Welding Fumes, a Risk Factor for Lung Diseases
Abstract
:1. Introduction
- -
- Welding particle characteristics and the respiratory tract.
- -
- Description of in vitro, in vivo, and in human studies, which addressed pathological mechanisms of WFs.
- -
- Welding-related lung disease.
- -
- Biological monitoring program.
2. Materials and Methods
3. Results
3.1. Particle Characteristics and Distribution in the Respiratory Tract
3.2. Toxicology Mechanisms of WFs
3.2.1. In Vitro Studies
3.2.2. In Vivo Studies
3.2.3. Human Studies
3.3. Lung Disease
3.3.1. Metal Fume Fever
3.3.2. Infectious Pneumonia
3.3.3. Pulmonary Function Abnormalities
3.3.4. Chronic Bronchitis
3.3.5. Asthma
3.3.6. Chronic Obstructive Pulmonary Disease
3.3.7. Interstitial Lung Disease and Pulmonary Fibrosis
3.3.8. Lung Cancer
3.4. Occupational Exposure Limits
3.5. Biological Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Society, A.W. Effects of Welding on Health I; American Welding Society: Miami, IL, USA, 1979. [Google Scholar]
- Lockey, J.E.; Schenker, M.B.; Howden, D.G.; Desmeules, M.J.; Saracci, R.; Sprince, N.L.; Harber, P.I. Current issues in occupational lung disease. Am. Rev. Respir. Dis. 1988, 138, 1047–1050. [Google Scholar] [PubMed]
- Berlinger, B.; Benker, N.; Weinbruch, S.; L’Vov, B.; Ebert, M.; Koch, W.; Ellingsen, D.G.; Thomassen, Y. Physicochemical characterisation of different welding aerosols. Anal. Bioanal. Chem. 2011, 399, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Antonini, J.M. Health effects of welding. Crit. Rev. Toxicol. 2003, 33, 61–103. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Welding, Molybdenum Trioxide, and Indium Tin Oxide; IARC: Lyon, France, 2018. [Google Scholar]
- Mocevic, E.; Kristiansen, P.; Bonde, J.P. Risk of ischemic heart disease following occupational exposure to welding fumes: A systematic review with meta-analysis. Int. Arch. Occup. Environ. Health 2015, 88, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Thomas, J.; Sadatsafavi, M.; FitzGerald, J.M. Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Lancet Respir. Med. 2015, 3, 631–639. [Google Scholar] [CrossRef]
- Onishi, K. Total management of chronic obstructive pulmonary disease (COPD) as an independent risk factor for cardiovascular disease. J. Cardiol. 2017, 70, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, A.T.; Biswas, P. Mechanistic understanding of aerosol emissions from a brazing operation. Aihaj 2000, 61, 351–361. [Google Scholar] [CrossRef]
- Dasch, J.; D’Arcy, J. Physical and chemical characterization of airborne particles from welding operations in automotive plants. J. Occup. Environ. Hyg. 2008, 5, 444–454. [Google Scholar] [CrossRef]
- Brand, P.; Lenz, K.; Reisgen, U.; Kraus, T. Number size distribution of fine and ultrafine fume particles from various welding processes. Ann. Occup. Hyg. 2013, 57, 305–313. [Google Scholar]
- Lehnert, M.; Pesch, B.; Lotz, A.; Pelzer, J.; Kendzia, B.; Gawrych, K.; Heinze, E.; Van Gelder, R.; Punkenburg, E.; Weiss, T.; et al. Exposure to inhalable, respirable, and ultrafine particles in welding fume. Ann. Occup. Hyg. 2012, 56, 557–567. [Google Scholar]
- Cena, L.G.; Chisholm, W.P.; Keane, M.J.; Chen, B.T. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals. J. Occup. Environ. Hyg. 2015, 12, 721–728. [Google Scholar] [CrossRef]
- Cena, L.G.; Chisholm, W.P.; Keane, M.J.; Cumpston, A.; Chen, B.T.; Valentin, J. Size Distribution and Estimated Respiratory Deposition of Total Chromium, Hexavalent Chromium, Manganese, and Nickel in Gas Metal Arc Welding Fume Aerosols. Aerosol Sci. Technol. 2014, 48, 1254–1263. [Google Scholar] [CrossRef]
- Geiser, M.; Kreyling, W.G. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 2010, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentin, J. Guide for the practical application of the ICRP Human Respiratory Tract Model. A report of ICRP supporting guidance 3: Approved by ICRP committee 2 in October 2000. Ann ICRP 2002, 32, 13–306. [Google Scholar] [CrossRef]
- Goldoni, M.; Acampa, O.; Longo, S.; Poli, D.; Tagliaferri, S.; Corradi, M.; Renzulli, F.S.; Mutti, A. Inter- and intra-subject variability of kinetics of airway exhalation and deposition of particulate matter in indoor polluted environments. Int. J. Hyg. Environ. Health 2012, 215, 312–319. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Methods for Derivation of Inhalation Reference Concentrations and Applications of Inhalation Dosimetry; U.S. EPA: Reasearch Triangle Park, NC, USA, 1994. [Google Scholar]
- Kuempel, E.D.; Sweeney, L.M.; Morris, J.B.; Jarabek, A.M. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation. J. Occup. Environ. Hyg. 2015, 12, S18–S40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manojkumar, N.; Srimuruganandam, B.; Shiva Nagendra, S.M. Application of multiple-path particle dosimetry model for quantifying age specified deposition of particulate matter in human airway. Ecotoxicol. Environ. Saf. 2019, 168, 241–248. [Google Scholar] [CrossRef]
- Corley, R.A.; Kabilan, S.; Kuprat, A.P.; Carson, J.P.; Minard, K.R.; Jacob, R.E.; Timchalk, C.; Glenny, R.; Pipavath, S.; Cox, T.; et al. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol. Sci. 2012, 128, 500–516. [Google Scholar] [CrossRef] [Green Version]
- Cena, L.G.; Keane, M.J.; Chisholm, W.P.; Stone, S.; Harper, M.; Chen, B.T. A novel method for assessing respiratory deposition of welding fume nanoparticles. J. Occup. Environ. Hyg. 2014, 11, 771–780. [Google Scholar] [CrossRef] [Green Version]
- Moller, W.; Felten, K.; Sommerer, K.; Scheuch, G.; Meyer, G.; Meyer, P.; Haussinger, K.; Kreyling, W.G. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am. J. Respir. Crit. Care Med. 2008, 177, 426–432. [Google Scholar] [CrossRef]
- Kreyling, W.G.; Semmler-Behnke, M.; Takenaka, S.; Moller, W. Differences in the biokinetics of inhaled nano- versus micrometer-sized particles. Acc. Chem. Res. 2013, 46, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehnert, B.E. Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung. Environ. Health Perspect. 1992, 97, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Avashia, S.B.; Riggins, W.S.; Lindley, C.; Hoffmaster, A.; Drumgoole, R.; Nekomoto, T.; Jackson, P.J.; Hill, K.K.; Williams, K.; Lehman, L.; et al. Fatal pneumonia among metalworkers due to inhalation exposure to Bacillus cereus Containing Bacillus anthracis toxin genes. Clin. Infect. Dis. 2007, 44, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Hinds, W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA; Chichester, UK; Weinheim, Germany; Brisbane, Australia; Singapore; Toronto, ON, Canada, 1999. [Google Scholar]
- Yu, C.P.; Chen, Y.K.; Morrow, P.E. An analysis of alveolar macrophage mobility kinetics at dust overloading of the lungs. Fundam. Appl. Toxicol. 1989, 13, 452–459. [Google Scholar] [CrossRef]
- Oberdorster, G.; Ferin, J.; Morrow, P.E. Volumetric loading of alveolar macrophages (AM): A possible basis for diminished AM-mediated particle clearance. Exp. Lung Res. 1992, 18, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Morrow, P.E. Possible mechanisms to explain dust overloading of the lungs. Fundam. Appl. Toxicol. 1988, 10, 369–384. [Google Scholar] [CrossRef]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Chang, C.; Demokritou, P.; Shafer, M.; Christiani, D. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes. Environ. Sci. Process Impacts 2013, 15, 214–224. [Google Scholar] [CrossRef]
- Kalliomaki, P.L.; Hyvarinen, H.K.; Aitio, A.; Lakoma, E.L.; Kalliomaki, K. Kinetics of the metal components of intratracheally instilled stainless steel welding fume suspensions in rats. Br. J. Ind. Med. 1986, 43, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Leonard, S.S.; Chen, B.T.; Stone, S.G.; Schwegler-Berry, D.; Kenyon, A.J.; Frazer, D.; Antonini, J.M. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species. Part. Fibre Toxicol. 2010, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Hedenstedt, A.; Jenssen, D.; Lidestein, B.M.; Ramel, C.; Rannug, U.; Stern, R.M. Mutagenicity of fume particles from stainless steel welding. Scand. J. Work Environ. Health 1977, 3, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.; Stern, R.M. Welding fumes and chromium compounds in cell transformation assays. J. Appl. Toxicol. 1985, 5, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.S.; Arlauskas, A.; Tandon, R.K.; Crisp, P.T.; Ellis, J. Toxic and genotoxic action of electric-arc welding fumes on cultured mammalian cells. J. Appl. Toxicol. 1986, 6, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Antonini, J.M.; Krishna Murthy, G.G.; Brain, J.D. Responses to welding fumes: Lung injury, inflammation, and the release of tumor necrosis factor-alpha and interleukin-1 beta. Exp. Lung Res. 1997, 23, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Stohs, S.J.; Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 1995, 18, 321–336. [Google Scholar] [CrossRef] [Green Version]
- Hetland, R.B.; Myhre, O.; Lag, M.; Hongve, D.; Schwarze, P.E.; Refsnes, M. Importance of soluble metals and reactive oxygen species for cytokine release induced by mineral particles. Toxicology 2001, 165, 133–144. [Google Scholar] [CrossRef]
- Antonini, J.M.; Lawryk, N.J.; Murthy, G.G.; Brain, J.D. Effect of welding fume solubility on lung macrophage viability and function in vitro. J. Toxicol. Environ. Health A 1999, 58, 343–363. [Google Scholar]
- McNeilly, J.D.; Heal, M.R.; Beverland, I.J.; Howe, A.; Gibson, M.D.; Hibbs, L.R.; MacNee, W.; Donaldson, K. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro. Toxicol. Appl. Pharmacol. 2004, 196, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Antonini, J.M.; Leonard, S.S.; Roberts, J.R.; Solano-Lopez, C.; Young, S.H.; Shi, X.; Taylor, M.D. Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Mol. Cell. Biochem. 2005, 279, 17–23. [Google Scholar] [CrossRef]
- Badding, M.A.; Fix, N.R.; Antonini, J.M.; Leonard, S.S. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages. PLoS ONE 2014, 9, e101310. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, K.E.; Costa, D.L.; Hatch, G.; Henderson, R.; Oberdorster, G.; Salem, H.; Schlesinger, R.B. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: Uses and limitations. Toxicol. Sci. 2000, 55, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdely, A.; Salmen-Muniz, R.; Liston, A.; Hulderman, T.; Zeidler-Erdely, P.C.; Antonini, J.M.; Simeonova, P.P. Relationship between pulmonary and systemic markers of exposure to multiple types of welding particulate matter. Toxicology 2011, 287, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Antonini, J.M.; Roberts, J.R.; Chapman, R.S.; Soukup, J.M.; Ghio, A.J.; Sriram, K. Pulmonary toxicity and extrapulmonary tissue distribution of metals after repeated exposure to different welding fumes. Inhal. Toxicol. 2010, 22, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Antonini, J.M.; Roberts, J.R.; Stone, S.; Chen, B.T.; Schwegler-Berry, D.; Chapman, R.; Zeidler-Erdely, P.C.; Andrews, R.N.; Frazer, D.G. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats. Arch. Toxicol. 2011, 85, 487–498. [Google Scholar] [CrossRef]
- Yu, I.J.; Song, K.S.; Chang, H.K.; Han, J.H.; Kim, K.J.; Chung, Y.H.; Maeng, S.H.; Park, S.H.; Han, K.T.; Chung, K.H.; et al. Lung fibrosis in Sprague-Dawley rats, induced by exposure to manual metal arc-stainless steel welding fumes. Toxicol. Sci. 2001, 63, 99–106. [Google Scholar] [CrossRef]
- Antonini, J.M.; Roberts, J.R.; Stone, S.; Chen, B.T.; Schwegler-Berry, D.; Frazer, D.G. Short-term inhalation exposure to mild steel welding fume had no effect on lung inflammation and injury but did alter defense responses to bacteria in rats. Inhal. Toxicol. 2009, 21, 182–192. [Google Scholar] [CrossRef]
- Antonini, J.M.; Roberts, J.R. Chromium in stainless steel welding fume suppresses lung defense responses against bacterial infection in rats. J. Immunotoxicol. 2007, 4, 117–127. [Google Scholar] [CrossRef]
- Antonini, J.M.; Krishna Murthy, G.G.; Rogers, R.A.; Albert, R.; Ulrich, G.D.; Brain, J.D. Pneumotoxicity and pulmonary clearance of different welding fumes after intratracheal instillation in the rat. Toxicol. Appl. Pharmacol. 1996, 140, 188–199. [Google Scholar] [CrossRef]
- McNeilly, J.D.; Jimenez, L.A.; Clay, M.F.; MacNee, W.; Howe, A.; Heal, M.R.; Beverland, I.J.; Donaldson, K. Soluble transition metals in welding fumes cause inflammation via activation of NF-kappaB and AP-1. Toxicol. Lett. 2005, 158, 152–157. [Google Scholar] [CrossRef]
- Antonini, J.M.; Clarke, R.W.; Krishna Murthy, G.G.; Sreekanthan, P.; Jenkins, N.; Eagar, T.W.; Brain, J.D. Freshly generated stainless steel welding fume induces greater lung inflammation in rats as compared to aged fume. Toxicol. Lett. 1998, 98, 77–86. [Google Scholar] [CrossRef]
- Yu, I.J.; Song, K.S.; Maeng, S.H.; Kim, S.J.; Sung, J.H.; Han, J.H.; Chung, Y.H.; Cho, M.H.; Chung, K.H.; Han, K.T.; et al. Inflammatory and genotoxic responses during 30-day welding-fume exposure period. Toxicol. Lett. 2004, 154, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Solano-Lopez, C.; Zeidler-Erdely, P.C.; Hubbs, A.F.; Reynolds, S.H.; Roberts, J.R.; Taylor, M.D.; Young, S.H.; Castranova, V.; Antonini, J.M. Welding fume exposure and associated inflammatory and hyperplastic changes in the lungs of tumor susceptible a/j mice. Toxicol. Pathol. 2006, 34, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeidler-Erdely, P.C.; Kashon, M.L.; Li, S.; Antonini, J.M. Response of the mouse lung transcriptome to welding fume: Effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice. Respir. Res. 2010, 11, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone, L.M.; Erdely, A.; Kodali, V.; Salmen, R.; Battelli, L.A.; Dodd, T.; McKinney, W.; Stone, S.; Donlin, M.; Leonard, H.D.; et al. Inhalation of iron-abundant gas metal arc welding-mild steel fume promotes lung tumors in mice. Toxicology 2018, 409, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Falcone, L.M.; Erdely, A.; Salmen, R.; Keane, M.; Battelli, L.; Kodali, V.; Bowers, L.; Stefaniak, A.B.; Kashon, M.L.; Antonini, J.M.; et al. Pulmonary toxicity and lung tumorigenic potential of surrogate metal oxides in gas metal arc welding-stainless steel fume: Iron as a primary mediator versus chromium and nickel. PLoS ONE 2018, 13, e0209413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeidler-Erdely, P.C.; Meighan, T.G.; Erdely, A.; Battelli, L.A.; Kashon, M.L.; Keane, M.; Antonini, J.M. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model. Part. Fibre Toxicol. 2013, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Antonini, J.M.; Roberts, J.R.; Schwegler-Berry, D.; Mercer, R.R. Comparative microscopic study of human and rat lungs after overexposure to welding fume. Ann. Occup. Hyg. 2013, 57, 1167–1179. [Google Scholar]
- Iarmarcovai, G.; Sari-Minodier, I.; Chaspoul, F.; Botta, C.; De Meo, M.; Orsiere, T.; Berge-Lefranc, J.L.; Gallice, P.; Botta, A. Risk assessment of welders using analysis of eight metals by ICP-MS in blood and urine and DNA damage evaluation by the comet and micronucleus assays; influence of XRCC1 and XRCC3 polymorphisms. Mutagenesis 2005, 20, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Hedmer, M.; Wojdacz, T.; Hossain, M.B.; Lindh, C.H.; Tinnerberg, H.; Albin, M.; Broberg, K. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes. Environ. Mol. Mutagen. 2015, 56, 684–693. [Google Scholar] [CrossRef] [Green Version]
- Singh, Z.; Chadha, P. Assessment of DNA damage as an index of genetic toxicity in welding microenvironments among iron-based industries. Toxicol. Ind. Health 2016, 32, 1817–1824. [Google Scholar] [CrossRef]
- Jara-Ettinger, A.C.; Lopez-Tavera, J.C.; Zavala-Cerna, M.G.; Torres-Bugarin, O. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study. PLoS ONE 2015, 10, e0131548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wultsch, G.; Nersesyan, A.; Kundi, M.; Jakse, R.; Beham, A.; Wagner, K.H.; Knasmueller, S. The sensitivity of biomarkers for genotoxicity and acute cytotoxicity in nasal and buccal cells of welders. Int. J. Hyg. Environ. Health 2014, 217, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, H.; Lewinski, N.; Zhao, J.; Sauvain, J.J.; Suarez, G.; Wild, P.; Danuser, B.; Riediker, M. Increase in oxidative stress levels following welding fume inhalation: A controlled human exposure study. Part. Fibre Toxicol. 2016, 13, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuernberg, A.M.; Boyce, P.D.; Cavallari, J.M.; Fang, S.C.; Eisen, E.A.; Christiani, D.C. Urinary 8-isoprostane and 8-OHdG concentrations in boilermakers with welding exposure. J. Occup. Environ. Med. 2008, 50, 182–189. [Google Scholar] [CrossRef]
- Kile, M.L.; Fang, S.; Baccarelli, A.A.; Tarantini, L.; Cavallari, J.; Christiani, D.C. A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders. Environ. Health 2013, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Goulart, M.; Batoreu, M.C.; Rodrigues, A.S.; Laires, A.; Rueff, J. Lipoperoxidation products and thiol antioxidants in chromium exposed workers. Mutagenesis 2005, 20, 311–315. [Google Scholar] [CrossRef]
- Azari, M.R.; Esmaeilzadeh, M.; Mehrabi, Y.; Salehpour, S. Monitoring of occupational exposure of mild steel welders to ozone and nitrogen oxides. Tanaffos 2011, 10, 54–59. [Google Scholar]
- Dewald, E.; Gube, M.; Baumann, R.; Bertram, J.; Kossack, V.; Lenz, K.; Reisgen, U.; Kraus, T.; Brand, P. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans. J. Occup. Environ. Med. 2015, 57, 845–850. [Google Scholar] [CrossRef]
- Kim, J.Y.; Chen, J.C.; Boyce, P.D.; Christiani, D.C. Exposure to welding fumes is associated with acute systemic inflammatory responses. Occup. Environ. Med. 2005, 62, 157–163. [Google Scholar] [CrossRef]
- Andujar, P.; Simon-Deckers, A.; Galateau-Salle, F.; Fayard, B.; Beaune, G.; Clin, B.; Billon-Galland, M.A.; Durupthy, O.; Pairon, J.C.; Doucet, J.; et al. Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Part. Fibre Toxicol. 2014, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Kaya, E.; Fidan, F.; Unlu, M.; Sezer, M.; Tetik, L.; Acar, M. Evaluation of alveolar clearance by Tc-99m DTPA radioaerosol inhalation scintigraphy in welders. Ann. Nucl. Med. 2006, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, S.A.; Lackovic, M.; Katner, A.; Palermo, C. Metal fume fever: A review of the literature and cases reported to the Louisiana Poison Control Center. J. La. State Med. Soc. 2009, 161, 348–351. [Google Scholar] [PubMed]
- Blanc, P.D.; Boushey, H.A.; Wong, H.; Wintermeyer, S.F.; Bernstein, M.S. Cytokines in metal fume fever. Am. Rev. Respir. Dis. 1993, 147, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, M.; Leanderson, P.; Tagesson, C. Novel aspect on metal fume fever: Zinc stimulates oxygen radical formation in human neutrophils. Hum. Exp. Toxicol. 1998, 17, 105–110. [Google Scholar] [CrossRef]
- El-Zein, M.; Infante-Rivard, C.; Malo, J.L.; Gautrin, D. Is metal fume fever a determinant of welding related respiratory symptoms and/or increased bronchial responsiveness? A longitudinal study. Occup. Environ. Med. 2005, 62, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Fine, J.M.; Gordon, T.; Chen, L.C.; Kinney, P.; Falcone, G.; Beckett, W.S. Metal fume fever: Characterization of clinical and plasma IL-6 responses in controlled human exposures to zinc oxide fume at and below the threshold limit value. J. Occup. Environ. Med. 1997, 39, 722–726. [Google Scholar] [CrossRef]
- Baumann, R.; Joraslafsky, S.; Markert, A.; Rack, I.; Davatgarbenam, S.; Kossack, V.; Gerhards, B.; Kraus, T.; Brand, P.; Gube, M. IL-6, a central acute-phase mediator, as an early biomarker for exposure to zinc-based metal fumes. Toxicology 2016, 373, 63–73. [Google Scholar] [CrossRef]
- Doig, A.T.; Challen, P.J. Respiratory hazards in welding. Ann. Occup. Hyg. 1964, 7, 223–231. [Google Scholar] [CrossRef]
- Coggon, D.; Inskip, H.; Winter, P.; Pannett, B. Lobar pneumonia: An occupational disease in welders. Lancet 1994, 344, 41–43. [Google Scholar] [CrossRef]
- Palmer, K.T.; Poole, J.; Ayres, J.G.; Mann, J.; Burge, P.S.; Coggon, D. Exposure to metal fume and infectious pneumonia. Am. J. Epidemiol. 2003, 157, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.T.; Cullinan, P.; Rice, S.; Brown, T.; Coggon, D. Mortality from infectious pneumonia in metal workers: A comparison with deaths from asthma in occupations exposed to respiratory sensitisers. Thorax 2009, 64, 983–986. [Google Scholar] [CrossRef] [Green Version]
- Toren, K.; Qvarfordt, I.; Bergdahl, I.A.; Jarvholm, B. Increased mortality from infectious pneumonia after occupational exposure to inorganic dust, metal fumes and chemicals. Thorax 2011, 66, 992–996. [Google Scholar] [CrossRef] [Green Version]
- Van der Poll, T.; Opal, S.M. Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 2009, 374, 1543–1556. [Google Scholar] [CrossRef]
- Suri, R.; Periselneris, J.; Lanone, S.; Zeidler-Erdely, P.C.; Melton, G.; Palmer, K.T.; Andujar, P.; Antonini, J.M.; Cohignac, V.; Erdely, A.; et al. Exposure to welding fumes and lower airway infection with Streptococcus pneumoniae. J. Allergy Clin. Immunol. 2016, 137, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Palmer, K.T.; Cosgrove, M. Vaccinating welders against pneumonia. Occup. Environ. Med. 2012, 69, 932. [Google Scholar] [CrossRef]
- Health and Safety Executive. Pneumonia Vaccination for Employees Exposed to Welding and Metal Fume; HSE: Norwich, UK, 2014. [Google Scholar]
- Coggon, D.; Harris, E.C.; Cox, V.; Palmer, K.T. Pneumococcal vaccination for welders. Thorax 2015, 70, 198–199. [Google Scholar] [CrossRef] [Green Version]
- Hoffmaster, A.R.; Ravel, J.; Rasko, D.A.; Chapman, G.D.; Chute, M.D.; Marston, C.K.; De, B.K.; Sacchi, C.T.; Fitzgerald, C.; Mayer, L.W.; et al. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 2004, 101, 8449–8454. [Google Scholar] [CrossRef] [Green Version]
- Hoffmaster, A.R.; Hill, K.K.; Gee, J.E.; Marston, C.K.; De, B.K.; Popovic, T.; Sue, D.; Wilkins, P.P.; Avashia, S.B.; Drumgoole, R.; et al. Characterization of Bacillus cereus isolates associated with fatal pneumonias: Strains are closely related to Bacillus anthracis and harbor B. anthracis virulence genes. J. Clin. Microbiol. 2006, 44, 3352–3360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuschl, H.; Weber, E.; Kovac, R. Investigations on immune parameters in welders. J. Appl. Toxicol. 1997, 17, 377–383. [Google Scholar] [CrossRef]
- Chinn, D.J.; Stevenson, I.C.; Cotes, J.E. Longitudinal respiratory survey of shipyard workers: Effects of trade and atopic status. Br. J. Ind. Med. 1990, 47, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, S.W.; Bonde, J.P.; Omland, O. A prospective study of decline in lung function in relation to welding emissions. J. Occup. Med. Toxicol. 2008, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erkinjuntti-Pekkanen, R.; Slater, T.; Cheng, S.; Fishwick, D.; Bradshaw, L.; Kimbell-Dunn, M.; Dronfield, L.; Pearce, N. Two year follow up of pulmonary function values among welders in New Zealand. Occup. Environ. Med. 1999, 56, 328–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haluza, D.; Moshammer, H.; Hochgatterer, K. Dust is in the air. Part II: Effects of occupational exposure to welding fumes on lung function in a 9-year study. Lung 2014, 192, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, O.; Numanoglu, N.; Gonullu, U.; Savas, I.; Alper, D.; Gurses, H. Chronic effects of welding exposure on pulmonary function tests and respiratory symptoms. Occup. Environ. Med. 1995, 52, 800–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meo, S.A. Spirometric evaluation of lung function (maximal voluntary ventilation) in welding workers. Saudi Med. J. 2003, 24, 656–659. [Google Scholar]
- Skoczynska, A.; Gruszczynski, L.; Wojakowska, A.; Scieszka, M.; Turczyn, B.; Schmidt, E. Association between the Type of Workplace and Lung Function in Copper Miners. Biomed. Res. Int. 2016, 2016, 5928572. [Google Scholar] [CrossRef] [Green Version]
- Sobaszek, A.; Edme, J.L.; Boulenguez, C.; Shirali, P.; Mereau, M.; Robin, H.; Haguenoer, J.M. Respiratory symptoms and pulmonary function among stainless steel welders. J. Occup. Environ. Med. 1998, 40, 223–229. [Google Scholar] [CrossRef]
- Sobaszek, A.; Boulenguez, C.; Frimat, P.; Robin, H.; Haguenoer, J.M.; Edme, J.L. Acute respiratory effects of exposure to stainless steel and mild steel welding fumes. J. Occup. Environ. Med. 2000, 42, 923–931. [Google Scholar] [CrossRef]
- Szram, J.; Schofield, S.J.; Cosgrove, M.P.; Cullinan, P. Welding, longitudinal lung function decline and chronic respiratory symptoms: A systematic review of cohort studies. Eur. Respir. J. 2013, 42, 1186–1193. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Criner, G.J.; Frith, P.; Halpin, D.M.G.; Han, M.; et al. Global Strategy for Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease: the GoldScience Committee report 2019. Eur. Respir. J. 2019, 18, 53–55. [Google Scholar]
- Holm, M.; Kim, J.L.; Lillienberg, L.; Storaas, T.; Jogi, R.; Svanes, C.; Schlunssen, V.; Forsberg, B.; Gislason, T.; Janson, C.; et al. Incidence and prevalence of chronic bronchitis: Impact of smoking and welding. The RHINE study. Int. J. Tuberc. Lung Dis. 2012, 16, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Lillienberg, L.; Zock, J.P.; Kromhout, H.; Plana, E.; Jarvis, D.; Toren, K.; Kogevinas, M. A population-based study on welding exposures at work and respiratory symptoms. Ann. Occup. Hyg. 2008, 52, 107–115. [Google Scholar] [PubMed] [Green Version]
- Fidan, F.; Unlu, M.; Koken, T.; Tetik, L.; Akgun, S.; Demirel, R.; Serteser, M. Oxidant-antioxidant status and pulmonary function in welding workers. J. Occup. Health 2005, 47, 286–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mur, J.M.; Pham, Q.T.; Teculescu, D.; Massin, N.; Meyer-Bisch, C.; Moulin, J.J.; Wild, P.; Leonard, M.; Henquel, J.C.; Baudin, V.; et al. Arc welders’ respiratory health evolution over five years. Int. Arch. Occup. Environ. Health 1989, 61, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Beckett, W.S.; Pace, P.E.; Sferlazza, S.J.; Perlman, G.D.; Chen, A.H.; Xu, X.P. Airway reactivity in welders: A controlled prospective cohort study. J. Occup. Environ. Med. 1996, 38, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Thaon, I.; Demange, V.; Herin, F.; Touranchet, A.; Paris, C. Increased lung function decline in blue-collar workers exposed to welding fumes. Chest 2012, 142, 192–199. [Google Scholar] [CrossRef]
- Mur, J.M.; Teculescu, D.; Pham, Q.T.; Gaertner, M.; Massin, N.; Meyer-Bisch, C.; Moulin, J.J.; Diebold, F.; Pierre, F.; Meurou-Poncelet, B.; et al. Lung function and clinical findings in a cross-sectional study of arc welders. An epidemiological study. Int. Arch. Occup. Environ. Health 1985, 57, 1–17. [Google Scholar] [CrossRef]
- Baur, X.; Sigsgaard, T.; Aasen, T.B.; Burge, P.S.; Heederik, D.; Henneberger, P.; Maestrelli, P.; Rooyackers, J.; Schlunssen, V.; Vandenplas, O.; et al. Guidelines for the management of work-related asthma. Eur. Respir. J. 2012, 39, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Beach, J.R.; Dennis, J.H.; Avery, A.J.; Bromly, C.L.; Ward, R.J.; Walters, E.H.; Stenton, S.C.; Hendrick, D.J. An epidemiologic investigation of asthma in welders. Am. J. Respir. Crit. Care Med. 1996, 154, 1394–1400. [Google Scholar] [CrossRef]
- Bakerly, N.D.; Moore, V.C.; Vellore, A.D.; Jaakkola, M.S.; Robertson, A.S.; Burge, P.S. Fifteen-year trends in occupational asthma: Data from the Shield surveillance scheme. Occup. Med. 2008, 58, 169–174. [Google Scholar] [CrossRef] [Green Version]
- El-Zein, M.; Malo, J.L.; Infante-Rivard, C.; Gautrin, D. Incidence of probable occupational asthma and changes in airway calibre and responsiveness in apprentice welders. Eur. Respir. J. 2003, 22, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristiansen, P.; Jorgensen, K.T.; Hansen, J.; Bonde, J.P. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders: A nationwide follow-up study. Int. Arch. Occup. Environ. Health 2015, 88, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Hannu, T.; Piipari, R.; Tuppurainen, M.; Nordman, H.; Tuomi, T. Occupational asthma caused by stainless steel welding fumes: A clinical study. Eur. Respir. J. 2007, 29, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannu, T.; Piipari, R.; Kasurinen, H.; Keskinen, H.; Tuppurainen, M.; Tuomi, T. Occupational asthma due to manual metal-arc welding of special stainless steels. Eur. Respir. J. 2005, 26, 736–739. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Chia, S.E.; Yap, J.C.; Wang, Y.T.; Lee, C.S. Occupational asthma due to spot-welding. Singap. Med. J. 1990, 31, 506–508. [Google Scholar]
- Keskinen, H.; Kalliomaki, P.L.; Alanko, K. Occupational asthma due to stainless steel welding fumes. Clin. Allergy 1980, 10, 151–159. [Google Scholar] [CrossRef]
- Wittczak, T.; Dudek, W.; Walusiak-Skorupa, J.; Swierczynska-Machura, D.; Cader, W.; Kowalczyk, M.; Palczynski, C. Metal-induced asthma and chest X-ray changes in welders. Int. J. Occup. Med. Environ. Health 2012, 25, 242–250. [Google Scholar] [CrossRef]
- Meldrum, M.; Rawbone, R.; Curran, A.D.; Fishwick, D. The role of occupation in the development of chronic obstructive pulmonary disease (COPD). Occup. Environ. Med. 2005, 62, 212–214. [Google Scholar] [CrossRef] [Green Version]
- Salvi, S.S.; Barnes, P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009, 374, 733–743. [Google Scholar] [CrossRef]
- Whittemore, A.S.; Perlin, S.A.; DiCiccio, Y. Chronic obstructive pulmonary disease in lifelong nonsmokers: Results from NHANES. Am. J. Public Health 1995, 85, 702–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrendt, C.E. Mild and moderate-to-severe COPD in nonsmokers: Distinct demographic profiles. Chest 2005, 128, 1239–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hnizdo, E.; Sullivan, P.A.; Bang, K.M.; Wagner, G. Association between chronic obstructive pulmonary disease and employment by industry and occupation in the US population: A study of data from the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 2002, 156, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Blanc, P.D.; Menezes, A.M.; Plana, E.; Mannino, D.M.; Hallal, P.C.; Toren, K.; Eisner, M.D.; Zock, J.P. Occupational exposures and COPD: An ecological analysis of international data. Eur. Respir. J. 2009, 33, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omland, O.; Wurtz, E.T.; Aasen, T.B.; Blanc, P.; Brisman, J.B.; Miller, M.R.; Pedersen, O.F.; Schlunssen, V.; Sigsgaard, T.; Ulrik, C.S.; et al. Occupational chronic obstructive pulmonary disease: A systematic literature review. Scand. J. Work Environ. Health 2014, 40, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Mastrangelo, G.; Tartari, M.; Fedeli, U.; Fadda, E.; Saia, B. Ascertaining the risk of chronic obstructive pulmonary disease in relation to occupation using a case-control design. Occup. Med. 2003, 53, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Koh, D.H.; Kim, J.I.; Kim, K.H.; Yoo, S.W. Welding fume exposure and chronic obstructive pulmonary disease in welders. Occup. Med. 2015, 65, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Lehnert, M.; Hoffmeyer, F.; Gawrych, K.; Lotz, A.; Heinze, E.; Berresheim, H.; Merget, R.; Harth, V.; Van Gelder, R.; Hahn, J.U.; et al. Effects of Exposure to Welding Fume on Lung Function: Results from the German WELDOX Study. Adv. Exp. Med. Biol. 2015, 834, 1–13. [Google Scholar]
- Cosgrove, M.P. Pulmonary fibrosis and exposure to steel welding fume. Occup. Med. 2015, 65, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Godbert, B.; Wissler, M.P.; Vignaud, J.M. Desquamative interstitial pneumonia: An analytic review with an emphasis on aetiology. Eur. Respir. Rev. 2013, 22, 117–123. [Google Scholar] [CrossRef]
- Becker, N.; Claude, J.; Frentzel-Beyme, R. Cancer risk of arc welders exposed to fumes containing chromium and nickel. Scand. J. Work Environ. Health 1985, 11, 75–82. [Google Scholar] [CrossRef]
- Sjogren, B.; Gustavsson, A.; Hedstrom, L. Mortality in two cohorts of welders exposed to high- and low-levels of hexavalent chromium. Scand. J. Work Environ. Health 1987, 13, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Sjogren, B.; Hansen, K.S.; Kjuus, H.; Persson, P.G. Exposure to stainless steel welding fumes and lung cancer: A meta-analysis. Occup. Environ. Med. 1994, 51, 335–336. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Chromium, Nickel, and Welding; IARC: Lyon, France, 1990. [Google Scholar]
- Guha, N.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Vilahur, N.; Muller, K.; Straif, K. Carcinogenicity of welding, molybdenum trioxide, and indium tin oxide. Lancet Oncol. 2017, 18, 581–582. [Google Scholar] [CrossRef]
- Pesch, B.; Kendzia, B.; Pohlabeln, H.; Ahrens, W.; Wichmann, H.E.; Siemiatycki, J.; Taeger, D.; Zschiesche, W.; Behrens, T.; Jockel, K.H.; et al. Exposure to Welding Fumes, Hexavalent Chromium, or Nickel and Risk of Lung Cancer. Am. J. Epidemiol. 2019, 188, 1984–1993. [Google Scholar] [CrossRef] [PubMed]
- Ambroise, D.; Wild, P.; Moulin, J.J. Update of a meta-analysis on lung cancer and welding. Scand. J. Work Environ. Health 2006, 32, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Simonato, L.; Fletcher, A.C.; Andersen, A.; Anderson, K.; Becker, N.; Chang-Claude, J.; Ferro, G.; Gerin, M.; Gray, C.N.; Hansen, K.S.; et al. A historical prospective study of European stainless steel, mild steel, and shipyard welders. Br. J. Ind. Med. 1991, 48, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Moulin, J.J. A meta-analysis of epidemiologic studies of lung cancer in welders. Scand. J. Work Environ. Health 1997, 23, 104–113. [Google Scholar] [CrossRef] [Green Version]
- t Mannetje, A.; Brennan, P.; Zaridze, D.; Szeszenia-Dabrowska, N.; Rudnai, P.; Lissowska, J.; Fabianova, E.; Cassidy, A.; Mates, D.; Bencko, V.; et al. Welding and lung cancer in Central and Eastern Europe and the United Kingdom. Am. J. Epidemiol. 2012, 175, 706–714. [Google Scholar] [CrossRef] [Green Version]
- Hansen, K.S.; Lauritsen, J.M.; Skytthe, A. Cancer incidence among mild steel and stainless steel welders and other metal workers. Am. J. Ind. Med. 1996, 30, 373–382. [Google Scholar] [CrossRef]
- Moulin, J.J.; Wild, P.; Haguenoer, J.M.; Faucon, D.; De Gaudemaris, R.; Mur, J.M.; Mereau, M.; Gary, Y.; Toamain, J.P.; Birembaut, Y.; et al. A mortality study among mild steel and stainless steel welders. Br. J. Ind. Med. 1993, 50, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, J.J.; Weiss, N.S. Mortality of welders, shipfitters, and other metal trades workers in boilermakers Local No. 104, AFL-CIO. Am. J. Epidemiol. 1980, 112, 775–786. [Google Scholar] [PubMed]
- Danielsen, T.E.; Langard, S.; Andersen, A. Incidence of cancer among welders and other shipyard workers with information on previous work history. J. Occup. Environ. Med. 2000, 42, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K. Ten-year update on mortality among mild-steel welders. Scand. J. Work Environ. Health 2002, 28, 163–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langard, S. Nickel-related cancer in welders. Sci. Total Environ. 1994, 148, 303–309. [Google Scholar] [CrossRef]
- Sorensen, A.R.; Thulstrup, A.M.; Hansen, J.; Ramlau-Hansen, C.H.; Meersohn, A.; Skytthe, A.; Bonde, J.P. Risk of lung cancer according to mild steel and stainless steel welding. Scand. J. Work Environ. Health 2007, 33, 379–386. [Google Scholar] [CrossRef]
- Becker, N. Cancer mortality among arc welders exposed to fumes containing chromium and nickel. Results of a third follow-up: 1989–1995. J. Occup. Environ. Med. 1999, 41, 294–303. [Google Scholar] [CrossRef]
- Danielsen, T.E.; Langard, S.; Andersen, A. Incidence of cancer among Norwegian boiler welders. Occup. Environ. Med. 1996, 53, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Danielsen, T.E.; Langard, S.; Andersen, A.; Knudsen, O. Incidence of cancer among welders of mild steel and other shipyard workers. Br. J. Ind. Med. 1993, 50, 1097–1103. [Google Scholar] [CrossRef] [Green Version]
- Honaryar, M.K.; Lunn, R.M.; Luce, D.; Ahrens, W.; t Mannetje, A.; Hansen, J.; Bouaoun, L.; Loomis, D.; Byrnes, G.; Vilahur, N.; et al. Welding fumes and lung cancer: A meta-analysis of case-control and cohort studies. Occup. Environ. Med. 2019, 76, 422–431. [Google Scholar] [CrossRef]
- Richiardi, L.; Boffetta, P.; Simonato, L.; Forastiere, F.; Zambon, P.; Fortes, C.; Gaborieau, V.; Merletti, F. Occupational risk factors for lung cancer in men and women: A population-based case-control study in Italy. Cancer Causes Control 2004, 15, 285–294. [Google Scholar] [CrossRef]
- Lerchen, M.L.; Wiggins, C.L.; Samet, J.M. Lung cancer and occupation in New Mexico. J. Natl. Cancer Inst. 1987, 79, 639–645. [Google Scholar]
- Vallieres, E.; Pintos, J.; Lavoue, J.; Parent, M.E.; Rachet, B.; Siemiatycki, J. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: Evidence from two case-control studies in Montreal. Cancer Med. 2012, 1, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.Y.; Bassig, B.A.; Seow, W.J.; Hu, W.; Ji, B.T.; Blair, A.; Silverman, D.T.; Lan, Q. Lung cancer risk in welders and foundry workers with a history of heavy smoking in the USA: The National Lung Screening Trial. Occup. Environ. Med. 2017, 74, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Kendzia, B.; Behrens, T.; Jockel, K.H.; Siemiatycki, J.; Kromhout, H.; Vermeulen, R.; Peters, S.; Van Gelder, R.; Olsson, A.; Bruske, I.; et al. Welding and lung cancer in a pooled analysis of case-control studies. Am. J. Epidemiol. 2013, 178, 1513–1525. [Google Scholar] [CrossRef] [PubMed]
- Sankila, R.J.; Karjalainen, E.S.; Oksanen, H.M.; Hakulinen, T.R.; Teppo, L.H. Relationship between occupation and lung cancer as analyzed by age and histologic type. Cancer 1990, 65, 1651–1656. [Google Scholar] [CrossRef]
- Siew, S.S.; Kauppinen, T.; Kyyronen, P.; Heikkila, P.; Pukkala, E. Exposure to iron and welding fumes and the risk of lung cancer. Scand. J. Work Environ. Health 2008, 34, 444–450. [Google Scholar] [CrossRef]
- Matrat, M.; Guida, F.; Mattei, F.; Cenee, S.; Cyr, D.; Fevotte, J.; Sanchez, M.; Menvielle, G.; Radoi, L.; Schmaus, A.; et al. Welding, a risk factor of lung cancer: The ICARE study. Occup. Environ. Med. 2016, 73, 254–261. [Google Scholar] [CrossRef]
- MacLeod, J.S.; Harris, M.A.; Tjepkema, M.; Peters, P.A.; Demers, P.A.; Mocevic, E.; Kristiansen, P.; Bonde, J.P. Cancer Risks among Welders and Occasional Welders in a National Population-Based Cohort Study: Canadian Census Health and Environmental Cohort. Saf. Health Work 2017, 8, 258–266. [Google Scholar] [CrossRef]
- American Conference of Governmental Industrial Hygienists. Documentation of the Threshold Limit Values for Chemical Substances, 7th ed.; ACGIH: Cincinnati, OH, USA, 2001. [Google Scholar]
- National Institute for Occupational Safety and Health. Criteria for a Recommended Standard: Occupational Exposure to Hexavalent Chromium; DHSS (NIOSH) Publication: Washington, DC, USA, 2013. [Google Scholar]
- American Conference of Governmental Industrial Hygienists. Documentation of the Threshold Limit Values (TLVs) and Biological Exposure Indices (BEIs); ACGIH: Cincinnati, OH, USA, 2013. [Google Scholar]
- Occupational Safety & Health Administration. Chromium (VI); OSHA: Washington, DC, USA, 2006.
- Scientific Committee on Occupational Exposure Limits. Risk Assessment for Hexavalent Chromium; SCOEL: Brussels, Belgium, 2004. [Google Scholar]
- National Institute for Occupational Safety and Health. Occupational Health Guideline for Nickel Metal and Soluble Nickel Compounds; NIOSH: Washington, DC, USA, 1978. [Google Scholar]
- Occupational Safety & Health Administration. Nickel Standard No. 1910.1000; OSHA: Washington, DC, USA, 2017.
- Scientific Committee on Occupational Exposure Limits. Recommendation Recommendation from the Scientific Committee on Occupational Exposure Limits for Nickel and Inorganic Nickel Compounds; SCOEL: Brussels, Belgium, 2011. [Google Scholar]
- Jonsson, L.S.; Tinnerberg, H.; Jacobsson, H.; Andersson, U.; Axmon, A.; Nielsen, J. The ordinary work environment increases symptoms from eyes and airways in mild steel welders. Int. Arch. Occup. Environ. Health 2015, 88, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Monse, C.; Hagemeyer, O.; Raulf, M.; Jettkant, B.; van Kampen, V.; Kendzia, B.; Gering, V.; Kappert, G.; Weiss, T.; Ulrich, N.; et al. Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part. Fibre Toxicol. 2018, 15, 8. [Google Scholar] [CrossRef]
- Stridsklev, I.C.; Hemmingsen, B.; Karlsen, J.T.; Schaller, K.H.; Raithel, H.J.; Langard, S. Biologic monitoring of chromium and nickel among stainless steel welders using the manual mental arc method. Int. Arch. Occup. Environ. Health 1993, 65, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Stridsklev, I.C.; Schaller, K.H.; Langard, S. Monitoring of chromium and nickel in biological fluids of stainless steel welders using the flux-cored-wire (FCW) welding method. Int. Arch. Occup. Environ. Health 2004, 77, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Persoons, R.; Arnoux, D.; Monssu, T.; Culie, O.; Roche, G.; Duffaud, B.; Chalaye, D.; Maitre, A. Determinants of occupational exposure to metals by gas metal arc welding and risk management measures: A biomonitoring study. Toxicol. Lett. 2014, 231, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, P.T.; Heussen, G.A.; Peer, P.G.; Verbist, K.; Anzion, R.; Willems, J. Characterisation of exposure to total and hexavalent chromium of welders using biological monitoring. Toxicol. Lett. 2008, 178, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Goldoni, M.; Caglieri, A.; De Palma, G.; Acampa, O.; Gergelova, P.; Corradi, M.; Apostoli, P.; Mutti, A. Chromium in exhaled breath condensate (EBC), erythrocytes, plasma and urine in the biomonitoring of chrome-plating workers exposed to soluble Cr(VI). J. Environ. Monit. 2010, 12, 442–447. [Google Scholar] [CrossRef]
- Lewalter, J.; Korallus, U.; Harzdorf, C.; Weidemann, H. Chromium bond detection in isolated erythrocytes: A new principle of biological monitoring of exposure to hexavalent chromium. Int. Arch. Occup. Environ. Health 1985, 55, 305–318. [Google Scholar] [CrossRef]
- Caglieri, A.; Goldoni, M.; Acampa, O.; Andreoli, R.; Vettori, M.V.; Corradi, M.; Apostoli, P.; Mutti, A. The effect of inhaled chromium on different exhaled breath condensate biomarkers among chrome-plating workers. Environ. Health Perspect. 2006, 114, 542–546. [Google Scholar] [CrossRef]
- Corradi, M.; Gergelova, P.; Mutti, A. Use of exhaled breath condensate to investigate occupational lung diseases. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 93–98. [Google Scholar] [CrossRef]
- Apostoli, P.; Lucchini, R.; Alessio, L. Are current biomarkers suitable for the assessment of manganese exposure in individual workers? Am. J. Ind. Med. 2000, 37, 283–290. [Google Scholar] [CrossRef]
- Ellingsen, D.G.; Dubeikovskaya, L.; Dahl, K.; Chashchin, M.; Chashchin, V.; Zibarev, E.; Thomassen, Y. Air exposure assessment and biological monitoring of manganese and other major welding fume components in welders. J. Environ. Monit. 2006, 8, 1078–1086. [Google Scholar] [CrossRef]
- Hulo, S.; Cherot-Kornobis, N.; Howsam, M.; Crucq, S.; de Broucker, V.; Sobaszek, A.; Edme, J.L. Manganese in exhaled breath condensate: A new marker of exposure to welding fumes. Toxicol. Lett. 2014, 226, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Boyce, P.D.; Kim, J.Y.; Weissman, D.N.; Hunt, J.; Christiani, D.C. pH increase observed in exhaled breath condensate from welding fume exposure. J. Occup. Environ. Med. 2006, 48, 353–356. [Google Scholar] [CrossRef]
- Fireman, E.; Lerman, Y.; Stark, M.; Schwartz, Y.; Ganor, E.; Grinberg, N.; Frimer, R.; Landau, D.A.; Zilberberg, M.; Barenboim, E.; et al. Detection of occult lung impairment in welders by induced sputum particles and breath oxidation. Am. J. Ind. Med. 2008, 51, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeyer, F.; Raulf-Heimsoth, M.; Weiss, T.; Lehnert, M.; Gawrych, K.; Kendzia, B.; Harth, V.; Henry, J.; Pesch, B.; Bruning, T. Relation between biomarkers in exhaled breath condensate and internal exposure to metals from gas metal arc welding. J. Breath Res. 2012, 6, 027105. [Google Scholar] [CrossRef] [PubMed]
- Brand, P.; Gube, M.; Gerards, K.; Bertram, J.; Kaminski, H.; John, A.C.; Kuhlbusch, T.; Wiemann, M.; Eisenbeis, C.; Winkler, R.; et al. Internal exposure, effect monitoring, and lung function in welders after acute short-term exposure to welding fumes from different welding processes. J. Occup. Environ. Med. 2010, 52, 887–892. [Google Scholar] [CrossRef]
- Gube, M.; Ebel, J.; Brand, P.; Goen, T.; Holzinger, K.; Reisgen, U.; Kraus, T. Biological effect markers in exhaled breath condensate and biomonitoring in welders: Impact of smoking and protection equipment. Int. Arch. Occup. Environ. Health 2010, 83, 803–811. [Google Scholar] [CrossRef]
- Brand, P.; Bischof, K.; Siry, L.; Bertram, J.; Schettgen, T.; Reisgen, U.; Kraus, T.; Gube, M. Exposure of healthy subjects with emissions from a gas metal arc welding process: Part 3--biological effect markers and lung function. Int. Arch. Occup. Environ. Health 2013, 86, 39–45. [Google Scholar] [CrossRef]
- Hoffmeyer, F.; Raulf-Heimsoth, M.; Lehnert, M.; Kendzia, B.; Bernard, S.; Berresheim, H.; Duser, M.; Henry, J.; Weiss, T.; Koch, H.M.; et al. Impact of different welding techniques on biological effect markers in exhaled breath condensate of 58 mild steel welders. J. Toxicol. Environ. Health A 2012, 75, 525–532. [Google Scholar] [CrossRef]
- Torling, J.; Hedlund, J.; Konradsen, H.B.; Ortqvist, A. Revaccination with the 23-valent pneumococcal polysaccharide vaccine in middle-aged and elderly persons previously treated for pneumonia. Vaccine 2003, 22, 96–103. [Google Scholar] [CrossRef]
- Jackson, L.A.; Gurtman, A.; van Cleeff, M.; Frenck, R.W.; Treanor, J.; Jansen, K.U.; Scott, D.A.; Emini, E.A.; Gruber, W.C.; Schmoele-Thoma, B. Influence of initial vaccination with 13-valent pneumococcal conjugate vaccine or 23-valent pneumococcal polysaccharide vaccine on anti-pneumococcal responses following subsequent pneumococcal vaccination in adults 50 years and older. Vaccine 2013, 31, 3594–3602. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Bennett, N.M.; Gierke, R.; Almendares, O.; Moore, M.R.; Whitney, C.G.; Pilishvili, T. Intervals Between PCV13 and PPSV23 Vaccines: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. Morb. Mortal. Wkly. Rep. 2015, 64, 944–947. [Google Scholar] [CrossRef] [PubMed]
Electric arc Welding Process | Electrode | Shielding | Main Base Metal | Metal Oxides and Toxic Gases |
---|---|---|---|---|
Manual Metal Arc Welding (MMAW) | coated consumable electrode | decomposition of the electrode covering | all ferrous metals | Al, Cd, Co, Cr, Cu, Fe, fluorides, Mg, Mn, Mo, Ni, Pb, Si, Ti, Zn. Not high amounts of toxic gases: CO, CO2, NOx, O3 |
Flux-cored Arc Welding (FCAW) | continuous filler metal consumable electrode | obtained from a flux contained within electrode | MS SS | Cr, Fe, fluorides, Mn, Ni, Si. Not high amounts of toxic gases: CO, CO2, NOx, O3, |
Submerged Arc Welding (SAW) | uncoated consumable electrode | granulated flux (lime, Si, Mn oxide, calcium fluoride, and other compounds) | MS | Al, Fe, Fluorides, Mg, Mn, Si, Ti. Not high amounts of toxic gases: CO, CO2, NOx, O3, |
Gas Metal Arc Welding (GMAW): Metal arc Inert Gas (MIG) Metal arc Active Gas (MAG) | continuous filler metal consumable electrode | MIG: inert gas (argon or helium) MAG: active gas (CO2) | Fe, MS, SS, Cu alloys, Ni alloys, Al, Mg | Al, Cr, Cu, Fe, Mn, Ni. High amounts of toxic gases: CO, CO2, NOx, O3 |
Gas Tungsten Arc Welding (GTAW) | tungsten non consumable electrode | inert gas (argon or helium) | Fe, SS, Al, Mg | Al, Cr, Fe, Mg, Mn, Ni. High amounts of toxic gases: CO, CO2, NOx, O3 |
Longitudinal Studies | |||||
---|---|---|---|---|---|
First Author, Publication Year Country | Years | Welders/Controls (n) | Welding Characteristics | Tests | Results |
Mur, J.M., 1989, France [109] | 1981/1986 | 138/106 | Main base metals: MS, SS Welding processes: MIG | spirometry, CO transfer tests | No significant difference in spirometry and CO transfer test. |
Chinn, D.J., 1990 UK [95] | 1979/1986 | 286/64 | Industry: shipyard Main base metals: MS Welding processes: MMA | Spirometry | Significant annual decline in FEV1 and FVC than controls |
Beckett, W.S., 1996 USA [110] | 3 year follow-up | 24/35 | Industry: shipyard Main base metals: SS Welding processes: TIG, MIG | Spirometry | No significant difference |
Erkinjuntti-Pekkanen, R., 1999 New Zeeland [97] | 1996/1998 | 43/35 | Industry: engineering Main base metals: MS, SS Welding processes: MIG, TIG | Spirometry | No significant difference. In smoker group, welders had a significantly greater annual decline in FEV1 than non-welders |
Christensen, S.W., 2008 Denmark [96] | 1987/2004 | 68/32 | Main base metals: SS, MS Welding processes: MMA, MAG, TIG | Spirometry | No significant differences. In smoker group, welders had a decline in FEV1 larger than non-welders while the difference was negligible in nonsmokers |
Thaon, I., 2012 France [111] | 1990/1995 | 543/709 | Not specified | Spirometry | Significant decline in FEV1 in never smokers. Significant decline in FEV1 in nonsmokers welders exposed daily for ≥ 4 h/die but not in smokers |
Haluza, D., 2014 Austria [98] | 2002/2010 | 1326/NA | Not specified | Spirometry | Significant decline in FEV1 and FVC in heavily smoking welders (≥ 20 cigarettes/die) Significantly decrease of FEV1 and FVC associated with duration of exposure per year |
Skoczyńska, A., 2016 Poland [101] | 1980/2005 | 167/428 | Not specified | Spirometry at the start of the employment and after 10, 20, and 25 years, | Significant difference In welders decrease in FEV1 and FVC after 20 years of exposure than controls. In welders decline of FEV1/year was greater compared to other workers. |
Longitudinal Studies | |||||
---|---|---|---|---|---|
First Author, Publication Year Country | Years | Welders/Controls (n) | Welding Characteristics | Tests | Results |
Mur, J.M., 1985 France [112] | 1985 | 346/214 | Industry: factory producing industrial vehicles Main base metals: MS, SS Welding processes: Electric arc welding process | Spirometry, bronchial challenge test to acetylcholine, CO transfer tests | No significant difference in spirometry. Significant slightly higher bronchial hyper-reactivity to acetylcholine in welders than to controls Significant lower lung diffusing capacity for CO in welders than to controls |
Ozdemir, O., 1995 Turkey [99] | Not specified | 110/55 | Working duration: 1-30y Main base metals: MS, Al Welding processes: MMA | Spirometry | Significant difference In smoker group FEV1, FVC and PEF were significantly lower in welders than controls. |
Sobaszek, A., 1998 France [102] | Not specified | 130/234 | Industry: shipyards, tankbuilding Working duration ≥5y Welding metal: SS Welding processes: MMA, MIG, TIG | Spirometry before work shift | No significant difference The respiratory function of welders decreased after 25 years of SS welding activity and this decrease was not statistically linked to age but to time spent in welding. |
Sobaszek, A., 2000 France [103] | 2000 | 144 W (91SS, 43MS)/223 controls | Working duration ≥5y Main base metals: SS, MS Welding processes: MMA MIG TIG | Spirometry before and after work shift | Significant difference across-shift change in FVC and FEV1 between SS and MS and between SS and controls. SS welders with over 20 years of exposure had more significant across-shift decrease in FEV1, FVC, PEF than MS welders |
Meo, S.A., 2003 Pakistan [100] | 2003 | 50 W/50 C | Welding processes: MMA | Spirometry | Significant decrease in FEV1 and FEV1/FVC in welders with over 9 years of exposure compared to controls |
Fidan, F., 2005 Turkey [108] | 2004 | 34 W/20 C | Working duration ≥5year | Spirometry | FEV1/FVC across-shift significantly lower in welders than in controls |
Longitudinal Studies | ||||||
---|---|---|---|---|---|---|
First Author, Publication Year Country | Years | Welding Characteristics | Welders (n) | Observed | Expected | Standardized Mortality Ratio (SMR) Standardized Incidence Ratios (SIR) |
Simonato, L., 1991 9 European countries [142] | 1950–1980 | Welding processes: MIG, MAG, TIG, MMA Main base metals: SS and MS | 11.092 | 116 | 86.81 | SMR = 1.34 (1.10 to 1.60) |
Moulin, S.S., 1993 France [146] | 1975–1988 | Welding processes: MIG, MAG, TIG, MMA Main base metals: SS and MS | 2.721 | 19 | 15.33 | SMR = 1.24 (0.75 to 1.94) |
Danielsen, T.E., 1993 Norway [154] | 1940–1979 | Welding processes: MIG, MAG, TIG, MMA Main base metals: SS and MS | 623 | 9 | 3.6 | SIR = 2.50 (1.14 to 4.75) |
Hansen, K.S., 1996 Danish [145] | 1964–1985 | Welding processes: not specified Main base metals: SS and MS | 6.180 | 51 | 36.84 | SIR = 1.38 (1.03 to 1.81) |
Steenland, K., 2002 United States [149] | 1988–1998 | Welding processes: Not specified Main base metals: SS and MS | 4.459 | 108 | 73.97 | SMR = 1.46 (1.20 to 1.76) |
Sørensen, A.R., 2007 Danish [151] | 1968–2003 | Welding processes: MAG, TIG, MMA Main base metals: SS and MS | 4.539 | 75 | 55.4 | SIR = 1.35 (1.06 to 1.70) |
Largest Recent Case-Control Studies | ||||
---|---|---|---|---|
First author, Publication Year Country | Years | Welders/Controls (n) | Welding Characteristics | Odds Ratio (95% Confidence Interval) |
t Mannetje, A., 2012 15 centers in Central and Eastern Europe and the UK [144] | 1998–2001 | 296/247 | Welding processes: Arc and gas welding Main base metals: SS and MS | 1.22 (0,99 to 1,50) ° 1.13 (0,90 to 1.43) * 1.38 (1.00 to 1.90) ** |
Kendzia, B., 2013 SYNERGY project: 16 studies conducted in Europa, Canada, China and New Zeland [160] | 1985–2010 | 568/427 | Industry: Shipbuilding and repair Construction Manufacture of machine Manufacture of motor vehicles and motor bike | 1.44 (1.25 to 1.67) a 1.77 (1.31 to 2.39) ** 1.58 (1.32 to 1.89) b 1.41 (1.09 to 1.82) c |
Matrat, M., 2016 France [163] | 2001–2007 | 92/64 | Welding process: Soldering, Brazing, Gas welding, Arc welding, Spot welding, Other welding | 1.7 (1.1 to 2.5) ° 2.0 (1.0 to 3.9) d |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccelli, M.G.; Goldoni, M.; Poli, D.; Mozzoni, P.; Cavallo, D.; Corradi, M. Welding Fumes, a Risk Factor for Lung Diseases. Int. J. Environ. Res. Public Health 2020, 17, 2552. https://doi.org/10.3390/ijerph17072552
Riccelli MG, Goldoni M, Poli D, Mozzoni P, Cavallo D, Corradi M. Welding Fumes, a Risk Factor for Lung Diseases. International Journal of Environmental Research and Public Health. 2020; 17(7):2552. https://doi.org/10.3390/ijerph17072552
Chicago/Turabian StyleRiccelli, Maria Grazia, Matteo Goldoni, Diana Poli, Paola Mozzoni, Delia Cavallo, and Massimo Corradi. 2020. "Welding Fumes, a Risk Factor for Lung Diseases" International Journal of Environmental Research and Public Health 17, no. 7: 2552. https://doi.org/10.3390/ijerph17072552
APA StyleRiccelli, M. G., Goldoni, M., Poli, D., Mozzoni, P., Cavallo, D., & Corradi, M. (2020). Welding Fumes, a Risk Factor for Lung Diseases. International Journal of Environmental Research and Public Health, 17(7), 2552. https://doi.org/10.3390/ijerph17072552