A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data
Abstract
:1. Introduction
2. Proposed Surrogate Model for Uncertainty Quantification in RF Radiation Modeling
2.1. Numerical Modeling of the New EEG System
2.2. Design of Experiments (DoE)
2.3. Proposed Surrogate Model for UQ
3. Simulations and Results
3.1. Model Description
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EEG | Electroencephalography |
RF | Radio frequency |
SAR | Specific absorption rate |
UQ | Uncertainty quantification |
ANN | Artificial neural network |
MCS | Monte Carlo simulation |
ANNs | Artificial neural networks |
PEC | Perfectly electric conducting |
VSIE | Volume–surface integral equation |
SIE | Surface integral equation |
MoM | Method of moments |
RWG | Rao–Wilton–Glisson |
SWG | Schaubert–Wilton–Glisson |
DoE | Design of Experiments |
Relu | Rectified linear unit |
Adam | Adaptive moment estimation |
References
- Ahlbom, A.; Bergqvist, U.; Bernhardt, J.; Cesarini, J.; Grandolfo, M.; Hietanen, M.; Mckinlay, A.; Repacholi, M.; Sliney, D.; Stolwijk, J.; et al. Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys. 1998, 4, 494–522. [Google Scholar]
- Hung, C.-S.; Anderson, C.; Horne, J.A.; McEvoy, P. Mobile phone ‘talk-mode’signal delays EEG-determined sleep onset. Neurosci. Lett. 2007, 1, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Sudret, B. Uncertainty Propagation and Sensitivity Analysis in Mechanical Models Contributions to Structural Reliability and Stochastic Spectral Methods. Ph.D. Thesis, Université Blaise Pascal, Clermont-Ferrand, France, 2007. [Google Scholar]
- Edwards, R.S.; Marvin, A.C.; Porter, S.J. Uncertainty analyses in the finite-difference time-domain method. IEEE Trans. Electromagn. Compat. 2010, 1, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Austin, A.C.M.; Sarris, C.D. Efficient analysis of geometrical uncertainty in the FDTD method using polynomial chaos with application to microwave circuits. IEEE Trans. Microw. Theory Techn. 2013, 12, 4293–4301. [Google Scholar] [CrossRef]
- Xiu, D.; Karniadakis, G.E. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 2002, 2, 619–644. [Google Scholar] [CrossRef]
- Wan, X.; Karniadakis, G.E. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 2005, 2, 617–642. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Verleysen, M.; Francois, D.; Simon, G.; Wertz, V. On the effects of dimensionality on data analysis with neural networks. In Proceedings of the International Work-Conference on Artificial Neural Networks, Menorca, Spain, 3–6 June 2003; Volume 2687, pp. 105–112. [Google Scholar]
- Sarkar, T.K.; Arvas, E. An integral equation approach to the analysis of finite microstrip antennas: Volume/surface formulation. IEEE Trans. Antennas Propag. 1990, 3, 305–312. [Google Scholar] [CrossRef]
- Lu, C.C.; Chew, W.C. A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets. IEEE Trans. Antennas Propag. 2000, 12, 1866–1868. [Google Scholar] [CrossRef]
- Harrington, R.F. Time-Harmonic Electromagnetic Fields; IEEE-Press: New York, NY, USA, 2001; p. 1. [Google Scholar]
- Rao, S.; Wilton, D.; Glisson, A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Transa. Antennas Propag. 1982, 3, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Schaubert, D.; Wilton, D.; Glisson, A. A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies. IEEE Trans. Antennas Propag. 1984, 1, 77–85. [Google Scholar] [CrossRef]
- Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear units and dropout. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; Volume 1, pp. 8609–8613. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Index 1 | () |
Index 2 | () |
Index 3 | () |
Index 4 | () |
Index 5 | () |
Index 6 | () |
Index 7 | () |
Index 8 | () |
Index 9 | () |
Relative Permittivity | Conductivity (S/m) | Mass Density (kg/m) | Outer Radius (mm) | |
---|---|---|---|---|
Brain | 55.5 | 0.94 | 1030 | 68 |
Skull | 12.5 | 0.14 | 1850 | 71.1 |
Skin | 35.2 | 0.6 | 1110 | 74.7 |
Network | Training | Testing | |
---|---|---|---|
Training Error | Validation Error | Testing Error | |
Autoencoder | 1.29 × | 1.68 × | 1.74 × |
Proposed ANN | 4.92 × | 5.16 × | 5.45 × |
Network | Number of Training Data | Batch Size | Number of Epochs | Number of Neurons in Each Layer |
---|---|---|---|---|
Autoencoder | 100 | 25 | 8000 | 3000, 3000, 3000, 100, 3000, 3000, 3000 |
Proposed ANN | 200 | 50 | 6000 | 500, 500, 100, 100 |
Number of Data | CPU Time | |
---|---|---|
Training | 100 + 200 | 172,036 s + 291 s |
Testing | 200 | 2 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Henry, C.; Andriulli, F.P.; Person, C.; Wiart, J. A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data. Int. J. Environ. Res. Public Health 2020, 17, 2586. https://doi.org/10.3390/ijerph17072586
Cheng X, Henry C, Andriulli FP, Person C, Wiart J. A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data. International Journal of Environmental Research and Public Health. 2020; 17(7):2586. https://doi.org/10.3390/ijerph17072586
Chicago/Turabian StyleCheng, Xi, Clément Henry, Francesco P. Andriulli, Christian Person, and Joe Wiart. 2020. "A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data" International Journal of Environmental Research and Public Health 17, no. 7: 2586. https://doi.org/10.3390/ijerph17072586
APA StyleCheng, X., Henry, C., Andriulli, F. P., Person, C., & Wiart, J. (2020). A Surrogate Model Based on Artificial Neural Network for RF Radiation Modelling with High-Dimensional Data. International Journal of Environmental Research and Public Health, 17(7), 2586. https://doi.org/10.3390/ijerph17072586