Effects of Vitamin D Receptor, Metallothionein 1A, and 2A Gene Polymorphisms on Toxicity of the Peripheral Nervous System in Chronically Lead-Exposed Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Study Design
2.2. Blood Lead Measurement and Accumulation Indicators
2.3. Vibration Perception Threshold Test
2.4. Current Perception Threshold Test
2.5. Questionnaire
2.6. DNA Isolation and Storage
2.7. VDR Genotyping
2.8. MT1A and MT2A Genotyping
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rubino, F.M. Toxicity of Glutathione-Binding Metals: A Review of Targets and Mechanisms. Toxics 2015, 3, 20–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obeng-Gyasi, E. Sources of lead exposure in various countries. Rev. Environ. Health 2019, 34, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Gyasi, E. Lead Exposure and Cardiovascular Disease among Young and Middle-Aged Adults. Med. Sci. 2019, 7, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harari, F.; Sallsten, G.; Christensson, A.; Petkovic, M.; Hedblad, B.; Forsgard, N.; Melander, O.; Nilsson, P.M.; Borné, Y.; Engström, G.; et al. Blood Lead Levels and Decreased Kidney Function in a Population-Based Cohort. Am. J. Kidney Dis. 2018, 72, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.-L.; Lin-Tan, D.-T.; Hsu, K.-H.; Yu, C.-C. Environmental Lead Exposure and Progression of Chronic Renal Diseases in Patients without Diabetes. N. Engl. J. Med. 2003, 348, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Gyasi, E.; Armijos, R.X.; Weigel, M.M.; Filippelli, G.; Sayegh, M.A. Hepatobiliary-Related Outcomes in US Adults Exposed to Lead. Environments 2018, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Can, S.; Bagci, C.; Ozaslan, M.; Bozkurt, A.; Cengiz, B.; Çakmak, E.; Kocabas, R.; Karadağ, E.; Tarakcioglu, M. Occupational lead exposure effect on liver functions and biochemical parameters. Acta Physiol. Hung. 2008, 95, 395–403. [Google Scholar] [CrossRef]
- Gulson, B.; Jameson, C.; Mahaffey, K.; Mizon, K.; Korsch, M.; Vimpani, G. Pregnancy increases mobilization of lead from maternal skeleton. J. Lab. Clin. Med. 1997, 130, 51–62. [Google Scholar] [CrossRef]
- Hu, H.; Tellez-Rojo, M.M.; Bellinger, D.; Smith, D.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Schwartz, J.; Schnaas, L.; Mercado-García, A.; Hernandez-Avila, M. Fetal Lead Exposure at Each Stage of Pregnancy as a Predictor of Infant Mental Development. Environ. Heal. Perspect. 2006, 114, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of Childhood Blood Lead Levels With Cognitive Function and Socioeconomic Status at Age 38 Years and With IQ Change and Socioeconomic Mobility Between Childhood and Adulthood. JAMA 2017, 317, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Mani, M.S.; Kabekkodu, S.P.; Joshi, M.B.; Dsouza, H. Ecogenetics of lead toxicity and its influence on risk assessment. Hum. Exp. Toxicol. 2019, 38, 1031–1059. [Google Scholar] [CrossRef] [PubMed]
- Chao, K.-Y.; Shin, W.-Y.; Chuang, H.-Y.; Wang, J.-D. The distribution of blood lead levels and job titles among lead-acid battery workers in Taiwan. Kaohsiung J. Med. Sci. 2002, 18, 347–354. [Google Scholar] [PubMed]
- Chuang, H.-Y.; Schwartz, J.; Tsai, S.; Lee, M.; Wang, J.; Hu, H. Vibration perception thresholds in workers with long term exposure to lead. Occup. Environ. Med. 2000, 57, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, H.-Y.; Tsai, S.-Y.; Chao, K.-Y.; Lian, C.-Y.; Yang, C.-Y.; Ho, C.-K.; Wu, T.-N. The Influence of Milk Intake on The Lead Toxicity to The Sensory Nervous System in Lead Workers. Neuro Toxicol. 2004, 25, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Bruening, K.; Kemp, F.W.; Simone, N.; Holding, Y.; Louria, D.B.; Bogden, J.D. Dietary calcium intakes of urban children at risk of lead poisoning. Environ. Health Perspect. 1999, 107, 431–435. [Google Scholar] [CrossRef]
- Sowers, M.R.; Scholl, T.O.; Hall, G.; Jannausch, M.L.; Kemp, F.W.; Li, X.; Bogden, J.D. Lead in breast milk and maternal bone turnover. Am. J. Obstet. Gynecol. 2002, 187, 770–776. [Google Scholar] [CrossRef]
- Bogden, J.D.; Gertner, S.B.; Christakos, S.; Kemp, F.W.; Katz, S.R.; Chu, C.; Yang, Z. Dietary Calcium Modifies Concentrations of Lead and Other Metals and Renal Calbindin in Rats. J. Nutr. 1992, 122, 1351–1360. [Google Scholar] [CrossRef]
- Bogden, J.D.; Kemp, F.W.; Han, S.; Murphy, M.; Fraiman, M.; Czerniach, D.; Flynn, C.J.; Banua, M.L.; Scimone, A.; Castrovilly, L.; et al. Dietary calcium and lead interact to modify maternal blood pressure, erythropoiesis, and fetal and neonatal growth in rats during pregnancy and lactation. J. Nutr. 1995, 125, 990–1002. [Google Scholar]
- Fullmer, C.S. Intestinal interactions of lead and calcium. Neuro Toxicol. 1992, 13, 799–807. [Google Scholar]
- Schwartz, B.S.; Stewart, W.F.; Kelsey, K.T.; Simon, D.; Park, S.; Links, J.M.; Todd, A.C. Associations of tibial lead levels with bsmi polymorphisms in the vitamin d receptor in former organolead manufacturing workers. Environ. Health Persp. 2000, 108, 199–203. [Google Scholar] [CrossRef]
- Kazemian, E.; Akbari, M.E.; Moradi, N.; Gharibzadeh, S.; Mondul, A.; Jamshidinaeini, Y.; Khademolmele, M.; Zarins, K.R.; Ghodoosi, N.; Amouzegar, A.; et al. Vitamin D Receptor Genetic Variation and Cancer Biomarkers among Breast Cancer Patients Supplemented with Vitamin D3: A Single-Arm Non-Randomized Before and After Trial. Nutrients 2019, 11, 1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barchitta, M.; Maugeri, A.; La Rosa, M.C.; Lio, R.M.S.; Favara, G.; Panella, M.; Cianci, A.; Agodi, A. Single Nucleotide Polymorphisms in Vitamin D Receptor Gene Affect Birth Weight and the Risk of Preterm Birth: Results From the “Mamma & Bambino” Cohort and A Meta-Analysis. Nutrients 2018, 10, 1172. [Google Scholar] [CrossRef] [Green Version]
- Cieślińska, A.; Kostyra, E.; Chwała, B.; Moszyńska, M.; Fiedorowicz, E.; Teodorowicz, M.; Savelkoul, H. Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism. Brain Sci. 2017, 7, 115. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Zhu, W.-Y.; He, X.; Tang, M.-M.; Dang, R.; Li, H.-D.; Xue, Y.; Zhang, L.-H.; Wu, Y.-Q.; Cao, L.-J. Association between Vitamin D Receptor Gene Polymorphisms with Childhood Temporal Lobe Epilepsy. Int. J. Environ. Res. Public Health 2015, 12, 13913–13922. [Google Scholar] [CrossRef]
- Cieślińska, A.; Kostyra, E.; Fiedorowicz, E.; Snarska, J.; Kordulewska, N.; Kiper, K.; Savelkoul, H. Single Nucleotide Polymorphisms in the Vitamin D Receptor Gene (VDR) May Have an Impact on Acute Pancreatitis (AP) Development: A Prospective Study in Populations of AP Patients and Alcohol-Abuse Controls. Int. J. Mol. Sci. 2018, 19, 1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assaad, S.; Costanian, C.; Jaffal, L.; Tannous, F.; Stathopoulou, M.G.; El Shamieh, S. Association of TLR4 Polymorphisms, Expression, and Vitamin D with Helicobacter pylori Infection. J. Pers. Med. 2019, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Chuang, H.-Y.; Yu, K.-T.; Ho, C.-K.; Wu, M.-T.; Lin, G.-T.; Wu, T.-N. Investigations of vitamin D receptor polymorphism affecting workers’ susceptibility to lead. J. Occup. Health 2004, 46, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Kagi, J.H.; Valee, B.L. Metallothionein: A cadmium- and zinc-containing protein from equine renal cortex. J. Boil. Chem. 1960, 235, 3460–3465. [Google Scholar]
- Margoshes, M.; Vallee, B.L. A Cadmium Protein from Equine Kidney Cortex. J. Am. Chem. Soc. 1957, 79, 4813–4814. [Google Scholar] [CrossRef]
- Carpene, E.; Andreani, G.; Isani, G. Metallothionein functions and structural characteristics. J. Trace Elem. Med. Boil. 2007, 21, 35–39. [Google Scholar] [CrossRef]
- Thirumoorthy, N.; Kumar, K.M.; Sundar, A.S.; Panayappan, L.; Chatterjee, M. Metallothionein: An overview. World J. Gastroenterol. 2007, 13, 993–996. [Google Scholar] [CrossRef] [Green Version]
- Vasák, M. Advances in metallothionein structure and functions. J. Trace Elem. Med. Boil. 2005, 19, 13–17. [Google Scholar] [CrossRef]
- McNeill, R.V.; Mason, A.S.; Hodson, M.E.; Catto, J.W.; Southgate, J. Specificity of the Metallothionein-1 Response by Cadmium-Exposed Normal Human Urothelial Cells. Int. J. Mol. Sci. 2019, 20, 1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niederwanger, M.; Dvorak, M.; Schnegg, R.; Pedrini-Martha, V.; Bacher, K.; Bidoli, M.; Dallinger, R. Challenging the Metallothionein (MT) Gene of Biomphalaria glabrata: Unexpected Response Patterns Due to Cadmium Exposure and Temperature Stress. Int. J. Mol. Sci. 2017, 18, 1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Li, H.; Yu, T.; Zhao, H.; Cherian, M.G.; Cai, L.; Liu, Y. Polymorphisms in metallothionein-1 and -2 genes associated with the risk of type 2 diabetes mellitus and its complications. Am. J. Physiol. Metab. 2008, 294, E987–E992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-C.; Chen, H.-I.; Chiu, Y.-W.; Tsai, C.-H.; Chuang, H.-Y. Metallothionein 1A polymorphisms may influence urine uric acid and N-acetyl-beta-d-glucosaminidase (NAG) excretion in chronic lead-exposed workers. Toxicology 2013, 306, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Roels, H.; Konings, J.; Green, S.; Bradley, D.; Chettle, D.; Lauwerys, R. Time-Integrated Blood Lead Concentration Is a Valid Surrogate for Estimating the Cumulative Lead Dose Assessed by Tibial Lead Measurement. Environ. Res. 1995, 69, 75–82. [Google Scholar] [CrossRef]
- Gerr, F. Vibrotactile Threshold Testing in Occupational Health: A Review of Current Issues and Limitations. Environ. Res. 1993, 60, 145–159. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Chen, J.-D. Neurobehavioral effects of occupational exposure to low-level styrene. Neurotoxicol. Teratol. 1996, 18, 463–469. [Google Scholar] [CrossRef]
- Masson, E.A.; Boulton, A.J.M. The Neurometer: Validation and Comparison with Conventional Tests for Diabetic Neuropathy. Diabet. Med. 1991, 8, S63–S66. [Google Scholar] [CrossRef]
- Chen, H.-I.; Chiu, Y.-W.; Hsu, Y.K.; Li, W.-F.; Chen, Y.-C.; Chuang, H.-Y. The Association of Metallothionein-4 Gene Polymorphism and Renal Function in Long-Term Lead-Exposed Workers. Boil. Trace Elem. Res. 2009, 137, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, R.K. Atrophy of Large Myelinated Axons in Metallothionein-I, II Knockout Mice. Cell. Mol. Neurobiol. 2005, 25, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Tekin, D.; Kayaaltı, Z.; Söylemezoğlu, T.; Kayaalti, Z. The effects of metallothionein 2A polymorphism on lead metabolism: Are pregnant women with a heterozygote genotype for metallothionein 2A polymorphism and their newborns at risk of having higher blood lead levels? Int. Arch. Occup. Environ. Health 2011, 85, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Kayaaltı, Z.; Aliyev, V.; Söylemezoğlu, T.; Kayaalti, Z. The potential effect of metallothionein 2A −5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels. Toxicol. Appl. Pharmacol. 2011, 256, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.-B.; Wei, H.-W.; Wang, J.; Kong, Y.-Q.; Wu, Y.-Y.; Guo, J.-L.; Li, T.-F.; Li, J.-K. Mammalian Metallothionein-2A and Oxidative Stress. Int. J. Mol. Sci. 2016, 17, 1483. [Google Scholar] [CrossRef]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef]
Total | TWICL | p-Value | ||||
---|---|---|---|---|---|---|
≤25 Percentile | 25–50 Percentile | 50–75 Percentile | 75–100 Percentile | |||
Number | 181 | 45 | 45 | 46 | 45 | |
Sex | <0.001 | |||||
Female | 107 (59.1%) | 35 (77.8%) | 36 (80.0%) | 31 (67.4%) | 5 (11.1%) | |
Male | 74 (40.9%) | 10 (22.2%) | 9 (20.0%) | 15 (32.6%) | 40 (88.9%) | |
Education | 0.206 | |||||
Elementary | 54 (30.7%) | 11 (26.8%) | 16 (35.6%) | 14 (31.1%) | 13 (28.9%) | |
Junior high | 60 (35.2%) | 12 (29.3%) | 16 (35.6%) | 17 (37.8%) | 15 (33.3%) | |
Senior high | 41 (23.3%) | 8 (19.5%) | 8 (17.8%) | 9 (20.0%) | 16 (35.6%) | |
Collage | 20 (11.4%) | 9 (22.0%) | 5 (11.1%) | 5 (11.1%) | 1 (2.2%) | |
Graduate | 1 (0.6%) | 1 (2.4%) | 0 | 0 | 0 | |
Milk drinking | 158 (87.3%) | 40 (88.9%) | 43 (95.6%) | 38 (82.6%) | 37 (82.2%) | 0.185 |
Alcohol drinking | 16 (8.8%) | 0 | 1 (2.2%) | 5 (10.9%) | 10 (22.2%) | 0.001 |
Smoking | 42 (23.2) | 5 (11.1%) | 5 (11.1%) | 5 (10.9%) | 27 (60.0%) | <0.001 |
Vibration tool use | 7 (3.9%) | 0 | 1 (2.2%) | 0 | 6 (13.3%) | 0.002 |
Age (year) | 39.5 ± 7.4 | 39.4 ± 7.2 | 39.7 ± 7.4 | 39.3 ± 7.5 | 39.7 ± 7.9 | 0.989 |
Body height (cm) | 158.9 ± 8.2 | 157.7 ± 8.2 | 157.0 ± 8.6 | 158.6 ± 8.0 | 162.2 ± 7.2 | 0.012 |
Body weight (kg) | 58.5 ± 10.6 | 56.0 ± 10.7 | 56.8 ± 11.0 | 60.3 ± 11.7 | 60.8 ± 8.2 | 0.076 |
Working history (year) | 9.9 ± 7.5 | 7.1 ± 7.8 | 9.6 ± 7.5 | 9.7 ± 6.6 | 13.2 ± 7.2 | 0.001 |
Working life span (%) | 24.3 ± 17.1 | 17.1 ± 17.6 | 23.8 ± 17.4 | 24.3 ± 15.1 | 31.9 ± 15.2 | 0.001 |
Total | TWICL | p-Value * | ||||
---|---|---|---|---|---|---|
≤25 Percentile | 25–50 Percentile | 50–75 Percentile | 75–100 Percentile | |||
Number | 181 | 45 | 45 | 46 | 45 | |
VPT (10−2 g) | ||||||
Hand | 10.0 ± 6.0 | 8.4 ± 3.0 | 11.6 ± 7.8 | 10.5 ± 5.6 | 9.3 ± 5.9 | 0.111 |
Foot | 18.9 ± 12.3 | 17.2 ± 8.8 | 16.7 ± 8.3 | 17.3 ± 10.0 | 24.9 ± 18.9 | 0.016 |
Hand CPT (10−2 mA) | ||||||
5 Hz | 46.0 ± 19.2 | 41.70 ± 15.90 | 40.55 ± 16.08 | 49.82 ± 19.71 | 51.70 ± 22.46 | 0.008 |
250 Hz | 76.9 ± 27.4 | 70.48 ± 24.21 | 70.02 ± 25.42 | 83.08 ± 24.27 | 83.96 ± 32.37 | 0.013 |
2000 Hz | 205.7 ± 60.0 | 188.45 ± 54.56 | 192.65 ± 58.67 | 213.17 ± 52.33 | 228.22 ± 66.91 | 0.004 |
Foot CPT (10−2 mA) | ||||||
5 Hz | 58.1 ± 26.1 | 48.59 ± 16.41 | 56.46 ± 29.58 | 60.92 ± 29.08 | 66.52 ± 24.35 | 0.009 |
250 Hz | 109.6 ± 43.6 | 96.20 ± 30.77 | 98.22 ± 49.82 | 120.41 ± 46.76 | 123.30 ± 38.38 | 0.002 |
2000 Hz | 270.9 ± 97.1 | 227.83 ± 69.74 | 253.55 ± 97.14 | 293.77 ± 95.32 | 307.90 ± 103.97 | <0.001 |
Number | Hardy–Weinberg Equilibrium p-Value | TWICL | p-Value * | ||||
---|---|---|---|---|---|---|---|
≤25 Percentile | 25–50 Percentile | 50–75 Percentile | 75–100 Percentile | ||||
VDR-Bsm (rs1544410) | 0.067 | 0.024 | |||||
GG | 142 (79.3%) | 36 (83.7%) | 32 (71.1%) | 39 (84.8%) | 35 (77.8%) | ||
GA | 32 (17.9%) | 3 (7.0%) | 12 (26.7%) | 7 (15.2%) | 10 (22.2%) | ||
AA | 5 (2.8%) | 4 (9.3%) | 1 (2.2%) | 0 | 0 | ||
VDR-Apa (rs7975232) | 0.076 | 0.109 | |||||
AA | 87 (48.6%) | 25 (56.8%) | 20 (45.5%) | 24 (52.2%) | 18 (40.0%) | ||
AC | 68 (38.0%) | 15 (34.1%) | 22 (50.0%) | 14 (30.4%) | 17 (37.8%) | ||
CC | 24 (13.4%) | 4 (9.1%) | 2 (4.5%) | 8 (17.4%) | 10 (22.2%) | ||
VDR-Taq (rs731236) | 0.348 | 0.089 | |||||
TT | 153 (85.5%) | 34 (77.3%) | 36 (80.0%) | 42 (93.3%) | 41 (91.1%) | ||
TC | 24 (13.4%) | 8 (18.2%) | 9 (20.0%) | 3 (6.7%) | 4 (8.9%) | ||
CC | 2 (1.1%) | 2 (4.5%) | 0 | 0 | 0 | ||
MT1A (rs11640851) | 0.082 | <0.001 | |||||
CC | 57 (32.0%) | 24 (55.8%) | 19 (42.2%) | 10 (21.7%) | 4 (9.1%) | ||
AC | 77 (43.3%) | 14 (32.6%) | 13 (28.9%) | 25 (54.3%) | 25 (56.8%) | ||
AA | 44 (24.7%) | 5 (11.6%) | 13 (28.9%) | 11 (23.9%) | 15 (34.1%) | ||
MT1A (rs8052394) | 0.067 | 0.337 | |||||
AA | 74 (41.3%) | 16 (36.4%) | 17 (37.8%) | 22 (47.8%) | 19 (43.2%) | ||
AG | 73 (40.8%) | 16 (36.4%) | 18 (40.0%) | 18 (39.1%) | 21 (47.7%) | ||
GG | 32 (17.9%) | 12 (27.3%) | 10 (22.2%) | 6 (13.0%) | 4 (9.1%) | ||
MT2A (rs10636) | 0.158 | 0.001 | |||||
GG | 101 (56.4%) | 33 (76.7%) | 29 (64.4%) | 17 (37.0%) | 22 (48.9%) | ||
GC | 62 (34.6%) | 10 (23.3%) | 15 (33.3%) | 21 (45.7%) | 16 (35.6%) | ||
CC | 16 (8.9%) | 0 | 1 (2.2%) | 8 (17.4%) | 7 (15.6%) | ||
MT2A (rs28366003) | 0.238 | 0.093 | |||||
AA | 150 (83.8%) | 41 (95.3%) | 37 (82.2%) | 35 (76.1%) | 37 (82.2%) | ||
AG | 29 (16.2%) | 2 (4.7%) | 8 (17.8%) | 11 (23.9%) | 8 (17.8%) | ||
GG | 0 (0%) | 0 | 0 | 0 | 0 |
Hand VPT | Foot VPT | Hand CPT 5 Hz | Hand CPT 250 Hz | Hand CPT 2000 Hz | Foot CPT 5 Hz | Foot CPT 250 Hz | Foot CPT 2000 Hz | |
---|---|---|---|---|---|---|---|---|
TWICL (no gene adjustment) | 0.11 (0.05) | 0.29 (0.10) | 0.30 (0.14) | 0.44 (0.19) | 0.78 (0.31) | 2.20 (0.68) | ||
TWICL | 0.13 (0.05) | 0.30 (0.10) | 0.34 (0.15) | 0.75 (0.33) | 2.18 (0.71) | |||
VDR-Bsm rs1544410 (GA/GG) | ||||||||
(AA/GG) | ||||||||
TWICL | 0.13 (0.05) | 0.29 (0.10) | 0.40 (0.19) | 0.67 (0.32) | 2.07 (0.70) | |||
VDR-Apa rs7975232 (CC/AA) | 10.45 (4.53) | 17.23 (6.28) | 31.83 (13.76) | |||||
(AC/AA) | ||||||||
TWICL | 0.12 (0.05) | 0.31 (0.10) | 0.67 (0.33) | 1.90 (0.71) | ||||
VDR-Taq rs731236 (TC/TT) | 3.56 (1.64) | |||||||
(CC/TT) | ||||||||
TWICL | 0.21 (0.09) | 1.80 (0.72) | ||||||
MT1A rs11640851 (AA/CC) | 12.92 (3.87) | 12.60 (5.61) | 36.58 (11.87) | 12.20 (5.44) | 25.26 (8.89) | 63.89 (19.22) | ||
(AC/CC) | ||||||||
TWICL | 0.17 (0.09) | 0.33 (0.14) | 0.68 (0.32) | 2.00 (0.70) | ||||
MT1A rs8052394 (GG/AA) | −39.43 (11.91) | −40.52 (19.94) | ||||||
(AG/AA) | ||||||||
TWICL | 0.29 (0.10) | 0.42 (0.20) | 0.73 (0.33) | 2.05 (0.73) | ||||
MT2A rs10636 (GC/GG) | 12.35 (2.98) | 18.07 (4.15) | 23.66 (9.10) | |||||
(CC/GG) | 15.05 (5.11) | 23.36 (7.10) | 60.02 (15.60) | |||||
TWICL | 0.26 (0.10) | 0.41 (0.14) | 0.48 (0.20) | 1.09 (0.41) | 0.51 (0.19) | 0.85 (0.31) | 2.45 (0.69) | |
MT2A rs28366003 (AG/AA) | 3.28 (1.33) | −13.52 (3.82) | −19.10 (5.35) | −63.03 (10.94) | −19.57 (5.09) | −26.07 (8.51) | −51.42 (18.87) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.-L.; Chuang, H.-Y.; Hsu, C.-N.; Lee, S.-S.; Yang, C.-C.; Liu, K.-T. Effects of Vitamin D Receptor, Metallothionein 1A, and 2A Gene Polymorphisms on Toxicity of the Peripheral Nervous System in Chronically Lead-Exposed Workers. Int. J. Environ. Res. Public Health 2020, 17, 2909. https://doi.org/10.3390/ijerph17082909
Liu H-L, Chuang H-Y, Hsu C-N, Lee S-S, Yang C-C, Liu K-T. Effects of Vitamin D Receptor, Metallothionein 1A, and 2A Gene Polymorphisms on Toxicity of the Peripheral Nervous System in Chronically Lead-Exposed Workers. International Journal of Environmental Research and Public Health. 2020; 17(8):2909. https://doi.org/10.3390/ijerph17082909
Chicago/Turabian StyleLiu, Hsin-Liang, Hung-Yi Chuang, Chien-Ning Hsu, Su-Shin Lee, Chen-Cheng Yang, and Kuan-Ting Liu. 2020. "Effects of Vitamin D Receptor, Metallothionein 1A, and 2A Gene Polymorphisms on Toxicity of the Peripheral Nervous System in Chronically Lead-Exposed Workers" International Journal of Environmental Research and Public Health 17, no. 8: 2909. https://doi.org/10.3390/ijerph17082909
APA StyleLiu, H. -L., Chuang, H. -Y., Hsu, C. -N., Lee, S. -S., Yang, C. -C., & Liu, K. -T. (2020). Effects of Vitamin D Receptor, Metallothionein 1A, and 2A Gene Polymorphisms on Toxicity of the Peripheral Nervous System in Chronically Lead-Exposed Workers. International Journal of Environmental Research and Public Health, 17(8), 2909. https://doi.org/10.3390/ijerph17082909