 ± 6.53 † | 22.446 | < 0.001 *** |
BMI (kg/m2) | 23.74 ± 1.43 | 23.82 ± 1.42 | 24.91 ± 1.90 | 23.59 ± 1.84 † | 23.993 | < 0.001 *** |
VO2 max (ml/kg/min) | 35.42 ± 5.20 | 35.45 ± 5.66 | 36.64 ± 5.38 | 36.46 ± 5.76 | 0.064 | 0.804 |
Grip strength (kg) | 20.49 ± 3.41 | 20.93 ± 3.47 | 20.58 ± 3.47 | 21.08 ± 3.31 | 0.010 | 0.920 |
Leg strength (kg) | 46.24 ± 9.70 | 46.54 ± 9.51 | 46.85 ± 7.64 | 48.79 ± 9.30 † | 5.294 | 0.034 * |
Sit-and-reach (cm) | 6.11 ± 6.87 | 6.15 ± 6.82 | 6.09 ± 8.35 | 7.48 ± 6.94 † | 4.803 | 0.042 * |
Sargent jump (cm) | 28.70 ± 6.55 | 29.60 ± 8.15 | 28.60 ± 6.13 | 31.80 ± 6.30 † | 5.504 | 0.031 * |
Stork stand test (sec) | 42.40 ± 34.40 | 43.00 ± 31.53 | 39.70 ± 33.38 | 39.80 ± 23.65 | 0.015 | 0.905 |
Group Variables | CG | EG | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | F | p | |
MDA (nmol/ml) | 5.20 ± 0.91 | 5.32 ± 0.93 | 5.41 ± 1.40 | 4.79 ± 1.21 † | 18.904 | <0.001 *** |
SOD (U/ml) | 3.59 ± 0.62 | 3.51 ± 0.57 | 3.34 ± 0.45 | 3.46 ± 0.48 † | 15.193 | 0.001 ** |
Group Variables | CG | EG | Time × Group Interaction | |||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | F | p | |
IL-15 (pg/ml) | 2.34 ± 0.58 | 2.50 ± 0.56 | 2.25 ± 0.95 | 2.30 ± 0.78 | 0.344 | 0.565 |
BDNF (ng/ml) | 26.58 ± 6.10 | 27.68 ± 6.50 | 25.41 ± 5.36 | 29.52 ± 5.83 † | 6.767 | 0.018 * |
Irisin (ng/ml) | 143.09 ± 30.17 | 142.78 ± 30.71 | 145.81 ± 32.18 | 136.09 ± 28.22 † | 8.566 | 0.009 ** |
Myostatin (ng/ml) | 1.65 ± 0.43 | 1.63 ± 0.45 | 1.70 ± 0.52 | 1.75 ± 0.35 | 0.400 | 0.535 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roh, H.-T.; Cho, S.-Y.; So, W.-Y. Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 2505. https://doi.org/10.3390/ijerph17072505
Roh H-T, Cho S-Y, So W-Y. Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents. International Journal of Environmental Research and Public Health. 2020; 17(7):2505. https://doi.org/10.3390/ijerph17072505
Chicago/Turabian StyleRoh, Hee-Tae, Su-Youn Cho, and Wi-Young So. 2020. "Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents" International Journal of Environmental Research and Public Health 17, no. 7: 2505. https://doi.org/10.3390/ijerph17072505