Predicted Future Mortality Attributed to Increases in Temperature and PM10 Concentration under Representative Concentration Pathway Scenarios
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Temperature-Mortality Relationship Considering Interaction between PM10 and Temperature
2.3. Historical Mortality at Baseline and Estimated Mortality of Projected Period
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Lavigne, E.; Zanobetti, A.; Schwartz, J.; Tobias, A.; Tong, S.; Rocklöv, J.; Forsberg, B. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet 2015, 386, 369–375. [Google Scholar]
- Ye, X.; Wolff, R.; Yu, W.; Vaneckova, P.; Pan, X.; Tong, S. Ambient temperature and morbidity: A review of epidemiological evidence. Environ. Health Perspect. 2011, 120, 19–28. [Google Scholar] [PubMed] [Green Version]
- Han, J.; Liu, S.; Zhang, J.; Zhou, L.; Fang, Q.; Zhang, J.; Zhang, Y. The impact of temperature extremes on mortality: A time-series study in Jinan, China. BMJ Open 2017, 7, e014741. [Google Scholar] [PubMed]
- Mills, D.; Schwartz, J.; Lee, M.; Sarofim, M.; Jones, R.; Lawson, M.; Duckworth, M.; Deck, L. Climate change impacts on extreme temperature mortality in select metropolitan areas in the United States. Clim. Chang. 2015, 131, 83–95. [Google Scholar]
- Li, Y.; Ren, T.; Kinney, P.L.; Joyner, A.; Zhang, W. Projecting future climate change impacts on heat-related mortality in large urban areas in China. Environ. Res. 2018, 163, 171–185. [Google Scholar]
- Weinberger, K.R.; Haykin, L.; Eliot, M.N.; Schwartz, J.D.; Gasparrini, A.; Wellenius, G.A. Projected temperature-related deaths in ten large US metropolitan areas under different climate change scenarios. Environ. Int. 2017, 107, 196–204. [Google Scholar]
- Weinberger, K.R.; Kirwa, K.; Eliot, M.N.; Gold, J.; Suh, H.H.; Wellenius, G.A. Projected changes in temperature-related morbidity and mortality in Southern New England. Epidemiology 2018, 29, 473–481. [Google Scholar]
- Murari, K.K.; Ghosh, S.; Patwardhan, A.; Daly, E.; Salvi, K. Intensification of future severe heat waves in India and their effect on heat stress and mortality. Reg. Environ. Chang. 2015, 15, 569–579. [Google Scholar]
- Kim, D.-W.; Deo, R.C.; Chung, J.-H.; Lee, J.-S. Projection of heat wave mortality related to climate change in Korea. Nat. Hazards 2016, 80, 623–637. [Google Scholar]
- Katsouyanni, K.; Pantazopoulou, A.; Touloumi, G.; Tselepidaki, I.; Moustris, K.; Asimakopoulos, D.; Poulopoulou, G.; Trichopoulos, D. Evidence for interaction between air pollution and high temperature in the causation of excess mortality. Arch. Environ. Health 1993, 48, 235–242. [Google Scholar]
- Kinney, P.L. Interactions of Climate Change, Air Pollution, and Human Health. Curr. Environ. Health Rep. 2018, 5, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S. Interactions between particulate air pollution and temperature in air pollution mortality time series studies. Environ. Res. 2004, 96, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Williams, G.M.; Morawska, L.; Mengersen, K.; Tong, S. Ozone modifies associations between temperature and cardiovascular mortality: Analysis of the NMMAPS data. Occup. Environ. Med. 2008, 65, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, C.; Williams, G.M.; Tong, S. Does particulate matter modify the association between temperature and cardiorespiratory diseases? Environ. Health Perspect. 2006, 114, 1690–1696. [Google Scholar] [CrossRef] [Green Version]
- Nawrot, T.; Torfs, R.; Fierens, F.; De Henauw, S.; Hoet, P.; Van Kersschaever, G.; De Backer, G.; Nemery, B. Stronger associations between daily mortality and fine particulate air pollution in summer than in winter: Evidence from a heavily polluted region in western Europe. J. Epidemiol. Community Health 2007, 61, 146–149. [Google Scholar] [CrossRef] [Green Version]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Gasparrini, A.; Armstrong, B.; Kenward, M.G. Distributed lag non-linear models. Stat. Med. 2010, 29, 2224–2234. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.G.; Bell, M.L. Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States. Epidemiology 2009, 20, 205. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.; García, R.; López, C.; Linares, C.; Tobías, A.; Prieto, L. Mortality impact of extreme winter temperatures. Int. J. Biometeorol. 2005, 49, 179–183. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M.; Kinney, P.L.; Petkova, E.P.; Lavigne, E.; Zanobetti, A.; Schwartz, J.D.; Tobias, A.; Leone, M. Temporal variation in heat–mortality associations: A multicountry study. Environ. Health Perspect. 2015, 123, 1200–1207. [Google Scholar] [CrossRef]
- Marí-Dell’Olmo, M.; Tobías, A.; Gómez-Gutiérrez, A.; Rodríguez-Sanz, M.; de Olalla, P.G.; Camprubí, E.; Gasparrini, A.; Borrell, C. Social inequalities in the association between temperature and mortality in a South European context. Int. J. Public Health 2019, 64, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wolf, K.; Breitner, S.; Gasparrini, A.; Stafoggia, M.; Samoli, E.; Andersen, Z.J.; Bero-Bedada, G.; Bellander, T.; Hennig, F. Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas. Environ. Int. 2018, 116, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, J.; Guo, C.; Chen, P.-Y.; Ou, C.-Q.; Guo, Y. Particulate matter modifies the magnitude and time course of the non-linear temperature-mortality association. Environ. Pollut. 2015, 196, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.M., Jr. The effect of atmospheric aerosols on climate with special reference to temperature near the earth’s surface. J. Appl. Meteorol. 1971, 10, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Schwartz, J. Air pollution and daily mortality: A review and meta analysis. Environ. Res. 1994, 64, 36–52. [Google Scholar] [CrossRef]
- Gordon, C.J. Role of environmental stress in the physiological response to chemical toxicants. Environ. Res. 2003, 92, 1–7. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Dixon, J.; Welch, N. Researching the rural–metropolitan health differential using the social determinants of health. Aust. J. Rural Health 2000, 8, 254–260. [Google Scholar]
- Hajat, S.; Kosatky, T. Heat-related mortality: A review and exploration of heterogeneity. J. Epidemiol. Community Health 2010, 64, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Harlan, S.L.; Brazel, A.J.; Prashad, L.; Stefanov, W.L.; Larsen, L. Neighborhood microclimates and vulnerability to heat stress. Soc. Sci. Med. 2006, 63, 2847–2863. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Song, H.-N.; Go, S.-I.; Lee, W.S.; Kim, Y.; Choi, H.J.; Lee, U.S.; Kang, M.H.; Lee, G.-W.; Kim, H.-G.; Kang, J.H. Population-based regional cancer incidence in Korea: Comparison between urban and rural areas. Cancer Res Treat 2016, 48, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grivas, G.; Chaloulakou, A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos. Environ. 2006, 40, 1216–1229. [Google Scholar] [CrossRef]
- Hoi, K.; Yuen, K.; Mok, K. Prediction of daily averaged PM10 concentrations by statistical time-varying model. Atmos. Environ. 2009, 43, 2579–2581. [Google Scholar] [CrossRef]
- Taheri Shahraiyni, H.; Sodoudi, S. Statistical modeling approaches for PM10 prediction in urban areas; A review of 21st-century studies. Atmosphere 2016, 7, 15. [Google Scholar] [CrossRef] [Green Version]
Percentile | RCP Scenario | Period | |||
---|---|---|---|---|---|
Baseline | 2030s | 2050s | 2080s | ||
95% | 4.5 | 26.61 ± 1.14 | 26.74 ± 1.17 | 27.27 ± 1.25 | 28.02 ± 1.20 |
8.5 | 26.75 ± 1.11 | 28.52 ± 1.29 | 29.83 ± 1.21 | ||
99% | 4.5 | 28.46 ± 1.10 | 28.96 ± 1.25 | 29.49 ± 1.15 | 30.34 ± 1.16 |
8.5 | 28.75 ± 1.15 | 30.80 ± 1.29 | 31.90 ± 1.25 |
Period/ Scenario | Levels of PM10 (in μg/m3) | ||||||
---|---|---|---|---|---|---|---|
0 | 35 | 50 | 65 | 80 | 95 | ||
Baseline | 65.68 ± 62.7 | 51.53 ± 48.29 | 61.92 ± 59.88 | 68.72 ± 67.75 | 72.69 ± 73.19 | 74.89 ± 77.18 | |
4.5 | 2030s | 153.37 ± 160.84 | 120.34 ± 125.26 | 143.27 ± 151.94 | 161.9 ± 173.51 | 172.92 ± 186.53 | 179.97 ± 196.53 |
2050s | 366.2 ± 323.02 | 283.65 ± 247.46 | 342.62 ± 303.27 | 389.85 ± 346.93 | 417.03 ± 374.11 | 437.54 ± 395.21 | |
2080s | 453.61 ± 383.98 | 351.81 ± 298.45 | 428.68 ± 365.06 | 488.63 ± 417.48 | 525.34 ± 449.94 | 552.62 ± 474.18 | |
8.5 | 2030s | 127.59 ± 124.56 | 100.07 ± 96.51 | 119.67 ± 118.3 | 135.05 ± 135.29 | 143.44 ± 145.29 | 149.1 ± 152.12 |
2050s | 540.54 ± 462.33 | 419.15 ± 357.01 | 512.19 ± 439.14 | 584.02 ± 501.57 | 628.69 ± 540.72 | 663.11 ± 570.31 | |
2080s | 545.09 ± 428.93 | 422.34 ± 333.63 | 517.94 ± 408.48 | 591.23 ± 464.97 | 637.42 ± 501.01 | 673.91 ± 530.28 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; Lee, J.Y.; Lee, H.; Kim, H. Predicted Future Mortality Attributed to Increases in Temperature and PM10 Concentration under Representative Concentration Pathway Scenarios. Int. J. Environ. Res. Public Health 2020, 17, 2600. https://doi.org/10.3390/ijerph17072600
Jung J, Lee JY, Lee H, Kim H. Predicted Future Mortality Attributed to Increases in Temperature and PM10 Concentration under Representative Concentration Pathway Scenarios. International Journal of Environmental Research and Public Health. 2020; 17(7):2600. https://doi.org/10.3390/ijerph17072600
Chicago/Turabian StyleJung, Jiyun, Jae Young Lee, Hyewon Lee, and Ho Kim. 2020. "Predicted Future Mortality Attributed to Increases in Temperature and PM10 Concentration under Representative Concentration Pathway Scenarios" International Journal of Environmental Research and Public Health 17, no. 7: 2600. https://doi.org/10.3390/ijerph17072600
APA StyleJung, J., Lee, J. Y., Lee, H., & Kim, H. (2020). Predicted Future Mortality Attributed to Increases in Temperature and PM10 Concentration under Representative Concentration Pathway Scenarios. International Journal of Environmental Research and Public Health, 17(7), 2600. https://doi.org/10.3390/ijerph17072600