The Joint Effects of Some Beverages Intake and Smoking on Chronic Obstructive Pulmonary Disease in Korean Adults: Data Analysis of the Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Beverage Intake
2.3. Cigarette Smoking
2.4. Definition of COPD
2.5. Covariates
2.6. Statistical Analysis
2.7. Sensitivity Analysis
3. Result
3.1. Participants’ Characteristics
3.1.1. According to the Frequency of Beverages Intake and the Smoking Status
3.1.2. According to the FEV1/FVC and COPD
3.2. The Effects of Beverages Intake and Smoking Status on FEV1/FVC
3.3. ORs for COPD According to Beverages Intake and Smoking Status
3.4. The Joint Effects of Beverages Intake and Smoking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Alfaro, T.M.; Monteiro, R.A.; Cunha, R.A.; Cordeiro, C.R. Chronic coffee consumption and respiratory disease: A systematic review. Clin. Respir. J. 2018, 12, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Gerald, L.B.; Bailey, W.C. Global initiative for chronic obstructive lung disease. J. Cardiopulm. Rehabil. Prev. 2002, 22, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H. The effect of smoking on lung function. Tuberc. Respir. Dis. 2007, 63, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Treur, J.L.; Taylor, A.E.; Ware, J.J.; McMahon, G.; Hottenga, J.J.; Baselmans, B.M.; Willemsen, G.; Boomsma, D.I.; Munafo, M.R.; Vink, J.M. Associations between smoking and caffeine consumption in two European cohorts. Addiction 2016, 111, 1059–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terry-McElrath, Y.M.; O’Malley, P.M.; Johnston, L.D. Energy drinks, soft drinks, and substance use among United States secondary school students. J. Addict. Med. 2014, 8, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Dal Grande, E.; Taylor, A.W.; Gill, T.K.; Adams, R.; Wittert, G.A. Association between soft drink consumption and asthma and chronic obstructive pulmonary disease among adults in Australia. Respirology 2012, 17, 363–369. [Google Scholar] [CrossRef]
- Tang, N.; Wu, Y.; Ma, J.; Wang, B.; Yu, R. Coffee consumption and risk of lung cancer: A meta-analysis. Lung Cancer 2010, 67, 17–22. [Google Scholar] [CrossRef]
- Oh, C.M.; Oh, I.H.; Choe, B.K.; Yoon, T.Y.; Choi, J.M.; Hwang, J. Consuming Green Tea at least Twice Each Day Is Associated with Reduced Odds of Chronic Obstructive Lung Disease in Middle-Aged and Older Korean Adults. J. Nutr. 2018, 148, 70–76. [Google Scholar] [CrossRef]
- Laniado-Laborin, R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21 century. Int. J. Env. Res. Public Health 2009, 6, 209–224. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.S.; Oh, H.J.; Choi, H.; Choi, W.H.; Kim, J.G.; Kim, K.M.; Kim, K.J.; Rhee, Y.; Lim, S.K. Vitamin D insufficiency in Korea--a greater threat to younger generation: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J. Clin. Endocrinol. Metab. 2011, 96, 643–651. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.Y. Relationship between Coffee Intake and Metabolic Syndrome Risk Factors according to Blood Glucose Level: From the Sixth Korea National Health and Nutrition Examination Survey (KNHANES VI-3) 2015. Culin. Sci. Hosp. Res. 2017, 23, 184–194. [Google Scholar]
- Canoy, D.; Wareham, N.; Luben, R.; Welch, A.; Bingham, S.; Day, N.; Khaw, K.T. Cigarette Smoking and Fat Distribution in 21, 828 British Men and Women: A Population-based Study. Obes. Res. 2005, 13, 1466–1475. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Huh, D.A.; Choi, Y.H.; Moon, K.W. The Effects of Earphone Use and Environmental Lead Exposure on Hearing Loss in the Korean Population: Data Analysis of the Korea National Health and Nutrition Examination Survey (KNHANES), 2010–2013. PLoS ONE 2016, 11, e0168718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knol, M.J.; VanderWeele, T.J. Recommendations for presenting analyses of effect modification and interaction. Int. J. Epidemiol. 2012, 41, 514–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosmer, D.W.; Lemeshow, S. Confidence interval estimation of interaction. Epidemiology 1992, 3, 452–456. [Google Scholar] [CrossRef]
- Meteran, H.; Miller, M.R.; Thomsen, S.F.; Christensen, K.; Sigsgaard, T.; Backer, V. The impact of different spirometric definitions on the prevalence of airway obstruction and their association with respiratory symptoms. ERJ Open Res. 2017, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Jarad, N. Chronic obstructive pulmonary disease (COPD) and old age? Chronic Respir. Dis. 2011, 8, 143–151. [Google Scholar] [CrossRef]
- Barnes, P.J. Sex Differences in Chronic Obstructive Pulmonary Disease Mechanisms. American Thoracic Society 2016, 193, 813–824. [Google Scholar] [CrossRef]
- Banerjee, J.; Roy, A.; Singhamahapatra, A.; Dey, P.K.; Ghosal, A.; Das, A. Association of Body Mass Index (BMI) with Lung Function Parameters in Non-asthmatics Identified by Spirometric Protocols. J. Clin. Diagn. Res. 2014, 8, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Wang, R.; Wang, J.; Bunjhoo, H.; Xu, Y.; Xiong, W. Body mass index and mortality in chronic obstructive pulmonary disease: A meta-analysis. PLoS ONE 2012, 7, e43892. [Google Scholar] [CrossRef] [PubMed]
- Ringbaekl, T.; Viskuml, K.; Lange, P. BMI and oral glucocorticoids as predictors of prognosis in COPD patients on long-term oxygen therapy. Chronic Respir. Dis. 2004, 1, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Lowry, R.; Kann, L.; Collins, J.L.; Kolbe, L.J. The effect of socioeconomic status on chronic disease risk behaviors among US adolescents. Jama 1996, 276, 792–797. [Google Scholar] [CrossRef]
- Sisson, J.H. Alcohol and airways function in health and disease. Alcohol 2007, 41, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Majumder, K.; Mine, Y.; Wu, J. The potential of food protein-derived anti-inflammatory peptides against various chronic inflammatory diseases. J. Sci. Food Agric. 2016, 96, 2303–2311. [Google Scholar] [CrossRef]
- Sano, H.; Kuroki, Y. The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity. Mol. Immunol. 2005, 42, 279–287. [Google Scholar] [CrossRef]
- Kierstein, S.; Krytska, K.; Kierstein, G.; Hortobágyi, L.; Zhu, X.; Haczku, A. Sugar consumption increases susceptibility to allergic airway inflammation and activates the innate immune system in the lung. J. Allergy Clin. Immunol. 2008, 121, S196. [Google Scholar] [CrossRef]
- Mio, T.; Romberger, D.J.; Thompson, A.B.; Robbins, R.A.; Heires, A.; Rennard, S.I. Cigarette smoke induces interleukin-8 release from human bronchial epithelial cells. Am. J. Respir. Crit. Care Med. 1997, 155, 1770–1776. [Google Scholar] [CrossRef]
- Saetta, M.; Di Stefano, A.; Maestrelli, P.; Ferraresso, A.; Drigo, R.; Potena, A.; Ciaccia, A.; Fabbri, L.M. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am. Rev. Respir. Dis. 1993, 147, 301. [Google Scholar] [CrossRef]
- Martinet, Y.; Debry, G. Effects of coffee on the respiratory system. Rev. Des Mal. Respir. 1992, 9, 587–592. [Google Scholar]
- Schuller, H.M.; Porter, B.; Riechert, A.; Walker, K.; Schmoyer, R. Neuroendocrine lung carcinogenesis in hamsters is inhibited by green tea or theophylline while the development of adenocarcinomas is promoted: Implications for chemoprevention in smokers. Lung Cancer 2004, 45, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Al-Wadei, H.A.; Takahashi, T.; Schuller, H.M. Caffeine stimulates the proliferation of human lung adenocarcinoma cells and small airway epithelial cells via activation of PKA, CREB and ERK1/2. Oncol. Rep. 2006, 15, 431–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youn, H.S.; Lee, J.Y.; Saitoh, S.I.; Miyake, K.; Kang, K.W.; Choi, Y.J.; Hwang, D.H. Suppression of MyD88- and TRIF-dependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem Pharm. 2006, 72, 850–859. [Google Scholar] [CrossRef]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, E965. [Google Scholar] [CrossRef] [Green Version]
- Di Paola, R.; Mazzon, E.; Muia, C.; Genovese, T.; Menegazzi, M.; Zaffini, R.; Suzuki, H.; Cuzzocrea, S. Green tea polyphenol extract attenuates lung injury in experimental model of carrageenan-induced pleurisy in mice. Respir. Res. 2005, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Goldberg, M.S.; Gao, Y.-T.; Hanley, J.A.; Parent, M.-É.; Jin, F. A population-based case-control study of lung cancer and green tea consumption among women living in Shanghai, China. Epidemiology 2001, 695–700. [Google Scholar] [CrossRef]
- Mettlin, C. Milk drinking, other beverage habits, and lung cancer risk. Int. J. Cancer 1989, 43, 608–612. [Google Scholar] [CrossRef]
- Halpin, D.M.; Miravitlles, M. Chronic obstructive pulmonary disease: The disease and its burden to society. Proc. Am. Thorac Soc. 2006, 3, 619–623. [Google Scholar] [CrossRef]
- Kim, C.; Yoo, K.H.; Rhee, C.K.; Yoon, H.K.; Kim, Y.S.; Lee, S.W.; Oh, Y.M.; Lee, S.D.; Lee, J.H.; Kim, K.J.; et al. Health care use and economic burden of patients with diagnosed chronic obstructive pulmonary disease in Korea. Int. J. Tuberc Lung Dis. 2014, 18, 737–743. [Google Scholar] [CrossRef]
- Hong, J.Y.; Jung, J.Y.; Lee, M.G.; Kim, S.K.; Chang, J.; Lee, C.Y.; Kim, Y.S. Changes in the prevalence of COPD in Korea between 2001 and 2011 in the KNHANES data. Respir Med. 2017, 125, 12–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Zhou, R.; Zhang, J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol. Lett. 2018, 15, 7506–7514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Overall | Frequency of Beverage Intake (Times/Month), AM 2 (95% CI 3) | Smoking Status, n (%) 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soda | p-Value | Coffee | p-Value | Green Tea | p-Value | Never | Past-Smoker | Current-Smoker | p-Value | ||
Total | 15,961 (100) | 16.3 (15.4, 17.1) | 30.7 (30.0, 31.6) | 5.9 (5.6, 6.2) | 10,190 (58.0) | 3441 (24.1) | 2330 (17.9) | ||||
Sex | <0.001 | <0.001 | <0.001 | <0.001 | |||||||
Male | 6160 (45.6) | 18.3 (17.2, 19.5) | 35.8 (34.6, 37.1) | 6.9 (6.4, 7.4) | 1066 (16.8) | 3111 (48.4) | 2489 (34.9) | ||||
Female | 9801 (54.4) | 14.5 (13.7, 15.4) | 26.5 (25.6, 27.4) | 5.0 (4.7, 5.3) | 9124 (92.6) | 330 (3.7) | 347 (3.7) | ||||
Age (years) | <0.001 | <0.001 | <0.001 | <0.001 | |||||||
40–59 | 10,796 (74.6) | 19.2 (18.1, 20.2) | 31.8 (30.8, 32.9) | 6.5 (6.2, 6.9) | 7047 (57.3) | 2042 (22.8) | 1707 (19.9) | ||||
60–69 | 3649 (16.5) | 11.4 (10.3, 12.5) | 26.4 (25.1, 27.8) | 4.1 (3.7, 4.6) | 2273 (60.4) | 946 (27.7) | 430 (11.9) | ||||
≥70 | 1516 (8.9) | 1.0 (0.8, 1.3) | 29.5 (27.7, 31.4) | 3.5 (2.8, 4.2) | 870 (59.2) | 453 (28.0) | 193 (12.8) | ||||
BMI (kg/m2) | 0.116 | <0.001 | <0.001 | <0.001 | |||||||
<25 | 10,146 (62.6) | 15.8 (14.9, 16.7) | 29.6 (28.6, 30.6) | 5.3 (5.0, 5.6) | 6599 (60.0) | 2060 (22.4) | 1487 (17.6) | ||||
25–30 | 5230 (33.5) | 17.0 (15.8, 18.3) | 32.8 (31.6, 34.1) | 6.9 (6.4, 7.5) | 3167 (53.4) | 1288 (27.8) | 775 (18.8) | ||||
≥30 | 585 (4.0) | 17.2 (14.1, 20.2) | 31.5 (28.0, 35.0) | 5.9 (4.7, 7.1) | 424 (64.7) | 93 (19.4) | 68 (15.9) | ||||
Education level | <0.001 | 0.008 | <0.001 | <0.001 | |||||||
<High school | 6731 (37.5) | 10.3 (9.4, 11.1) | 29.4 (28.3, 30.5) | 4.2 (3.8, 4.5) | 4666 (64.9) | 1208 (19.8) | 857 (15.3) | ||||
High school | 5226 (35.0) | 19.3 (18.0, 20.7) | 32.0 (30.6, 33.4) | 6.0 (5.5, 6.5) | 3269 (56.3) | 1128 (24.4) | 829 (19.3) | ||||
>High school | 4004 (27.6) | 20.5 (18.9, 22.1) | 31.0 (29.5, 32.6) | 8.0 (7.4, 8.7) | 2255 (50.8) | 1105 (29.5) | 644 (19.7) | ||||
Monthly income | <0.001 | <0.001 | <0.001 | 0.002 | |||||||
First quartile | 2815 (16.2) | 9.1 (8.0, 10.2) | 27.9 (26.4, 29.5) | 4.1 (3.4, 4.7) | 1791 (60.2) | 577 (21.5) | 447 (18.3) | ||||
Second quartile | 3956 (25.1) | 15.6 (14.3, 17.0) | 31.3 (29.8, 32.8) | 5.0 (4.5, 5.5) | 2529 (57.7) | 818 (23.1) | 609 (19.2) | ||||
Third quartile | 4168 (27.4) | 17.6 (16.2, 19.0) | 32.3 (30.7, 33.8) | 6.1 (5.6, 6.7) | 2624 (56.1) | 940 (25.1) | 604 (18.8) | ||||
Fourth quartile | 5022 (31.3) | 19.3 (17.8, 20.9) | 30.4 (29.0, 31.9) | 7.3 (6.7, 7.8) | 3246 (58.7) | 1106 (25.3) | 670 (16.0) | ||||
Drinking status | <0.001 | <0.001 | <0.001 | <0.001 | |||||||
Never | 2473 (13.5) | 10.2 (9.0, 11.5) | 23.7 (22.1, 25.3) | 4.6 (4.0, 5.2) | 2225 (87.9) | 130 (6.4) | 118 (5.6) | ||||
Past-drinker | 2480 (14.8) | 15.7 (14.1, 17.3) | 26.4 (24.8, 28.0) | 4.8 (4.1, 5.5) | 1715 (65.4) | 546 (24.7) | 219 (9.9) | ||||
Current-drinker | 11,008 (71.7) | 17.5 (16.5, 18.5) | 33.0 (31.9, 34.0) | 6.3 (6.0, 6.7) | 6250 (50.8) | 2765 (27.3) | 1993 (21.9) |
Variables | FEV1/FVC (%) | COPD, n (%) 2 | |||
---|---|---|---|---|---|
AM (95% CI 3) | p-Value | Normal | Case | p-Value | |
Total | 0.783 (0.781, 0.785) | 14,224 (89.5) | 1737 (10.5) | ||
Sex | <0.001 | <0.001 | |||
Male | 0.763 (0.761, 0.766) | 4938 (83.3) | 1222 (16.7) | ||
Female | 0.799 (0.798, 0.801) | 9286 (94.7) | 515 (5.3) | ||
Age (years) | <0.001 | <0.001 | |||
40–59 | 0.796 (0.795, 0.798) | 10,181 (93.9) | 615 (6.1) | ||
60–69 | 0.754 (0.751, 0.758) | 2999 (81.2) | 650 (18.8) | ||
≥70 | 0.727 (0.720, 0.733) | 1044 (68.1) | 472 (31.9) | ||
BMI (kg/m2) | <0.001 | <0.001 | |||
<25 | 0.779 (0.777, 0.781) | 8921 (88.3) | 1225 (11.7) | ||
25–30 | 0.787 (0.785, 0.790) | 4750 (91.1) | 480 (8.9) | ||
≥30 | 0.803 (0.797, 0.809) | 553 (94.6) | 32 (5.4) | ||
Education | <0.001 | <0.001 | |||
<High school | 0.767 (0.764, 0.769) | 5741 (84.2) | 990 (15.8) | ||
High school | 0.790 (0.788, 0.792) | 4767 (91.9) | 459 (8.1) | ||
> High school | 0.796 (0.794, 0.798) | 3716 (93.7) | 288 (6.3) | ||
Monthly income | <0.001 | <0.001 | |||
First quartile | 0.756 (0.751, 0.761) | 2272 (79.5) | 543 (20.5) | ||
Second quartile | 0.783 (0.781, 0.786) | 3512 (89.9) | 444 (10.1) | ||
Third quartile | 0.789 (0.787, 0.792) | 3805 (91.4) | 363 (8.6) | ||
Fourth quartile | 0.791 (0.789, 0.793) | 4635 (92.7) | 387 (7.3) | ||
Drinking status | 0.008 | 0.137 | |||
Never | 0.782 (0.777, 0.786) | 2232 (89.3) | 241 (10.7) | ||
Past-drinker | 0.778 (0.774, 0.782) | 2175 (88.0) | 305 (12.0) | ||
Current-drinker | 0.784 (0.782, 0.786) | 9817 (89.8) | 1191 (10.2) | ||
Smoking status | <0.001 | <0.001 | |||
Never | 0.798 (0.797, 0.800) | 9624 (94.6) | 556 (5.4) | ||
Past-smoker | 0.763 (0.759, 0.766) | 2771 (82.9) | 670 (17.1) | ||
Current-smoker | 0.761 (0.757, 0.765) | 1829 (82.1) | 501 (17.9) | ||
Soda intake frequency | <0.001 | <0.001 | |||
Never | 0.778 (0.776, 0.780) | 6805 (87.8) | 967 (12.2) | ||
≤4 times/week | 0.785 (0.782, 0.787) | 4103 (90.1) | 490 (9.9) | ||
5–7 times/week | 0.793 (0.788, 0.797) | 1170 (92.4) | 88 (7.6) | ||
>7 times/week | 0.788 (0.785, 0.791) | 2146 (91.5) | 192 (8.5) | ||
Coffee intake frequency | 0.005 | 0.009 | |||
Never | 0.785 (0.782, 0.788) | 3814 (90.7) | 396 (9.3) | ||
≤4 times/week | 0.786 (0.784, 0.789) | 3031 (90.4) | 349 (9.6) | ||
5–7 times/week | 0.781 (0.777, 0.784) | 3152 (88.2) | 410 (11.8) | ||
>7 times/week | 0.781 (0.778, 0.783) | 4227 (88.8) | 582 (11.2) | ||
Green tea intake frequency | <0.001 | <0.001 | |||
Never | 0.779 (0.777, 0.781) | 7901 (88.1) | 1082 (11.9) | ||
≤4 times/week | 0.787 (0.785, 0.790) | 4829 (91.1) | 501 (8.9) | ||
5–7 times/week | 0.792 (0.786, 0.797) | 1100 (91.5) | 113 (8.5) | ||
>7 times/week | 0.793 (0.786, 0.800) | 394 (93.3) | 41 (6.7) |
Variables | Crude β (95% CI 2) | Fully Adjusted β 1 (95% CI 2) |
---|---|---|
Soda Intake Frequency | ||
Per 10 times increasing of monthly intake | 0.0011 (0.0006, 0.0016) | −0.0008 (−0.0012, −0.0003) |
Never | Ref. | Ref. |
≤4 times/week | 0.0070 (0.0036, 0.0103) | 0.0013 (−0.0017, 0.0043) |
4–7 times/week | 0.0147 (0.0092, 0.0201) | −0.0016 (−0.0065, 0.0033) |
>7 times/week | 0.0101 (0.0062, 0.0141) | −0.0052 (−0.0092, −0.0013) |
p for trend | <0.001 | 0.016 |
Coffee Intake Frequency | ||
Per 10 times increasing of monthly intake | −0.0006 (−0.0011, −0.0002) | −0.0006 (−0.0010, −0.0001) |
Never | Ref. | Ref. |
≤4 times/week | 0.0013 (−0.0025, 0.0051) | 0.0021 (−0.0013, 0.0056) |
4–7 times/week | −0.0045 (−0.0087, −0.0002) | −0.0013 (−0.0052, 0.0027) |
>7 times/week | −0.0045 (−0.0082, −0.0007) | −0.0042 (−0.0079, −0.0005) |
p for trend | 0.003 | 0.031 |
Green Tea Intake Frequency | ||
Per 10 times increasing of monthly intake | 0.0022 (0.0013, 0.0031) | 0.0009 (0.0007, 0.0017) |
Never | Ref. | Ref. |
≤4 times/week | 0.0086 (0.0057, 0.0115) | −0.0003 (−0.0029, 0.0023) |
4–7 times/week | 0.0131 (0.0073, 0.0189) | 0.0047 (−0.0006, 0.0010) |
>7 times/week | 0.0146 (0.0075, 0.0217) | 0.0075 (0.0006, 0.0143) |
p for trend | <0.001 | 0.029 |
Smoking Status | ||
Never | Ref. | Ref. |
Past-smoker | −0.0356 (−0.0391, −0.0320) | −0.0126 (−0.0170, −0.0082) |
Current-smoker | −0.0373 (−0.0417, −0.0330) | −0.0222 (−0.0273, −0.0171) |
Variables | Crude OR (95% CI 2) | Fully Adjusted OR 1 (95% CI 2) |
---|---|---|
Soda Intake Frequency | ||
Per 10 times increasing of monthly intake | 0.96 (0.93, 0.98) | 1.04 (1.01, 1.07) |
Never | Ref. | Ref. |
≤4 times/week | 0.79 (0.69, 0.91) | 0.94 (0.80, 1.10) |
4–7 times/week | 0.60 (0.45, 0.78) | 1.20 (0.90, 1.60) |
>7 times/week | 0.67 (0.56, 0.82) | 1.30 (1.04, 1.64) |
p for trend | <0.001 | 0.041 |
Coffee Intake Frequency | ||
Per 10 times increasing of monthly intake | 1.02 (1.00, 1.04) | 1.01 (0.98, 1.03) |
Never | Ref. | Ref. |
≤4 times/week | 1.04 (0.86, 1.25) | 1.02 (0.83, 1.26) |
4–7 times/week | 1.30 (1.08, 1.56) | 1.10 (0.90, 1.34) |
>7 times/week | 1.22 (1.04, 1.45) | 1.12 (0.92, 1.37) |
p for trend | 0.004 | 0.467 |
Green Tea Intake Frequency | ||
Per 10 times increasing of monthly intake | 0.92 (0.87, 0.97) | 0.98 (0.93, 1.03) |
Never | Ref. | Ref. |
≤4 times/week | 0.73 (0.63, 0.84) | 1.02 (0.87, 1.19) |
4–7 times/week | 0.69 (0.52, 0.90) | 0.97 (0.73, 1.30) |
>7 times/week | 0.53 (0.35, 0.80) | 0.67 (0.42, 1.08) |
p for trend | <0.001 | 0.331 |
Smoking Status | ||
Never | Ref. | Ref. |
Past-smoker | 3.59 (3.09, 4.18) | 1.78 (1.42, 2.24) |
Current-smoker | 3.80 (3.25, 4.43) | 2.58 (2.06, 3.24) |
Variables | Low Pack-Year | High Pack-Year | Pack-Year within Strata of Soda Intake |
---|---|---|---|
Low soda intake | 1.00 (reference) | 2.04 (1.68, 2.48) | 2.04 (1.68, 2.48) |
High soda intake | 1.26 (1.02, 1.55) | 3.00 (2.32, 3.89) | 1.96 (1.38, 2.79) |
Soda intake within strata of pack-year | 1.26 (1.02, 1.55) | 1.41 (1.05, 1.89) |
Variables | Low Pack-Year | High Pack-Year | Pack-Year within Strata of Coffee Intake |
---|---|---|---|
Low coffee intake | 1.00 (reference) | 2.34 (1.78, 3.08) | 2.34 (1.78, 3.08) |
High coffee intake | 1.11 (0.93, 1.33) | 2.28 (1.84, 2.82) | 1.60 (1.28, 2.00) |
Coffee intake within strata of pack-year | 1.11 (0.93, 1.33) | 1.05 (0.78, 1.41) |
Variables | Low Pack-Year | High Pack-Year | Pack-Year within Strata of Green Tea Intake |
---|---|---|---|
Low green tea intake | 1.00 (reference) | 2.20 (1.83, 2.64) | 2.20 (1.83, 2.64) |
High green tea intake | 1.07 (0.85, 1.35) | 2.03 (1.49, 2.76) | 1.92 (1.21, 3.05) |
Green tea intake within strata of pack-year | 1.07 (0.85, 1.35) | 0.97 (0.70, 1.33) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, J.E.; Huh, D.-A.; Moon, K.W. The Joint Effects of Some Beverages Intake and Smoking on Chronic Obstructive Pulmonary Disease in Korean Adults: Data Analysis of the Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2015. Int. J. Environ. Res. Public Health 2020, 17, 2611. https://doi.org/10.3390/ijerph17072611
Min JE, Huh D-A, Moon KW. The Joint Effects of Some Beverages Intake and Smoking on Chronic Obstructive Pulmonary Disease in Korean Adults: Data Analysis of the Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2015. International Journal of Environmental Research and Public Health. 2020; 17(7):2611. https://doi.org/10.3390/ijerph17072611
Chicago/Turabian StyleMin, Ji Eun, Da-An Huh, and Kyong Whan Moon. 2020. "The Joint Effects of Some Beverages Intake and Smoking on Chronic Obstructive Pulmonary Disease in Korean Adults: Data Analysis of the Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2015" International Journal of Environmental Research and Public Health 17, no. 7: 2611. https://doi.org/10.3390/ijerph17072611
APA StyleMin, J. E., Huh, D. -A., & Moon, K. W. (2020). The Joint Effects of Some Beverages Intake and Smoking on Chronic Obstructive Pulmonary Disease in Korean Adults: Data Analysis of the Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2015. International Journal of Environmental Research and Public Health, 17(7), 2611. https://doi.org/10.3390/ijerph17072611