Heavy Metal Uptake of Lettuce and Ryegrass from Urban Waste Composts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composts
2.2. Compost Analysis
2.3. Growth Experiment
2.4. Statistics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hargreaves, J.C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosys. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Srivastava, V.; de Araujo, A.S.F.; Vaish, B.; Bartelt-Hunt, S.; Singh, P.; Singh, R.P. Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev. Environ. Sci. Biotechnol. 2016, 15, 677–696. [Google Scholar] [CrossRef] [PubMed]
- Barral, M.T.; Moldes, A.B.; Cendón, Y.; Díaz-Fierros, F. Assessment of municipal solid waste compost quality using standardized methods before preparation of plant growth media. Waste Manag. Res. 2007, 25, 99–108. [Google Scholar] [CrossRef]
- Herrera, F.; Castillo, J.E.; Chica, A.F.; López Bellido, L. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants. Bioresour. Technol. 2008, 99, 287–296. [Google Scholar] [CrossRef]
- Farrell, M.; Jones, D.L. Critical evaluation of municipal solid waste composting and potential compost markets. Bioresour. Technol. 2009, 100, 4301–4310. [Google Scholar] [CrossRef]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.-W. Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef]
- Silvetti, M.; Demurtas, D.; Garau, G.; Deiana, S.; Castaldi, P. Sorption of Pb, Cu, Cd, and Zn by municipal solid waste composts: Metal retention and desorption mechanisms. Clean Soil Air Water 2017, 45, 1600253. [Google Scholar] [CrossRef]
- Paradelo, R.; Vecino, X.; Moldes, A.B.; Barral, M.T. Potential use of composts and vermicomposts as low-cost adsorbents for dye removal: An overlooked application. Environ. Sci. Pollut. Res. 2019, 26, 21085–21097. [Google Scholar] [CrossRef]
- Cogger, C.G. Potential compost benefits for restoration of soils disturbed by urban development. Compost Sci. Util. 2005, 13, 243–251. [Google Scholar] [CrossRef]
- Heyman, H.; Bassuk, N.; Bonhotal, J.; Walter, T. Compost quality recommendations for remediating urban soils. Int. J. Environ. Res. Public Health 2019, 16, 3191. [Google Scholar] [CrossRef] [Green Version]
- Sotamenou, J.; Parrot, L. Sustainable urban agriculture and the adoption of composts in Cameroon. Int. J. Agric. Sustain. 2013, 11, 282–295. [Google Scholar] [CrossRef]
- Ulm, F.; Avelar, D.; Hobson, P.; Penha-Lopes, G.; Dias, T.; Máguas, C.; Cruz, C. Sustainable urban agriculture using compost and an open-pollinated maize variety. J. Clean. Prod. 2019, 212, 622–629. [Google Scholar] [CrossRef]
- Grard, B.J.-P.; Bel, N.; Marchal, N.; Madre, F.; Castell, J.-F.; Cambier, P.; Houot, S.; Manouchehri, N.; Besancon, S.; Michel, J.-C.; et al. Recycling urban waste as possible use for rooftop vegetable garden. Future Food J. Food. Agric. Soc. 2015, 3, 21–34. [Google Scholar]
- Matlock, J.M.; Rowe, D.B. Does compost selection impact green roof substrate performance? Measuring physical properties, plant development, and runoff water quality. Compost Sci. Util. 2017, 25, 231–241. [Google Scholar] [CrossRef]
- Paradelo, R.; Basanta, R.; Barral, M.T. Water-holding capacity and plant growth in compost-based substrates modified with polyacrylamide, guar gum or bentonite. Sci. Hortic. Amst. 2019, 243, 344–349. [Google Scholar] [CrossRef]
- Eksi, M.; Rowe, D.B.; Fernández-Cañero, R.; Cregg, B.M. Effect of substrate compost percentage on green roof vegetable production. Urban For. Urban Green. 2015, 14, 315–322. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 410–422. [Google Scholar] [CrossRef] [Green Version]
- Chaney, R.L.; Brown, S.L.; Malik, M.; Siebielec, G.; Kukier, U.; Ryan, J.A.; Angle, J.S. Heavy metal aspects of compost use. In Compost Utilization in Horticultural Cropping Systems; Stofella, P.J., Kahn, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 323–359. [Google Scholar]
- Tittarelli, F.; Pettruzelli, G.; Pezzarossa, B.; Civilini, M.; Benedetti, A.; Sequi, P. Quality and agronomic use of compost. In Compost Science and Technology; Díaz, L.F., de Bertoldi, M., Bidlingmaier, W., Stentiford, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 119–157. [Google Scholar]
- Smith, S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 2009, 35, 142–156. [Google Scholar] [CrossRef]
- Lopes, C.; Herva, M.; Franco-Uría, A.; Roca, E. Inventory of heavy metal content in organic waste applied as fertilizer in agriculture: Evaluating the risk of transfer into the food chain. Environ. Sci. Pollut. Res. 2011, 18, 918–939. [Google Scholar] [CrossRef] [Green Version]
- Paradelo, R.; Villada, A.; Devesa-Rey, R.; Moldes, A.B.; Domínguez, M.; Patiño, J.; Barral, M.T. Distribution and availability of trace elements in municipal solid waste composts. J. Environ. Monitor. 2011, 13, 201–211. [Google Scholar] [CrossRef]
- AENOR (Asociación Española de Normalización y Certificación). Soil Improvers and Growing Media. Determination of Ph; AENOR: Madrid, Spain, 2001. [Google Scholar]
- AENOR (Asociación Española de Normalización y Certificación). Soil Improvers and Growing Media. Determination of Electrical Conductivity Norma Española UNE-EN 13038; AENOR: Madrid, Spain, 2001. [Google Scholar]
- AENOR (Asociación Española de Normalización y Certificación). Soil Improvers and Growing Media—Determination of Organic Matter Content and Ash; AENOR: Madrid, Spain, 2001. [Google Scholar]
- AENOR (Asociación Española de Normalización y Certificación). Soil Improvers and Growing Media—Extraction of Aqua Regia Soluble Elements; AENOR: Madrid, Spain, 2002. [Google Scholar]
- AENOR (Asociación Española de Normalización y Certificación). Soil Improvers and Growing Media—Determination of Nitrogen—Part 1: Modified Kjeldahl Method; AENOR: Madrid, Spain, 2002. [Google Scholar]
- Moldes, A.; Cendón, Y.; López, E.; Barral, M.T. Biological quality of potting media based on MSW composts: A comparative study. Compost Sci. Util. 2006, 14, 296–302. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project (accessed on 1 January 2018).
- Fox, J.; Bouchet-Valat, M. Rcmdr: R Commander. R Package Version 2.6-1. Available online: http://socserv.socsci.mcmaster.ca/jfox/Misc/Rcmdr/ (accessed on 1 January 2018).
- Ministerio de Agricultura. Real Decreto 506/2013, de 28 de junio, sobre productos fertilizantes. B.O.E. 2013, 164, 51119–51207. [Google Scholar]
- Paradelo, R.; Moldes, A.B.; Prieto, B.; Sandu, R.-G.; Barral, M.T. Can stability and maturity be evaluated in finished composts from different sources? Compost Sci. Util. 2010, 18, 22–31. [Google Scholar] [CrossRef]
- Paradelo, R.; Villada, A.; Barral, M.T. Chemical fractionation of trace elements in a metal-rich amphibolite soil amended with municipal solid waste composts. Waste Biomass Valoriz. 2018, 9, 1935–1943. [Google Scholar] [CrossRef]
- Masaguer, A.; Benito, M. Evaluación de la calidad del compost. In Compostaje; Moreno, J., Moral, R., Eds.; Mundi-Prensa: Madrid, Spain, 2008; pp. 285–304. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Eklind, Y.; Rämert, B.; Wivstad, M. Evaluation of growing media containing farmyard manure compost, household waste compost or chicken manure for the propagation of lettuce (Lactuca sativa L.) transplants. Biol. Agric. Hortic. 2001, 19, 157–181. [Google Scholar] [CrossRef]
- Zubillaga, M.S.; Lavado, R.S. Heavy metal content in lettuce plants grown in biosolids compost. Compost Sci. Util. 2002, 10, 363–367. [Google Scholar] [CrossRef]
- Intawongse, M.; Dean, J.R. Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit. Contam. 2006, 23, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Mupondi, L.T.; Mnkeni, P.N.S.; Brutsch, M.O. Evaluation of pine bark or pine bark with goat manure or sewage sludge cocomposts as growing media for vegetable seedlings. Compost Sci. Util. 2006, 14, 238–243. [Google Scholar] [CrossRef]
- Mininni, C.; Grassi, F.; Traversa, A.; Cocozza, C.; Parente, A.; Miano, T.; Santamaria, P. (Posidonia oceanica L.) based compost as substrate for potted basil production. J. Sci. Food Agric. 2015, 95, 2041–2046. [Google Scholar] [CrossRef]
- European Communities Council. Commission Regulation 466/2001 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Commun. 2001, L77, 1–13. [Google Scholar]
- Grimes, S.M.; Taylor, G.H.; Cooper, J. The availability and binding of heavy metals in compost derived from household waste. J. Chem. Technol. Biotechnol. 1999, 74, 1125–1130. [Google Scholar] [CrossRef]
- Song, Q.J.; Greenway, G.M. A study of the elemental leachability and retention capability of compost. J. Environ. Monitor. 2004, 6, 31–37. [Google Scholar] [CrossRef] [PubMed]
Bd (Mg m−3) | pH | EC (dS m−1) | OM (g kg−1) | Total N (g kg−1) | C/N | Total Cu (mg kg−1) | Total Zn (mg kg−1) | Total Pb (mg kg−1) | Total Cd (mg kg−1) | Class according to Spanish Fertilizers Law | |
---|---|---|---|---|---|---|---|---|---|---|---|
MSWC1 | 0.42 | 8.4 | 2.3 | 490 | 17 | 17 | 325 | 608 | 188 | 3.5 | (‡) |
MSWC2 | 0.53 | 8.2 | 2.4 | 397 | 15 | 15 | 829 | 1149 | 223 | 3.1 | (‡) |
MSGW | 0.53 | 9.2 | 1.2 | 429 | 17 | 14 | 52 | 200 | 62 | 2.1 | C |
MGSS | 0.47 | 7.3 | 1.4 | 515 | 18 | 15 | 688 | 896 | 180 | 2.7 | (‡) |
MV | 0.59 | 7.9 | 0.7 | 376 | 10 | 21 | 144 | 689 | 33 | 2.0 | C |
CPB | 0.45 | 5.3 | 0.4 | 914 | 2.8 | 194 | 120 | 340 | 72 | nd | C |
Heavy metal limits | Spanish Fertilizers Law | 400 | 1000 | 200 | 3 | ||||||
EPA Class A Biosolids | 1500 | 2800 | 300 | 39 |
Ryegrass | Number of Plants | Fresh Weight (g) | Dry Weight (g) | Dry Weight/Plant |
---|---|---|---|---|
MSWC1 | 20 ± 3 a | 8.4 ± 2.5 a | 1.0 ± 0.3 ab | 0.05 |
MSWC2 | 24 ± 6 ab | 9.7 ± 2.8 a | 1.0 ± 0.3 ab | 0.04 |
MSGW | 43 ± 6 c | 9.9 ± 1.8 a | 1.4 ± 0.03 bc | 0.03 |
MGSS | 38 ± 3 c | 17.0 ± 2.5 b | 1.8 ± 0.2 c | 0.05 |
MV | 36 ± 5 bc | 16.9 ± 2.4 b | 1.8 ± 0.3 c | 0.05 |
CPB | 24 ± 5 ab | 5.5 ± 2.3 a | 0.6 ± 0.2 a | 0.03 |
Lettuce | Number of Plants | Fresh Weight (g) | Dry Weight (g) | Dry Weight/Plant |
MSWC1 | 2.3 ± 1.2 a | 3.8 ± 1.4 a | 0.19 ± 0.1 a | 0.08 |
MSWC2 | 2 ± 0 a | 5.7 ± 0.9 a | 0.26 ± 0.04 ab | 0.13 |
MSGW | 3 ± 0 a | 22.6 ± 2.4 c | 1.1 ± 0.3 d | 0.37 |
MGSS | 3 ± 0 a | 13.4 ± 0.4 b | 0.57 ± 0.04 bc | 0.19 |
MV | 3 ± 0 a | 19.5 ± 1.5 c | 0.88 ± 0.1 cd | 0.29 |
CPB | 2.7 ± 0.3 a | 2.4 ± 0.7 a | 0.08 ± 0.01 a | 0.03 |
Ryegrass | Cu | Zn | Pb | Cd |
---|---|---|---|---|
MSWC1 | 29 ± 3 c | 103 ± 14 c | 0.3 ± 0.2 a | 0.17 ± 0.02 b |
MSWC2 | 32 ± 2 c | 133 ± 4 d | 0.12 ± 0.01 a | 0.17 ± 0.03 b |
MSGW | 19 ± 2 ab | 50 ± 9 a | 0.2 ± 0.1 a | 0.02 ± 0.004 a |
MGSS | 23 ± 1 b | 86 ± 8 bc | 0.13 ± 0.03 a | 0.05 ± 0.01 a |
MV | 29 ± 1 c | 97 ± 5 c | 0.13 ± 0.05 a | 0.03 ± 0.01 a |
CPB | 15 ± 0.6 a | 67 ± 1 ab | 0.10 ± 0.1 a | 0.05 ± 0.004 a |
Reference values [35] | 5–10 | 25–47 | 0.4–5 | 0.1–0.6 |
Lettuce | Cu | Zn | Pb | Cd |
MSWC1 | 24 ± 1 b | 101 ± 8 b | 0.50 ± 0.12 b | 0.49 ± 0.05 c |
MSWC2 | 31 ± 3 c | 128 ± 18 b | 0.32 ± 0.09 ab | 0.48 ± 0.05 c |
MSGW | 10 ± 1 a | 66 ± 9 a | 0.21 ± 0.06 a | 0.11 ± 0.01 a |
MGSS | 11 ± 1 a | 107 ±10 b | 0.19 ± 0.04 a | 0.33 ± 0.02 b |
MV | 23 ± 2 b | 115 ± 14 b | 0.14 ± 0.05 a | 0.23 ± 0.06 b |
Reference values [35] | 6–8 | 44–73 | 0.7–3.6 | 0.40–0.66 |
Total | DTPA-Extractable | TCLP | Water-Extractable | |
---|---|---|---|---|
Ryegrass | 0.83 *** | 0.74 *** | 0.78 *** | 0.28 |
Lettuce | 0.80 *** | 0.76 ** | 0.70 ** | 0.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paradelo, R.; Villada, A.; Barral, M.T. Heavy Metal Uptake of Lettuce and Ryegrass from Urban Waste Composts. Int. J. Environ. Res. Public Health 2020, 17, 2887. https://doi.org/10.3390/ijerph17082887
Paradelo R, Villada A, Barral MT. Heavy Metal Uptake of Lettuce and Ryegrass from Urban Waste Composts. International Journal of Environmental Research and Public Health. 2020; 17(8):2887. https://doi.org/10.3390/ijerph17082887
Chicago/Turabian StyleParadelo, Remigio, Antía Villada, and María Teresa Barral. 2020. "Heavy Metal Uptake of Lettuce and Ryegrass from Urban Waste Composts" International Journal of Environmental Research and Public Health 17, no. 8: 2887. https://doi.org/10.3390/ijerph17082887
APA StyleParadelo, R., Villada, A., & Barral, M. T. (2020). Heavy Metal Uptake of Lettuce and Ryegrass from Urban Waste Composts. International Journal of Environmental Research and Public Health, 17(8), 2887. https://doi.org/10.3390/ijerph17082887