Electric Vehicle Charging Station Location towards Sustainable Cities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Problem Description
2.2. Assumptions
2.3. Notations
2.4. Model Formulation
2.4.1. Demand Estimating
2.4.2. Waiting Time and Idle Rate
2.4.3. Objective for the Government
2.4.4. Constraints
2.4.5. Global Model
3. Results
4. Discussion
4.1. Benefit of the Reservation Service
4.2. Effect of Tolerable Waiting Time
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Demand Nodes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Charging Stations | ||||||||||||||||||||||
1 | 1.466 | 3.332 | 4.283 | 4.803 | 6.023 | 6.146 | 5.851 | 4.928 | 4.027 | 3.325 | 3.658 | 4.378 | 4.998 | 7.022 | 6.655 | 7.053 | 7.140 | 6.256 | 4.285 | 7.907 | 8.776 | |
2 | 2.031 | 1.662 | 2.763 | 3.819 | 4.269 | 4.626 | 4.331 | 3.408 | 2.507 | 1.805 | 3.877 | 2.906 | 3.526 | 5.526 | 5.135 | 5.533 | 5.644 | 4.736 | 4.056 | 6.411 | 7.280 | |
3 | 2.179 | 1.127 | 1.733 | 2.338 | 3.860 | 3.596 | 3.301 | 2.378 | 1.477 | 1.548 | 3.620 | 2.649 | 2.996 | 4.496 | 4.105 | 4.503 | 4.614 | 3.706 | 4.247 | 5.381 | 6.250 | |
4 | 2.355 | 1.662 | 2.268 | 3.552 | 3.682 | 3.418 | 3.123 | 2.831 | 1.299 | 0.941 | 2.928 | 2.042 | 2.818 | 4.318 | 3.927 | 4.325 | 4.436 | 3.528 | 3.192 | 5.203 | 6.072 | |
5 | 2.696 | 0.236 | 1.460 | 1.896 | 3.116 | 3.323 | 3.028 | 2.105 | 1.204 | 2.065 | 4.137 | 3.201 | 2.723 | 4.223 | 3.832 | 4.230 | 4.341 | 3.433 | 4.351 | 5.108 | 5.977 | |
6 | 3.128 | 1.629 | 1.945 | 2.125 | 3.345 | 3.348 | 3.551 | 2.590 | 2.512 | 3.373 | 5.320 | 4.509 | 4.031 | 4.486 | 4.355 | 4.753 | 5.649 | 4.741 | 5.947 | 6.416 | 7.285 | |
7 | 2.972 | 1.130 | 1.093 | 1.850 | 3.258 | 2.994 | 2.699 | 1.738 | 1.480 | 2.341 | 4.413 | 3.477 | 2.999 | 3.634 | 3.503 | 3.901 | 4.617 | 3.709 | 5.040 | 5.384 | 6.253 | |
8 | 3.380 | 1.538 | 0.195 | 1.207 | 2.427 | 2.430 | 2.553 | 1.126 | 1.888 | 2.749 | 4.821 | 3.885 | 3.407 | 3.488 | 3.357 | 3.755 | 3.906 | 4.117 | 5.448 | 4.673 | 5.542 | |
9 | 5.070 | 2.077 | 1.458 | 0.436 | 1.365 | 1.368 | 2.007 | 2.418 | 3.155 | 3.999 | 6.071 | 5.152 | 4.674 | 2.605 | 2.332 | 2.730 | 3.042 | 4.342 | 6.698 | 3.809 | 4.519 | |
10 | 5.447 | 2.894 | 2.275 | 1.253 | 1.723 | 2.501 | 3.140 | 3.551 | 3.972 | 4.816 | 6.888 | 5.599 | 5.121 | 3.753 | 1.906 | 2.943 | 4.182 | 5.475 | 6.749 | 4.949 | 5.445 | |
11 | 5.934 | 4.092 | 3.538 | 2.961 | 1.404 | 1.324 | 1.963 | 2.374 | 3.417 | 3.872 | 5.593 | 4.422 | 3.944 | 2.576 | 0.729 | 1.766 | 3.005 | 4.298 | 5.572 | 3.772 | 4.268 | |
12 | 5.772 | 3.930 | 3.376 | 1.970 | 0.518 | 1.162 | 1.801 | 2.212 | 3.255 | 3.710 | 5.431 | 4.260 | 3.782 | 2.414 | 1.206 | 1.604 | 2.843 | 4.136 | 5.410 | 3.610 | 4.040 | |
13 | 5.006 | 3.164 | 2.610 | 1.890 | 0.903 | 0.396 | 1.035 | 1.446 | 2.489 | 2.944 | 4.665 | 3.494 | 3.016 | 1.662 | 0.905 | 1.303 | 2.070 | 3.370 | 4.644 | 2.837 | 3.739 | |
14 | 5.087 | 3.245 | 2.691 | 1.971 | 1.196 | 0.464 | 0.879 | 1.527 | 2.570 | 3.025 | 4.162 | 2.911 | 2.433 | 0.852 | 1.441 | 0.983 | 1.289 | 2.787 | 4.061 | 2.048 | 2.766 | |
15 | 4.474 | 2.632 | 2.078 | 1.837 | 1.062 | 0.798 | 0.503 | 0.914 | 1.957 | 2.412 | 4.133 | 2.962 | 2.484 | 1.438 | 1.307 | 1.705 | 1.856 | 2.838 | 4.112 | 2.623 | 3.492 | |
16 | 3.163 | 1.321 | 1.586 | 2.854 | 2.169 | 1.905 | 1.610 | 1.318 | 0.958 | 1.606 | 3.327 | 2.563 | 2.085 | 2.545 | 2.414 | 2.812 | 2.963 | 2.795 | 3.713 | 3.730 | 4.599 | |
17 | 3.359 | 1.517 | 2.123 | 3.407 | 2.640 | 2.376 | 2.081 | 1.789 | 0.842 | 1.066 | 2.787 | 1.842 | 0.916 | 2.864 | 2.885 | 3.283 | 2.982 | 2.074 | 2.992 | 3.749 | 4.618 | |
18 | 3.240 | 2.886 | 3.492 | 4.760 | 3.969 | 3.705 | 3.565 | 3.118 | 2.171 | 1.002 | 1.854 | 1.069 | 1.689 | 3.713 | 4.214 | 4.379 | 3.831 | 2.923 | 2.219 | 4.598 | 5.467 | |
19 | 2.004 | 2.428 | 3.034 | 4.302 | 3.511 | 3.247 | 2.952 | 2.660 | 1.713 | 0.544 | 1.518 | 1.419 | 1.965 | 3.887 | 3.756 | 4.154 | 4.265 | 3.357 | 2.145 | 5.032 | 5.901 | |
20 | 1.374 | 2.834 | 3.440 | 4.708 | 4.161 | 3.897 | 3.602 | 3.310 | 2.363 | 1.194 | 1.258 | 1.978 | 2.598 | 4.622 | 4.406 | 4.804 | 4.740 | 3.832 | 1.885 | 5.507 | 6.376 | |
21 | 1.805 | 3.265 | 3.871 | 5.139 | 5.566 | 5.302 | 5.007 | 4.516 | 3.121 | 2.372 | 2.663 | 3.383 | 4.003 | 6.027 | 5.811 | 6.209 | 6.145 | 5.237 | 3.290 | 6.912 | 7.781 | |
22 | 3.186 | 4.646 | 5.252 | 6.520 | 5.538 | 5.274 | 5.016 | 4.687 | 3.740 | 2.571 | 1.800 | 2.520 | 3.140 | 5.164 | 5.783 | 5.830 | 5.282 | 4.374 | 2.427 | 6.049 | 6.918 | |
23 | 2.599 | 4.059 | 4.665 | 5.933 | 5.087 | 4.565 | 3.856 | 4.165 | 3.218 | 1.984 | 0.165 | 1.360 | 1.980 | 4.004 | 5.332 | 4.670 | 4.122 | 3.214 | 1.267 | 4.889 | 5.758 | |
24 | 2.860 | 4.284 | 4.926 | 6.194 | 4.990 | 4.468 | 3.759 | 4.556 | 3.609 | 2.367 | 0.901 | 1.263 | 1.883 | 3.907 | 5.235 | 4.573 | 4.025 | 3.117 | 1.170 | 4.792 | 5.661 | |
25 | 3.371 | 3.092 | 3.698 | 4.966 | 4.175 | 3.911 | 3.616 | 3.324 | 2.377 | 1.208 | 2.060 | 1.275 | 1.895 | 3.919 | 4.420 | 4.585 | 4.037 | 3.129 | 2.425 | 4.804 | 5.673 | |
26 | 3.449 | 1.937 | 2.543 | 3.827 | 3.060 | 2.796 | 2.501 | 2.209 | 1.262 | 1.242 | 2.633 | 1.382 | 0.748 | 2.941 | 3.305 | 3.607 | 3.059 | 2.151 | 2.532 | 3.826 | 4.695 | |
27 | 4.204 | 2.356 | 2.962 | 4.246 | 3.623 | 3.101 | 2.392 | 2.607 | 1.681 | 1.640 | 2.245 | 0.994 | 0.360 | 2.540 | 3.868 | 3.206 | 2.658 | 1.750 | 2.144 | 3.425 | 4.294 | |
28 | 4.329 | 2.487 | 2.216 | 3.484 | 2.830 | 2.566 | 1.990 | 1.979 | 1.812 | 2.267 | 3.257 | 2.006 | 1.528 | 2.138 | 3.075 | 2.804 | 2.256 | 2.238 | 3.156 | 3.023 | 3.892 | |
29 | 5.454 | 3.612 | 3.058 | 2.448 | 1.673 | 0.941 | 0.936 | 1.894 | 2.937 | 3.392 | 3.692 | 2.441 | 1.963 | 0.382 | 1.929 | 1.046 | 1.188 | 2.317 | 3.591 | 1.955 | 2.824 | |
30 | 5.404 | 3.593 | 3.356 | 2.746 | 1.971 | 1.239 | 1.234 | 2.192 | 2.918 | 3.298 | 3.445 | 2.194 | 1.716 | 0.001 | 2.227 | 1.344 | 1.046 | 2.070 | 3.344 | 1.813 | 2.682 | |
31 | 5.841 | 3.999 | 3.445 | 2.725 | 1.273 | 1.231 | 1.666 | 2.232 | 3.256 | 3.769 | 4.492 | 3.251 | 2.687 | 1.172 | 1.595 | 0.75 | 1.731 | 3.157 | 4.411 | 2.511 | 2.712 | |
32 | 5.929 | 4.118 | 3.301 | 2.581 | 1.627 | 1.074 | 1.602 | 2.137 | 3.443 | 3.823 | 3.970 | 2.719 | 2.241 | 0.911 | 1.629 | 0.746 | 1.029 | 2.595 | 3.869 | 1.796 | 2.166 | |
33 | 5.805 | 3.994 | 3.956 | 2.758 | 2.235 | 1.251 | 1.834 | 2.792 | 3.319 | 3.699 | 3.846 | 2.595 | 2.117 | 0.787 | 2.237 | 1.354 | 0.641 | 2.471 | 3.745 | 1.408 | 2.118 | |
34 | 5.941 | 4.099 | 3.545 | 2.825 | 1.373 | 1.331 | 1.856 | 2.381 | 3.424 | 3.879 | 4.612 | 3.361 | 2.883 | 1.302 | 1.023 | 0.001 | 1.731 | 3.237 | 4.511 | 2.498 | 2.603 | |
35 | 6.266 | 4.424 | 3.870 | 3.150 | 1.698 | 1.656 | 2.181 | 2.706 | 3.749 | 4.204 | 4.651 | 3.400 | 2.922 | 1.627 | 1.700 | 0.326 | 1.710 | 3.276 | 4.550 | 2.477 | 2.314 | |
36 | 6.041 | 4.199 | 3.645 | 2.925 | 1.473 | 1.331 | 1.956 | 2.581 | 3.500 | 3.979 | 4.712 | 3.451 | 2.953 | 1.352 | 0.750 | 0.457 | 1.831 | 3.287 | 4.601 | 2.507 | 2.613 | |
37 | 6.368 | 4.557 | 4.519 | 3.321 | 2.401 | 1.814 | 2.397 | 3.355 | 3.882 | 4.262 | 4.409 | 3.158 | 2.68 | 1.35 | 2.403 | 1.520 | 0.918 | 2.289 | 4.308 | 1.269 | 1.543 | |
38 | 6.581 | 4.770 | 4.254 | 3.534 | 3.011 | 2.027 | 2.610 | 3.090 | 4.095 | 4.475 | 4.622 | 3.371 | 2.893 | 1.563 | 3.013 | 1.777 | 1.106 | 2.155 | 4.174 | 1.135 | 1.409 | |
39 | 6.052 | 4.241 | 4.203 | 3.617 | 3.092 | 2.105 | 2.081 | 3.039 | 3.566 | 3.946 | 4.093 | 2.842 | 2.364 | 1.484 | 3.094 | 2.511 | 0.858 | 1.472 | 3.491 | 0.704 | 1.941 | |
40 | 6.079 | 4.268 | 3.753 | 3.197 | 2.669 | 1.690 | 2.108 | 2.589 | 3.593 | 3.973 | 4.120 | 2.869 | 2.391 | 1.061 | 2.671 | 1.788 | 0.132 | 2.392 | 4.019 | 1.372 | 2.241 | |
41 | 5.777 | 3.966 | 3.928 | 3.812 | 3.037 | 2.515 | 1.806 | 2.764 | 3.291 | 3.671 | 3.818 | 2.567 | 2.089 | 1.956 | 3.282 | 2.620 | 0.721 | 1.308 | 3.327 | 1.407 | 3.210 | |
42 | 6.138 | 4.296 | 4.902 | 4.621 | 3.846 | 2.784 | 2.615 | 3.573 | 3.621 | 4.076 | 4.148 | 2.897 | 2.419 | 2.136 | 4.091 | 2.736 | 1.680 | 0.952 | 2.971 | 0.929 | 2.166 | |
43 | 3.779 | 3.59 | 4.163 | 5.431 | 4.296 | 3.774 | 3.065 | 3.862 | 2.915 | 1.673 | 1.820 | 0.569 | 1.189 | 3.213 | 4.541 | 3.879 | 3.331 | 1.391 | 0.669 | 3.012 | 4.249 | |
44 | 3.397 | 4.091 | 4.664 | 5.932 | 4.797 | 4.275 | 3.566 | 4.363 | 3.416 | 2.174 | 1.438 | 1.070 | 1.690 | 3.714 | 5.042 | 4.380 | 3.832 | 1.858 | 0.190 | 3.479 | 4.716 | |
45 | 4.026 | 4.96 | 5.566 | 6.100 | 5.325 | 4.803 | 4.094 | 5.232 | 4.285 | 2.875 | 2.067 | 1.771 | 2.391 | 4.244 | 5.570 | 4.908 | 3.989 | 1.617 | 1.372 | 3.238 | 4.475 | |
46 | 3.326 | 4.786 | 5.392 | 6.660 | 5.456 | 4.934 | 4.225 | 5.022 | 4.075 | 2.711 | 1.367 | 1.729 | 2.349 | 4.373 | 5.701 | 5.039 | 4.491 | 2.092 | 0.672 | 3.713 | 4.95 | |
47 | 4.209 | 5.669 | 6.275 | 7.543 | 6.339 | 5.817 | 5.108 | 5.905 | 4.958 | 3.594 | 2.250 | 2.612 | 3.232 | 5.256 | 6.584 | 5.922 | 5.119 | 2.747 | 1.555 | 4.368 | 5.605 | |
48 | 3.943 | 5.403 | 6.009 | 6.373 | 5.598 | 5.076 | 4.367 | 5.505 | 4.558 | 3.148 | 1.984 | 2.044 | 2.966 | 4.517 | 5.843 | 5.181 | 4.262 | 1.890 | 1.289 | 3.511 | 4.748 | |
49 | 4.721 | 4.150 | 4.756 | 5.290 | 4.515 | 3.993 | 3.284 | 4.422 | 3.475 | 2.615 | 2.762 | 1.511 | 2.273 | 3.434 | 4.760 | 4.098 | 3.179 | 0.807 | 1.577 | 2.428 | 3.665 | |
50 | 5.512 | 3.670 | 4.276 | 4.700 | 3.925 | 3.403 | 2.694 | 3.942 | 2.995 | 3.450 | 3.522 | 2.271 | 1.793 | 2.844 | 4.17 | 3.508 | 2.589 | 0.327 | 2.366 | 1.838 | 3.075 | |
51 | 6.924 | 5.113 | 4.598 | 4.039 | 3.514 | 2.527 | 2.953 | 3.434 | 4.438 | 4.818 | 4.965 | 3.714 | 3.236 | 1.906 | 3.516 | 2.506 | 1.450 | 2.087 | 4.106 | 0.583 | 1.936 | |
52 | 6.823 | 4.981 | 5.587 | 3.946 | 3.421 | 2.434 | 2.860 | 3.341 | 4.306 | 4.761 | 4.833 | 3.582 | 3.104 | 1.813 | 3.423 | 2.413 | 1.357 | 1.637 | 3.656 | 0.001 | 1.843 | |
53 | 7.477 | 5.635 | 4.802 | 4.111 | 3.219 | 2.604 | 3.157 | 3.638 | 4.960 | 5.022 | 5.169 | 3.918 | 3.440 | 2.110 | 3.221 | 2.226 | 1.654 | 2.291 | 4.310 | 1.271 | 1.211 |
References
- Shen, L.; Zhou, J. Examining the effectiveness of indicators for guiding sustainable urbanization in China. Habitat Int. 2014, 44, 111–120. [Google Scholar] [CrossRef]
- Tan, Y.; Jiao, L.; Shuai, C.; Shen, L. A system dynamics model for simulating urban sustainability performance: A China case study. J. Clean Prod. 2018, 199, 1107–1115. [Google Scholar] [CrossRef]
- The Sustainable Development Agenda—United Nations Sustainable Development. Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 29 February 2020).
- Švajlenka, J.; Kozlovská, M. Houses Based on Wood as an Ecological and Sustainable Housing Alternative—Case Study. Sustainability 2018, 10, 1502. [Google Scholar] [CrossRef] [Green Version]
- Aughton, G.; Hunter, C. Sustainable Cities, Regional Policy and Development Series 7; Jessica Kingsley: London, UK, 1994. [Google Scholar]
- Koichiro, M.; Toyonobu, F.; Tsuguta, Y.; Yutaka, M.; Yuta, U.; Kengo, H. Visualization of a city sustainability index (csi): Towards transdisciplinary approaches involving multiple stakeholders. Sustainability 2015, 7, 12402–12424. [Google Scholar]
- Kumar, R.R.; Kumar, A. Adoption of electric vehicle: A literature review and prospects for sustainability. J. Clean Prod. 2020, 253, 119911. [Google Scholar] [CrossRef]
- Frade, I.; Ribeiro, A.; Gonçalves, G.; Pais, A.P. Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transport. Res. Rec. 2011, 2252, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Wu, Z.; Hu, J. Road side unit location optimization for optimum link flow determination. Comput.-Aided Civ. Inf 2019, 35, 61–79. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Duarte, G.; Rolim, C.; Baptista, P. How battery electric vehicles can contribute to sustainable urban logistics: A real-world application in Lisbon, Portugal. Sustain. Energy Technol. Assess. 2016, 15, 71–78. [Google Scholar] [CrossRef]
- Falvo, M.C.; Lamedica, R.; Bartoni, R.; Maranzano, G. Energy management in metro-transit systems: An innovative proposal toward an integrated and sustainable urban mobility system including plug-in electric vehicles. Electr. Power Syst. Res. 2011, 81, 2127–2138. [Google Scholar] [CrossRef]
- Daziano, R.A.; Chiew, E. Electric vehicles rising from the dead: Data needs for forecasting consumer response toward sustainable energy sources in personal transportation. Energy Policy 2012, 51, 876–894. [Google Scholar] [CrossRef]
- Tseng, H.K.; Wu, J.S.; Liu, X.S. Affordability of electric vehicles for a sustainable transport system: An economic and environmental analysis. Energy Policy 2013, 61, 441–447. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, X. Incentive policies from 2006 to 2016 and new energy vehicle adoption in 2010–2020 in China. Renew. Sustain. Energy Rev. 2017, 70, 24–43. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, X.; Shang, J. Is subsidized electric vehicles adoption sustainable: Consumers’ perceptions and motivation toward incentive policies, environmental benefits, and risks. J. Clean Prod. 2018, 192, 71–79. [Google Scholar] [CrossRef]
- Li, W.; Long, R.; Chen, H.; Dou, B.; Chen, F.; Zheng, X.; He, Z. Public Preference for Electric Vehicle Incentive Policies in China: A Conjoint Analysis. Int. J. Environ. Res. Public Health 2020, 17, 318. [Google Scholar] [CrossRef] [Green Version]
- Haddadian, G.; Khodayar, M.; Shahidehpour, M. Accelerating the global adoption of electric vehicles: Barriers and driver. Electr. J. 2015, 28, 53–68. [Google Scholar] [CrossRef]
- Liao, W.; Liu, L.; Fu, J. A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading. Int. J. Environ. Res. Public Health 2019, 16, 3120. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.; Brenna, M.; Longo, M. Optimal locating of electric vehicle charging stations by application of genetic algorithm. Sustainability 2018, 10, 1076. [Google Scholar] [CrossRef] [Green Version]
- Berkeley, N.; Jarvis, D.; Jones, A. Analysing the take up of battery electric vehicles: An investigation of barriers amongst drivers in the UK. Transp. Res. Part D-Transp. Environ. 2018, 63, 466–481. [Google Scholar] [CrossRef]
- Dispenza, G.; Antonucci, V.; Sergi, F.; Napoli, G.; Andaloro, L. Development of a multi-purpose infrastructure for sustainable mobility. A case study in a smart cities application. Energy Procedia 2017, 143, 39–46. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Foth, M.; Sabatini-Marques, J.; da Costa, E.; Ioppolo, G. Can cities become smart without being sustainable? A systematic review of the literature. Sustain. Cities Soc. 2019, 45, 348–365. [Google Scholar] [CrossRef]
- Haarstad, H. Constructing the sustainable city: Examining the role of sustainability in the ‘smart city’ discourse. J. Environ. Policy Plan. 2016, 19, 1–15. [Google Scholar] [CrossRef]
- Hu, D.D.; Zhang, J.S.; Zhang, Q. Optimization design of electric vehicle charging stations based on the forecasting data with service balance consideration. Appl. Soft Comput. 2019, 75, 215–226. [Google Scholar] [CrossRef]
- Asamera, J.; Reinthalera, M.; Ruthmairab, M.; Straub, M.; Puchinger, J. Optimizing charging station locations for urban taxi providers. Transp. Res. Part A-Policy Pract. 2016, 85, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.H.; Gao, Z.Y.; Zheng, J.F.; Du, H.M. Charging Station Planning for Plug-In Electric Vehicles. J. Syst. Sci. Syst. Eng. 2018, 27, 24–45. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Gao, Z.Y.; Zheng, J.F.; Du, H.M. Charging station location problem of plug-in electric vehicles. J. Transp. Geogr. 2016, 52, 11–22. [Google Scholar] [CrossRef]
- Chu, Y.J.; Ma, L.; Zhang, H.Z. Location-allocation and Its Algorithm for Gradual Covering Electric Vehicle Charging Stations. Math. Pract. Theory 2015, 45, 101–106. [Google Scholar]
- Fekete, P.; Lim, S.; Martin, S.; Kuhn, K.; Wright, N. Improved energy supply for non-road electric vehicles by occasional charging station location modelling. Energy 2016, 114, 1033–1040. [Google Scholar] [CrossRef]
- Dong, J.; Liu, C.Z.; Lin, Z.H. Charging infrastructure planning for promoting battery electricvehicles: An activity-based approach using multiday travel data. Transp. Res. Part C-Emerg. Technol. 2014, 38, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Kontou, E.; Liu, C.; Xie, F.; Wu, X.; Lin, Z. Understanding the linkage between electric vehicle charging network coverage and charging opportunity using GPS travel data. Transp. Res. Part C-Emerg. Technol. 2018, 98, 1–13. [Google Scholar] [CrossRef]
- Roni, M.S.; Yi, Z.; Smart, J.G. Optimal charging management and infrastructure planning for free-floating shared electric vehicles. Transp. Res. Part D-Transp. Environ. 2019, 76, 155–175. [Google Scholar] [CrossRef]
- Hodgson, M.J. A flow capturing location-allocation model. Geogr. Anal. 1990, 22, 270–279. [Google Scholar] [CrossRef]
- Ruby, M.; Lim, S. The flow-refueling location problem for alternative-fuel vehicles. Socio-Econ. Plan. Sci. 2005, 39, 125–145. [Google Scholar]
- Cruz-Zambrano, M.; Corchero, C.; Igualada-Gonzalez, L. Optimal location of fast charging stations in Barcelona: A flow-capturing approach. In Proceedings of the 10th International Conference on the the European Energy Market, Stockholm, Sweden, 27–31 May 2013; pp. 1–6. [Google Scholar]
- Chunga, S.H.; Kwonb, C. Multi-period planning forelectric car charging station locations: A case of Korean Expressways. Eur. J. Oper. Res. 2015, 242, 677–687. [Google Scholar] [CrossRef]
- Shahraki, N.; Cai, H.; Turkay, M.; Xu, M. Optimal locations of electric public charging stations using real world vehicle travel patterns. Transp. Res. Part D-Transp. Environ. 2015, 41, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.H.; Mu, Y.F.; Jia, H.J.; Wu, J.Z. Planning of Fast EV Charging Stations on a Round Freeway. IEEE Trans. Sustain. Energy 2016, 7, 1452–1461. [Google Scholar] [CrossRef]
- Wu, F.; Sioshansi, R. A stochastic flow-capturing model to optimize the location of fast-charging stations with uncertain electric vehicle flows. Transp. Res. Part D-Transp. Environ. 2017, 53, 354–376. [Google Scholar] [CrossRef]
- He, F.; Yin, Y.F.; Lawphongpanich, S. Network equilibrium models with battery electric vehicles. Transp. Res. Part B-Methodol. 2014, 67, 306–319. [Google Scholar] [CrossRef]
- Wu, D.; Li, Y.; Lu, J.; Liu, Q.C. Study on Users Equilibrium Model with Distance Constraint of Electric Vehicles. Procedia Eng. 2016, 137, 69–74. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Yin, Y.F.; Zhou, J. Deploying public charging stations for electric vehicles on urban road networks. Transp. Res. Part C-Emerg. Technol. 2015, 60, 227–240. [Google Scholar] [CrossRef]
- Bahrami, S.; Aashtiani, H.Z.; Nourinejad, M.; Roorda, M.J. A complementarity equilibrium model for electric vehicles with charging. Int. J. Transp. Sci. Technol. 2017, 6, 255–271. [Google Scholar] [CrossRef]
- Chen, R.; Qian, X.W.; Miao, L.X.; Ukkusuri, S.V. Optimal charging facility location and capacity for electric vehicles considering route choice and charging time equilibrium. Comput. Oper. Res. 2020, 113, 104776. [Google Scholar] [CrossRef]
- Oda, T.; Aziz, M.; Mitani, T.; Watanabe, Y.; Kashiwagi, T. Mitigation of congestion related to quick charging of electric vehicles based on waiting time and cost–benefit analyses: A japanese case study. Sustain. Cities Soc. 2018, 36, 99–106. [Google Scholar] [CrossRef]
- Church, R.; Velle, C.R. The maximal covering location problem. Reg. Sci. Assoc. 1974, 32, 101–118. [Google Scholar] [CrossRef]
- Allen, A.O. Probability, Statistics, and Queueing Theory, 2nd ed.; Academic Press: New York, NY, USA, 1978; pp. 156–179. [Google Scholar]
- Muneer, T.; Milligan, R.; Smith, I.; Doyle, A.; Pozeuelo, M. Energetic, environmental and economic performance of electric vehicles: Experimental evaluation. Transp. Res. Part D-Transp. Environ. 2015, 35, 40–61. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wen, R.X.; Wang, H.W.; Cai, H. Optimal battery electric vehicles range: A study considering heterogeneous travel patterns, charging behaviors, and access to charging infrastructure. Energy 2020, 197, 116945. [Google Scholar] [CrossRef]
- Schoch, J.; Gaerttner, J.; Schuller, A.; Setzer, T. Enhancing electric vehicles sustainability through battery life optimal charging. Transp. Res. Part B-Methodol. 2018, 112, 1–18. [Google Scholar] [CrossRef]
- Hu, L.; Dong, J.; Lin, Z.H. Modeling charging behavior of battery electric vehicle drivers: A cumulative prospect theory based approach. Transp. Res. Part C-Emerg. Technol. 2019, 102, 474–489. [Google Scholar] [CrossRef] [Green Version]
- Sovacool, B.K.; Kester, J.; Noel, L.; Rubens, G.Z. The demographics of decarbonizing transport: The influence of gender, education, occupation, age, and household size on electric mobility preferences in the Nordic region. Glob. Environ. Chang. 2018, 52, 86–100. [Google Scholar] [CrossRef]
- Anand, M.P.; Bagen, B.; Rajapakse, A. Probabilistic reliability evaluation of distribution systems considering the spatial and temporal distribution of electric vehicles. Int. J. Electr. Power Energy Syst. 2020, 117, 105609. [Google Scholar] [CrossRef]
- Schroeder, A.; Traber, T. The economics of fast charging infrastructure for electric vehicles. Energy Policy 2012, 43, 136–144. [Google Scholar] [CrossRef]
- Xiang, Y.; Jiang, Z.Z.; Gu, C.H.; Teng, F.; Wei, X.Y.; Wang, Y. Electric vehicle charging in smart grid: A spatial-temporal simulation method. Energy 2019, 189, 116221. [Google Scholar] [CrossRef]
- Wang, N.; Tang, L.H.; Pan, H.Z. A global comparison and assessment of incentive policy on electric vehicle promotion. Sustain. Cities Soc. 2019, 44, 587–603. [Google Scholar] [CrossRef]
- Li, M.; Jia, Y.H.; Shen, Z.J.; He, F. Improving the electrification rate of the vehicle miles traveled in Beijing: A data-driven approach. Transp. Res. Part A-Policy Pract. 2017, 97, 106–120. [Google Scholar] [CrossRef]
- Wu, X.; Aviquzzaman, M.; Lin, Z. Analysis of plug-in hybrid electric vehicles’ utility factors using GPS-based longitudinal travel data. Transp. Res. Part C-Emerg. Technol. 2015, 57, 1–12. [Google Scholar] [CrossRef]
- Huang, Y.T.; Kockelman, K.M. Electric vehicle charging station locations: Elastic demand, station congestion, and network equilibrium. Transp. Res. Part D-Transp. Environ. 2020, 78, 102179. [Google Scholar] [CrossRef]
- Hong, L.J.; Xu, X.W.; Zhang, S.H. Capacity reservation for time-sensitive service providers: An application in seaport management. Eur. J. Oper. Res. 2015, 245, 470–479. [Google Scholar] [CrossRef]
- Harms, J.J.; Wong, J.W. Performance modeling of a channel reservation service. Comput. Netw. 1995, 27, 1487–1497. [Google Scholar] [CrossRef]
Sets | Description |
---|---|
I | The set of demand nodes. |
J | The set of alternative charging station locations. |
Parameters | Description |
Di | The number of cars at demand nodes i. |
τ | The penetration rate of EVs. |
Cr | The charging price during the peak periods. |
Cl | The charging price during the off-peak periods. |
λjr | The arrival rate during the peak periods. |
λjl | The arrival rate during the off-peak periods. |
Pr | The percentage of charging during the peak periods. |
Pre | The percentage of charging after a price adjustment during the peak periods. |
Ple | The percentage of charging after a price adjustment during the off-peak periods. |
μ1 | The service rate of one unreserved charging pile. |
μ2 | The service rate of one reserved charging pile. |
Cc | The time opportunity cost (CNY/h). |
Co | The annual operating cost (CNY/year). |
Cv | The basic construction cost for installing one charging pile. |
Cf | The unit traveling cost (CNY/km). |
ς | The conversion factor. |
The average waiting time during the peak periods (h). | |
tθ | The tolerable waiting time. |
fjl | The average idle rate. |
fθ | The tolerable idle rate. |
w | The investment periods (year). |
πjln | The probability of n EVs in the queuing system during the peak periods. |
πjrn | The probability of n EVs in the queuing system during the off-peak periods. |
a | The number of charging piles for the reservation service. |
bja | The number of reserved EVs. |
sj | The number of charging piles that are not being reserved. |
tr | The peak duration (h). |
tl | The off-peak duration (h). |
r0 | The discount rate (%). |
dij | The distance from demand node i to charging station location j (km). |
dmax | The tolerable distance (km). |
e | The elastic coefficient. |
M | A large positive number. |
m | The number of charging piles that a charging station allows to install. |
The average waiting time during the off-peak periods (h). | |
Decision Variables | Description |
yj | The binary variables used to determine whether alternative charging station location j is selected. |
xij | The binary variables used to determine whether EVs in demand node i choose to be charged in station j. |
hj | The number of charging piles that are installed in alternative charging stations location j. |
Demand Nodes | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Number of Cars | 237 | 337 | 278 | 384 | 330 | 251 | 490 | 330 | 419 |
Demand Nodes | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Number of Cars | 420 | 350 | 462 | 380 | 339 | 390 | 488 | 330 | 420 |
Demand Nodes | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
Number of Cars | 266 | 222 | 283 | 240 | 220 | 239 | 267 | 440 | 400 |
Demand Nodes | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
Number of Cars | 370 | 426 | 369 | 208 | 294 | 320 | 320 | 359 | 370 |
Demand Nodes | 37 | 38 | 39 | 40 | 42 | 42 | 43 | 44 | 45 |
Number of Cars | 420 | 330 | 390 | 340 | 450 | 430 | 270 | 276 | 306 |
Demand Nodes | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | / |
Number of Cars | 267 | 220 | 294 | 390 | 300 | 420 | 330 | 380 | / |
Parameters | Values | Parameters | Values |
---|---|---|---|
0.1 | 30 CNY/h | ||
51.3% | 500,000 CNY/pile | ||
48.7% | 0.4 CNY/km | ||
3 | 2.5 | ||
0.25 h (15 min) | 1 | ||
0.7 | 4 km | ||
7.5 h (6:30–9:00, 16:00–21:00) | 0.1 | ||
16.5 h | 5% | ||
8 | 15 | ||
1.8 CNY/kWh | 1.2 CNY/kWh | ||
−0.08 |
Cost | Traveling | Annual Construction | Annual Operating | Annual Time Opportunity | Total Cost |
---|---|---|---|---|---|
Amount (CNY) | 193,758 | 1,445,134 | 1,500,000 | 187,217 | 3,326,110 |
EVCS Number | Service Area |
---|---|
4 | (5), (6), (7), (8), (9), (10), (12), (16) |
10 | (1), (2), (3), (4), (17), (18), (19), (20), (21), (22), (25) |
13 | (23), (24), (26), (27), (28), (43), (44), (45), (46), (47), (48), (49), (50) |
14 | (11), (12), (14), (15), (29), (30), (31), (32), (34), (35), (36) |
17 | (33), (37), (38), (39), (40), (41), (42), (51), (52), (53) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Qiu, R. Electric Vehicle Charging Station Location towards Sustainable Cities. Int. J. Environ. Res. Public Health 2020, 17, 2785. https://doi.org/10.3390/ijerph17082785
Luo X, Qiu R. Electric Vehicle Charging Station Location towards Sustainable Cities. International Journal of Environmental Research and Public Health. 2020; 17(8):2785. https://doi.org/10.3390/ijerph17082785
Chicago/Turabian StyleLuo, Xiangyu, and Rui Qiu. 2020. "Electric Vehicle Charging Station Location towards Sustainable Cities" International Journal of Environmental Research and Public Health 17, no. 8: 2785. https://doi.org/10.3390/ijerph17082785
APA StyleLuo, X., & Qiu, R. (2020). Electric Vehicle Charging Station Location towards Sustainable Cities. International Journal of Environmental Research and Public Health, 17(8), 2785. https://doi.org/10.3390/ijerph17082785