The Policy Information Gap and Resettlers’ Well-Being: Evidence from the Anti-Poverty Relocation and Resettlement Program in China
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Research Area and Survey
3.2. Dependent Variable
3.3. Independent Variables
3.4. Statistical Analysis
4. Results
4.1. Policy Information Gap and Subjective Well-Being: Phenomenon and Mechanism
4.2. Comparisons: Reference Groups for Policy Information
4.3. Groups Sensitive to the Policy Information Gap
4.4. Policy Environment: Catalyst for Policy Information Gap
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, C.; Zheng, H.; Li, S.; Chen, X.; Li, J.; Zeng, W.; Liang, Y.; Polasky, S.; Feldman, M.W.; Ruckelshaus, M.; et al. Impacts of conservation and human development policy across stakeholders and scales. Proc. Natl. Acad. Sci. USA 2015, 112, 7396–7401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Xu, J.; Li, J.; Li, S. Rural Households’ Poverty and Relocation and Settlement: Evidence from Western China. Int. J. Environ. Res. Public Health 2019, 16, 2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Penning, M.J.; Zeng, W.; Li, S.; Chappell, N.L. Relocation and Social Support Among Older Adults in Rural China. J. Gerontol. Ser. B 2015, 71, 1108–1119. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Wang, M.; Xue, T. ‘Voluntary’ Poverty Alleviation Resettlement in China. Dev. Chang. 2013, 44, 1159–1180. [Google Scholar] [CrossRef]
- Li, C.; Kang, B.; Wang, L.; Li, S.; Feldman, M.W.; Li, J. Does China’s Anti-Poverty Relocation and Settlement Program Benefit Ecosystem Services: Evidence from a Household Perspective. Sustainability 2019, 11, 600. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.-S.; Cao, Y.; Xi, J. The Short-Term Impact of Involuntary Migration in China’s Three Gorges: A Prospective Study. Soc. Indic. Res. 2010, 101, 73–92. [Google Scholar] [CrossRef]
- Britz, J.J. To Know or not to Know: A Moral Reflection on Information Poverty. J. Inf. Sci. 2004, 30, 192–204. [Google Scholar] [CrossRef]
- Yu, L. How poor informationally are the information poor? J. Doc. 2010, 66, 906–933. [Google Scholar] [CrossRef]
- Stone, A.A.; Mackie, C.E. Subjective Well-Being: Measuring Happiness, Suffering, and Other Dimensions of Experience; National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Adler, M.D.; Fleurbaey, M. (Eds.) The Oxford Handbook of Well-Being and Public Policy; Oxford University Press: Oxford, UK, 2016; pp. 651–693. [Google Scholar]
- Mangyo, E.; Park, A. Relative Deprivation and Health: Which Reference Groups Matter? J. Hum. Resour. 2011, 46, 459–481. [Google Scholar] [CrossRef]
- Hajek, A.; König, H.-H. Not Getting What You Want? The Impact of Income Comparisons on Subjective Well-Being-Findings of a Population-Based Longitudinal Study in Germany. Int. J. Environ. Res. Public Health 2019, 16, 2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, C.; Qiu, Y.; An, R. Relative Income and Life Satisfaction among Chinese Adults. Sustainability 2019, 11, 5651. [Google Scholar] [CrossRef] [Green Version]
- Wilmsen, B.; Wang, M. Voluntary and involuntary resettlement in China: A false dichotomy? Dev. Pr. 2015, 25, 612–627. [Google Scholar] [CrossRef]
- Li, C.; Guo, M.; Li, S.; Feldman, M. The Impact of the Anti-Poverty Relocation and Settlement Program on Rural Households’ Well-Being and Ecosystem Dependence: Evidence from Western China. Soc. Nat. Resour. 2020, 1–20. [Google Scholar] [CrossRef]
- Webber, M.; McDonald, B. Involuntary Resettlement, Production and Income: Evidence from Xiaolangdi, PRC. World Dev. 2004, 32, 673–690. [Google Scholar] [CrossRef]
- Greenberg, B.; Dervin, B. Mass Communication Among the Urban Poor. Public Opin. Q. 1970, 34, 224. [Google Scholar] [CrossRef]
- Parker, E.B.; Dunn, D.A. Information Technology: Its Social Potential. Science 1972, 176, 1392–1399. [Google Scholar] [CrossRef]
- Katzman, N. The Impact of Communication Technology: Promises and Prospects. J. Commun. 1974, 24, 47–58. [Google Scholar] [CrossRef]
- Martin, C.A. Editorial Comment: Black English and Black History-Continuing Themes. J. Negro Educ. 1974, 43, 263–264. [Google Scholar]
- Suppes, P. A Survey of Cognition in Handicapped Children. Rev. Educ. Res. 1974, 44, 145–176. [Google Scholar] [CrossRef]
- Chatman, E.A. The impoverished life-world of outsiders. J. Am. Soc. Inf. Sci. 1996, 47, 193–206. [Google Scholar] [CrossRef]
- Jaeger, P.T.; Burnett, G. Small worlds, lifeworlds, and information: The ramifications of the information behaviour of social groups in public policy and the public sphere. Inf. Res. 2008, 13. [Google Scholar]
- Jackie, M.; Peter, B.; Andrew, B. Information overload and information poverty: Challenges for healthcare services managers? J. Doc. 2011, 67, 238–263. [Google Scholar]
- Murdock, G.; Golding, P. Information Poverty and Political Inequality: Citizenship in the Age of Privatized Communications. J. Commun. 1989, 39, 180–195. [Google Scholar] [CrossRef]
- Kagan, A. The Growing Gap between the Information Rich and the Information Poor Both within Countries and between Countries: A Composite Policy Paper. IFLA J. 2000, 26, 28–33. [Google Scholar] [CrossRef]
- Goswami, R.; De, S.K.; Datta, B. Linguistic diversity and information poverty in South Asia and Sub-Saharan Africa. Univ. Access Inf. Soc. 2009, 8, 219–238. [Google Scholar] [CrossRef]
- Gebremichael, M.D.; Jackson, J.W. Bridging the gap in Sub-Saharan Africa: A holistic look at information poverty and the region’s digital divide. Gov. Inf. Q. 2006, 23, 267–280. [Google Scholar] [CrossRef]
- Ferro, E.; Helbig, N.; Gil-Garcia, J.R. The role of IT literacy in defining digital divide policy needs. Gov. Inf. Q. 2011, 28, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, A.; Kennan, M.A.; Thompson, K.; Qayyum, M.A. Connecting with new information landscapes: Information literacy practices of refugees. J. Doc. 2013, 69, 121–144. [Google Scholar] [CrossRef] [Green Version]
- May, J.D. Digital and other poverties: Exploring the connection in four East African countries. Inf. Technol. Int. Dev. 2012, 8, 33. [Google Scholar]
- Wei, L.; Hindman, D.B. Does the Digital Divide Matter More? Comparing the Effects of New Media and Old Media Use on the Education-Based Knowledge Gap. Mass Commun. Soc. 2011, 14, 216–235. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Qiu, J.L.; Kim, Y.-C. Internet Connectedness and Inequality. Commun. Res. 2001, 28, 507–535. [Google Scholar] [CrossRef]
- Viswanath, K.; Kosicki, G.M.; Fredin, E.S.; Park, E. Local Community Ties, Community-Boundedness, and Local Public Affairs Knowledge Gaps. Commun. Res. 2000, 27, 27–50. [Google Scholar] [CrossRef]
- Cho, J.; McLeod, D.M. Structural Antecedents to Knowledge and Participation: Extending the Knowledge Gap Concept to Participation. J. Commun. 2006, 57, 205–228. [Google Scholar] [CrossRef]
- Ettema, J.S.; Brown, J.W.; Luepker, R.V. Knowledge Gap Effects in a Health Information Campaign. Public Opin. Q. 1983, 47, 516–527. [Google Scholar] [CrossRef]
- Tichenor, P.J.; Donohue, G.A.; Olien, C.N. Mass Media Flow and Differential Growth in Knowledge. Public Opin. Q. 1970, 34, 159. [Google Scholar] [CrossRef]
- Zimmerman, M.S. Information Poverty and Reproductive Healthcare: Assessing the Reasons for Inequity between Income Groups. Soc. Work. Public Health 2017, 32, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Duff, A.S. Needing NoDI (normal democratic information)? The problem of information poverty in post-industrial society. Inf. Commun. Soc. 2014, 18, 63–77. [Google Scholar] [CrossRef]
- Teske, P.; Fitzpatrick, J.; Kaplan, G. The Information Gap? Rev. Policy Res. 2006, 23, 969–981. [Google Scholar] [CrossRef]
- Varelius, J. Objective Explanations of Individual Well-being. J. Happiness Stud. 2004, 5, 73–91. [Google Scholar] [CrossRef]
- Smith, C.; Clay, P. Measuring Subjective and Objective Well-being: Analyses from Five Marine Commercial Fisheries. Hum. Organ. 2010, 69, 158–168. [Google Scholar] [CrossRef]
- Renn, D.; Pfaffenberger, N.; Platter, M.; Mitmansgruber, H.; Cummins, R.; Höfer, S. International Well-being Index: The Austrian Version. Soc. Indic. Res. 2008, 90, 243–256. [Google Scholar] [CrossRef]
- Cummins, R.; Eckersley, R.; Pallant, J.; Van Vugt, J.; Misajon, R. Developing a National Index of Subjective Wellbeing: The Australian Unity Wellbeing Index. Soc. Indic. Res. 2003, 64, 159–190. [Google Scholar] [CrossRef]
- Deaton, A.; Stone, A.A. Two happiness puzzles1. Am. Econ. Rev. 2013, 103, 591–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easterlin, R.A.; McVey, L.A.; Switek, M.; Sawangfa, O.; Zweig, J.S. The happiness-income paradox revisited. Proc. Natl. Acad. Sci. USA 2010, 107, 22463–22468. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, N. Happiness is U shaped, highest in the teens and 70s, survey shows. BMJ: Br. Med. J. 2012, 344, 1. [Google Scholar] [CrossRef] [PubMed]
- MacKerron, G. HAPPINESS ECONOMICS FROM 35 000 FEET. J. Econ. Surv. 2011, 26, 705–735. [Google Scholar] [CrossRef]
- Zimmermann, A.C.; Easterlin, R.A. Happily Ever After? Cohabitation, Marriage, Divorce, and Happiness in Germany. Popul. Dev. Rev. 2006, 32, 511–528. [Google Scholar] [CrossRef]
- Marta, M.; Francisco Félix, C.; Somnath, C.; Beatriz, O.; Beata, T.; Seppo, K.; Matilde, L.; Josep Maria, H.; José Luis, A. Health and happiness: Cross-sectional household surveys in Finland, Poland and Spain. Bull. World Health Organ. 2014, 92, 716–725. [Google Scholar]
- Adler, A.; Seligman, M.E.P. Using wellbeing for public policy: Theory, measurement, and recommendations. Int. J. Wellbeing 2016, 6, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Oishi, S.; Kesebir, S.; Diener, E. Income Inequality and Happiness. Psychol. Sci. 2011, 22, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.H.; Runciman, W.G. Relative Deprivation and Social Justice: A Study of Attitudes to Social Inequality in Twentieth-Century England. Am. Sociol. Rev. 1967, 32, 132. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y. Income, income inequality, and health: Evidence from China. J. Comp. Econ. 2006, 34, 668–693. [Google Scholar] [CrossRef] [Green Version]
- Eibner, C.; Evans, W.N. Relative Deprivation, Poor Health Habits, and Mortality. J. Hum. Resour. 2005, 40, 591–620. [Google Scholar] [CrossRef]
- Blanchflower, D.G.; Oswald, A.J. Well-being over time in Britain and the USA. J. Public Econ. 2004, 88, 1359–1386. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.E.; Oswald, A.J. Satisfaction and comparison income. J. Public Econ. 1996, 61, 359–381. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.E.; Kristensen, N.; Westergard-Nielsen, N. Economic Satisfaction and Income Rank in Small Neighbourhoods. J. Eur. Econ. Assoc. 2009, 7, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.E.; Frijters, P.; Shields, M.A. Relative Income, Happiness, and Utility: An Explanation for the Easterlin Paradox and Other Puzzles. J. Econ. Lit. 2008, 46, 95–144. [Google Scholar] [CrossRef] [Green Version]
- Ferrer-I-Carbonell, A. Income and well-being: An empirical analysis of the comparison income effect. J. Public Econ. 2005, 89, 997–1019. [Google Scholar] [CrossRef]
- Stone, A.A.; Schwartz, J.E.; Broderick, J.E.; Deaton, A. A snapshot of the age distribution of psychological well-being in the United States. Proc. Natl. Acad. Sci. USA 2010, 107, 9985–9990. [Google Scholar] [CrossRef] [Green Version]
- Cheung, F.; Lucas, R.E. Income inequality is associated with stronger social comparison effects: The effect of relative income on life satisfaction. J. Pers. Soc. Psychol. 2016, 110, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrieri, V. Social Comparison and Subjective Well-Being: Does the Health of Others Matter? Bull. Econ. Res. 2011, 64, 31–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, S.-T.; Fung, H.H.-L.; Chan, A.C. Living status and psychological well-being: Social comparison as a moderator in later life. Aging Ment. Health 2008, 12, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, P.; Kuyper, H.; Van Der Werf, G.; Buunk, A.P.; Van Der Zee, Y.G. Social Comparison in the Classroom: A Review. Rev. Educ. Res. 2008, 78, 828–879. [Google Scholar] [CrossRef]
- Zhao, Y. Social Network and People’s Wellbeing in Urban and Rural Areas. Society 2008, 28, 1–19. [Google Scholar]
- Chai, Y.; Yang, F. Risk Control of Coopetition Relationship: An Exploratory Case Study on Social Networks “Guanxi” in a Chinese Logistics Services Cluster. Int. J. Interdiscip. Soc. Sci. Annu. Rev. 2011, 6, 29–40. [Google Scholar] [CrossRef]
- McPherson, M.; Smith-Lovin, L.; Cook, J. Birds of a Feather: Homophily in Social Networks. Annu. Rev. Sociol. 2001, 27, 415–444. [Google Scholar] [CrossRef] [Green Version]
- Feigin, S.; Owens, G.; Goodyear-Smith, F. Theories of human altruism: A systematic review. J. Psychiatry Brain Funct. 2014, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, S.F.; De Waal, F.B.M. A proximate perspective on reciprocal altruism. Hum. Nat. 2002, 13, 129–152. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Liu, Y.; Chen, Y.; Long, H. The process and driving forces of rural hollowing in China under rapid urbanization. J. Geogr. Sci. 2010, 20, 876–888. [Google Scholar] [CrossRef]
- Chang, H.; Dong, X.-Y.; MacPhail, F. Labor Migration and Time Use Patterns of the Left-behind Children and Elderly in Rural China. World Dev. 2011, 39, 2199–2210. [Google Scholar] [CrossRef]
- Belch, M.A.; Krentler, K.; Willis-Flurry, L.A. Teen internet mavens: Influence in family decision making. J. Bus. Res. 2005, 58, 569–575. [Google Scholar] [CrossRef]
- Chen, X.; Silverstein, M. Intergenerational Social Support and the Psychological Well-Being of Older Parents in China. Res. Aging 2000, 22, 43–65. [Google Scholar] [CrossRef]
- Ngan, R.; Wong, W. The Caring Paradox: Family Care for Chinese Elderly. Asia Pac. J. Soc. Work. Dev. 1993, 3, 50–66. [Google Scholar] [CrossRef]
- Cole, C.A.; Balasubramanian, S.K. Age Differences in Consumers’ Search for Information: Public Policy Implications. J. Consum. Res. 1993, 20, 157. [Google Scholar] [CrossRef]
- Eastman, J.K.; Iyer, R. The impact of cognitive age on Internet use of the elderly: An introduction to the public policy implications. Int. J. Consum. Stud. 2005, 29, 125–136. [Google Scholar] [CrossRef]
- Chun, H. Information Technology and the Demand for Educated Workers: Disentangling the Impacts of Adoption versus Use. Rev. Econ. Stat. 2003, 85, 1–8. [Google Scholar] [CrossRef]
- Furnham, A.; Boo, H.C. A literature review of the anchoring effect. J. Socio-Econ. 2011, 40, 35–42. [Google Scholar] [CrossRef]
- Brue, S.L. Retrospectives: The Law of Diminishing Returns. J. Econ. Perspect. 1993, 7, 185–192. [Google Scholar] [CrossRef]
- Bonneau, C.; Cann, D.M. Campaign Spending, Diminishing Marginal Returns, and Campaign Finance Restrictions in Judicial Elections. J. Politics 2011, 73, 1267–1280. [Google Scholar] [CrossRef] [Green Version]
- Faff, R.; Ho, Y.-K.; Lin, W.; Yap, C.-M. Diminishing marginal returns from R&D investment: Evidence from manufacturing firms. Appl. Econ. 2013, 45, 611–622. [Google Scholar] [CrossRef]
- Vazquez-Cognet, J.J. The Production of Mathematical Problems: A Diminishing Marginal Returns Experiment. Int. Rev. Econ. Educ. 2008, 7, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Harris, D.N. Diminishing Marginal Returns and the Production of Education: An International Analysis. Educ. Econ. 2007, 15, 31–53. [Google Scholar] [CrossRef]
- Lane, R.E. Diminishing Returns to Income, Companionship—And Happiness. J. Happiness Stud. 2000, 1, 103–119. [Google Scholar] [CrossRef]
- Matthews, R.; Nee, V. Gender Inequality and Economic Growth in Rural China. Soc. Sci. Res. 2000, 29, 606–632. [Google Scholar] [CrossRef]
- Wang, W. Son preference and educational opportunities of children in China—“I wish you were a boy!”. Gend. Issues 2005, 22, 3–30. [Google Scholar] [CrossRef]
- Yang, B.; Liu, C.; Gou, Z.; Man, J.; Su, Y. How Will Policies of China’s CO2 ETS Affect its Carbon Price: Evidence from Chinese Pilot Regions. Sustainability 2018, 10, 605. [Google Scholar] [CrossRef] [Green Version]
- Xiaotian, F. Resettlement Forms, Interpersonal Communication, and Migrants’ Adaptation: A Comparative Study on the 343 Rural Migrant Households from the Three Gorges that Resettled in the Provinces of Jiangsu and Zhejiang. Society 2008, 28, 152–161. [Google Scholar]
Variable | Mean | Std.Dev. | Min | Max |
---|---|---|---|---|
Subjective well-being (SWB) | 3.516 | 0.995 | 1 | 5 |
PIG | 0.420 | 0.275 | 0 | 1.099 |
PIG-Placebo | 0.428 | 0.278 | 0 | 1.036 |
PIG-elderly | 0.404 | 0.311 | 0 | 1.386 |
PIG-working age | 0.403 | 0.267 | 0 | 1.099 |
PIG-high educated | 0.426 | 0.305 | 0 | 1.447 |
PIG-low educated | 0.399 | 0.283 | 0 | 1.386 |
Age | 51.24 | 12.51 | 21 | 87 |
Gender | 0.617 | 0.486 | 0 | 1 |
Marital status | 2.071 | 0.392 | 1 | 3 |
Health | 2.243 | 0.831 | 1 | 3 |
Education | 6.184 | 3.893 | 1 | 16 |
Proportion of working-age members | 0.751 | 0.222 | 0 | 1 |
Income | 8.782 | 1.249 | 1.204 | 11.71 |
Type of relocation | 0.729 | 0.445 | 0 | 1 |
Reason for relocation | 3.247 | 1.466 | 1 | 5 |
Loss | 0.316 | 0.465 | 0 | 1 |
Social network | 4.983 | 0.962 | 1.253 | 8.517 |
Area | 0.835 | 0.372 | 0 | 1 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
SWB | SWB | Loss | Social Network | SWB | |
Loss (reference to no) | −0.399 *** | ||||
(0.113) | |||||
PIG | 1.825 ** | −2.328 ** | 1.589 ** | 1.568 ** | |
(0.733) | (1.007) | (0.677) | (0.731) | ||
PIG squared | −1.410 ** | 1.872 ** | −1.593 *** | −1.209 * | |
(0.701) | (0.916) | (0.602) | (0.706) | ||
PIG-Placebo | 1.532 * | ||||
(0.786) | |||||
PIG-Placebo squared | −1.040 | ||||
(0.736) | |||||
Age | −0.0479 * | −0.0463 * | −0.00426 | −0.00148 | −0.0589 ** |
(0.0283) | (0.0277) | (0.00611) | (0.00419) | (0.0288) | |
Age squared | 0.000592 ** | 0.000579 ** | 0.000697 ** | ||
(0.000278) | (0.000273) | (0.000283) | |||
Proportion of working-age members | 0.754 *** | 0.675 *** | 0.122 | 0.243 | 0.812 *** |
(0.263) | (0.252) | (0.295) | (0.198) | (0.265) | |
Income | 0.0535 | 0.0442 | −0.0560 | 0.0319 | 0.0461 |
(0.0413) | (0.0387) | (0.0519) | (0.0394) | (0.0422) | |
Education | 0.0182 | 0.0220 | −0.00155 | 0.0372 ** | 0.0180 |
(0.0178) | (0.0173) | (0.0207) | (0.0148) | (0.0179) | |
Health | 0.256 *** | 0.263 *** | −0.267 *** | 0.107 * | 0.224 *** |
(0.0688) | (0.0676) | (0.0823) | (0.0602) | (0.0700) | |
Marital status (reference to unmarried) | |||||
Married | −0.141 | −0.182 | 0.0802 | 0.152 | −0.115 |
(0.281) | (0.285) | (0.295) | (0.224) | (0.277) | |
Divorced or widowed | −0.311 | −0.359 | 0.159 | −0.0889 | −0.286 |
(0.310) | (0.314) | (0.353) | (0.265) | (0.306) | |
Gender (reference to female) | −0.00183 | −0.0270 | 0.164 | −0.0697 | 0.0195 |
(0.111) | (0.109) | (0.145) | (0.106) | (0.112) | |
Type of relocation (reference to decentralized resettlement) | −0.00190 | 0.00784 | 0.0592 | 0.0130 | 0.00456 |
(0.120) | (0.116) | (0.159) | (0.113) | (0.120) | |
Reason for relocation (reference to poverty alleviation) | |||||
Ecological restoration | 0.216 | 0.113 | 0.180 | 0.162 | 0.229 |
(0.197) | (0.188) | (0.260) | (0.186) | (0.199) | |
Project-induced | −0.460 ** | −0.521 ** | 0.673 ** | −0.342 * | −0.389 * |
(0.226) | (0.223) | (0.285) | (0.180) | (0.225) | |
Disaster-related | −0.118 | −0.162 | 0.485 *** | −0.0804 | −0.0639 |
(0.130) | (0.126) | (0.173) | (0.112) | (0.130) | |
Other | −0.134 | −0.167 | 0.801 *** | −0.101 | −0.0360 |
(0.147) | (0.143) | (0.217) | (0.142) | (0.151) | |
Area (reference to Yan’an) | 0.0583 | −0.0271 | −0.656 *** | −0.116 | −0.0328 |
(0.190) | (0.155) | (0.195) | (0.139) | (0.191) | |
cut1 | −0.701 | −0.937 | −1.258 | ||
(0.840) | (0.813) | (0.869) | |||
cut2 | 0.0118 | −0.236 | −0.540 | ||
(0.836) | (0.808) | (0.862) | |||
cut3 | 0.946 | 0.695 | 0.412 | ||
(0.839) | (0.812) | (0.862) | |||
cut4 | 2.275 *** | 2.020 ** | 1.762 ** | ||
(0.844) | (0.816) | (0.864) | |||
Constant | 1.099 | 3.946 *** | |||
(0.808) | (0.520) | ||||
Observations | 477 | 503 | 477 | 471 | 477 |
Variables | (6) | (7) | (8) | (9) |
---|---|---|---|---|
SWB | SWB | SWB | SWB | |
PIG-elderly | −0.268 | |||
(0.499) | ||||
PIG-elderly squared | 0.270 | |||
(0.464) | ||||
PIG-working age | 1.627 ** | |||
(0.746) | ||||
PIG-working age squared | −1.222 * | |||
(0.727) | ||||
PIG-low educated | 1.398 ** | |||
(0.589) | ||||
PIG-low educated squared | −1.078 ** | |||
(0.528) | ||||
PIG-high educated | 0.867 | |||
(0.550) | ||||
PIG-high educated squared | −0.564 | |||
(0.457) | ||||
Age | −0.0470 * | −0.0506 * | −0.0525 * | −0.0511 * |
(0.0285) | (0.0278) | (0.0283) | (0.0292) | |
Age squared | 0.000558 ** | 0.000587 ** | 0.000618 ** | 0.000596 ** |
(0.000281) | (0.000276) | (0.000280) | (0.000291) | |
Proportion of working-age members | 0.766 *** | 0.723 *** | 0.801 *** | 0.693 *** |
(0.263) | (0.257) | (0.261) | (0.260) | |
Income | 0.0750 * | 0.0681 * | 0.0814 * | 0.0664 |
(0.0445) | (0.0413) | (0.0416) | (0.0420) | |
Education | 0.00941 | 0.00601 | 0.00768 | 0.00562 |
(0.0146) | (0.0135) | (0.0136) | (0.0139) | |
Health | 0.270 *** | 0.265 *** | 0.271 *** | 0.272 *** |
(0.0679) | (0.0662) | (0.0665) | (0.0679) | |
Marital status (reference to unmarried) | ||||
Married | −0.118 | −0.143 | −0.126 | −0.144 |
(0.277) | (0.276) | (0.279) | (0.278) | |
Divorced or widowed | −0.252 | −0.324 | −0.280 | −0.298 |
(0.307) | (0.305) | (0.308) | (0.309) | |
Gender(reference to female) | 0.0272 | 0.0112 | 0.000752 | 0.0116 |
(0.111) | (0.108) | (0.107) | (0.109) | |
Type of relocation (reference to decentralized resettlement) | 0.0155 | 0.0207 | −0.00396 | 0.00728 |
(0.135) | (0.118) | (0.124) | (0.122) | |
Reason for relocation (reference to poverty alleviation) | ||||
Ecological restoration | 0.0496 | 0.129 | 0.134 | 0.131 |
(0.191) | (0.187) | (0.190) | (0.193) | |
Project-induced | −0.310 | −0.418 * | −0.348 | −0.387 * |
(0.257) | (0.222) | (0.228) | (0.223) | |
Disaster-related | −0.105 | −0.0794 | −0.0686 | −0.0613 |
(0.127) | (0.127) | (0.129) | (0.127) | |
Other | −0.122 | −0.102 | −0.0758 | −0.0634 |
(0.162) | (0.149) | (0.151) | (0.149) | |
Area (reference to Yan’an) | −0.101 | 0.00785 | −0.0590 | 0.0190 |
(0.212) | (0.188) | (0.199) | (0.189) | |
cut1 | −1.076 | −0.861 | −0.788 | −1.006 |
(0.845) | (0.809) | (0.840) | (0.821) | |
cut2 | −0.339 | −0.130 | −0.0580 | −0.278 |
(0.842) | (0.806) | (0.837) | (0.819) | |
cut3 | 0.533 | 0.813 | 0.871 | 0.657 |
(0.843) | (0.809) | (0.840) | (0.821) | |
cut4 | 1.846 ** | 2.153 *** | 2.210 *** | 1.994 ** |
(0.845) | (0.813) | (0.845) | (0.824) | |
Observations | 465 | 502 | 496 | 494 |
Variables | (10) | (11) | (12) | (13) | (14) | (15) |
---|---|---|---|---|---|---|
SWB | SWB | SWB | SWB | SWB | SWB | |
PIG | 1.950 ** | 1.550 | 1.369 * | 4.936 ** | −1.855 | 1.973 *** |
(0.882) | (1.269) | (0.768) | (2.260) | (2.578) | (0.757) | |
PIG squared | −1.535 * | −1.187 | −0.891 | −4.601 ** | 2.839 | −1.548 ** |
(0.843) | (1.173) | (0.721) | (2.155) | (2.419) | (0.719) | |
Age | −0.0466 | −0.0552 | −0.0543 | 0.384 | −0.0747 | −0.0552 * |
(0.0373) | (0.0437) | (0.0458) | (0.570) | (0.107) | (0.0291) | |
Age squared | 0.000544 | 0.000740 | 0.000647 | −0.00244 | 0.000542 | 0.000641 ** |
(0.000359) | (0.000453) | (0.000506) | (0.00379) | (0.00109) | (0.000284) | |
Proportion of working-age members | 0.765 ** | 0.541 | 0.485 | 1.414 ** | 0.819 | 0.806 *** |
(0.309) | (0.457) | (0.312) | (0.581) | (1.173) | (0.265) | |
Income | 0.0261 | 0.144 * | 0.0805 * | 0.0662 | −0.177 | 0.0596 |
(0.0471) | (0.0775) | (0.0434) | (0.129) | (0.163) | (0.0424) | |
Education | 0.00724 | 0.0168 | 0.00377 | 0.00919 | 0.218 * | 0.00264 |
(0.0169) | (0.0247) | (0.0141) | (0.0469) | (0.128) | (0.0196) | |
Health | 0.282 *** | 0.256 ** | 0.231 *** | 0.480 ** | 0.348 | 0.248 *** |
(0.0804) | (0.123) | (0.0722) | (0.190) | (0.299) | (0.0700) | |
Marital status (reference to unmarried) | ||||||
Married | −0.201 | 0.174 | −0.273 | 1.294 | 0.442 | −0.125 |
(0.328) | (0.440) | (0.291) | (1.219) | (1.186) | (0.287) | |
Divorced or widowed | −0.161 | −0.332 | −0.701 ** | 1.725 | −1.085 | −0.296 |
(0.356) | (0.494) | (0.330) | (1.197) | (1.142) | (0.316) | |
Gender (reference to female) | 0.0214 | 0.307 | −1.442 ** | 0.0342 | ||
(0.117) | (0.331) | (0.570) | (0.112) | |||
Type of relocation (reference to decentralized resettlement) | −0.0453 | 0.109 | 0.0174 | −0.357 | 0.323 | 0.0103 |
(0.160) | (0.180) | (0.127) | (0.516) | (0.557) | (0.124) | |
Reason for relocation (reference to poverty alleviation) | ||||||
Ecological restoration | 0.246 | −0.0767 | 0.125 | 0.0699 | −1.162 | 0.234 |
(0.286) | (0.257) | (0.208) | (0.397) | (0.835) | (0.201) | |
Project-induced | −0.309 | −0.794 ** | −0.432 * | −0.356 | −1.306 | −0.443 * |
(0.260) | (0.400) | (0.237) | (0.636) | (0.983) | (0.230) | |
Disaster-related | −0.139 | −0.00644 | −0.0315 | −0.0710 | 0.336 | −0.0963 |
(0.161) | (0.216) | (0.140) | (0.315) | (0.694) | (0.133) | |
Other | −0.316 | 0.213 | −0.0911 | 0.0840 | 0.906 | −0.166 |
(0.198) | (0.237) | (0.163) | (0.491) | (0.752) | (0.150) | |
Area (reference to Yan’an) | 0.0775 | −0.463 | 0.0722 | −0.449 | −0.375 | 0.0596 |
(0.203) | (0.563) | (0.217) | (0.397) | (0.710) | (0.202) | |
cut1 | −1.120 | −0.278 | −1.248 | 17.34 | −2.811 | −0.875 |
(1.005) | (1.409) | (1.035) | (20.76) | (2.632) | (0.873) | |
cut2 | −0.362 | 0.457 | −0.479 | 18.06 | −1.722 | −0.149 |
(1.010) | (1.387) | (1.027) | (20.75) | (2.571) | (0.868) | |
cut3 | 0.606 | 1.398 | 0.547 | 18.66 | −0.374 | 0.786 |
(1.013) | (1.387) | (1.027) | (20.74) | (2.621) | (0.871) | |
cut4 | 1.897 * | 2.878 ** | 1.929 * | 19.96 | 1.016 | 2.149 ** |
(1.019) | (1.387) | (1.029) | (20.75) | (2.651) | (0.876) | |
Observations | 313 | 189 | 429 | 73 | 45 | 457 |
Variables | (16) | (17) | (18) | (19) |
---|---|---|---|---|
SWB | SWB | SWB | SWB | |
PIG | 4.544 *** | 0.851 | 1.761 * | 3.300 ** |
(1.243) | (0.953) | (0.940) | (1.370) | |
PIG squared | −3.902 *** | −0.588 | −1.335 | −2.644 ** |
(1.233) | (0.889) | (0.869) | (1.342) | |
Age | −0.0167 | −0.0575 * | −0.0553 * | −0.0600 |
(0.0618) | (0.0331) | (0.0324) | (0.0693) | |
Age squared | 0.000320 | 0.000665 ** | 0.000617 ** | 0.000876 |
(0.000608) | (0.000320) | (0.000309) | (0.000743) | |
Proportion of working-age members | −0.0859 | 1.045 *** | 0.925 *** | 0.427 |
(0.497) | (0.326) | (0.294) | (0.607) | |
Income | −0.0163 | 0.112 * | 0.0506 | 0.0394 |
(0.0637) | (0.0604) | (0.0484) | (0.0787) | |
Education | 0.000197 | 0.00971 | 0.00559 | 0.0516 |
(0.0336) | (0.0232) | (0.0214) | (0.0362) | |
Health | 0.368 *** | 0.182 ** | 0.210 *** | 0.456 *** |
(0.142) | (0.0855) | (0.0794) | (0.145) | |
Marital status (reference to unmarried) | ||||
Married | −0.656 | 0.00552 | −0.0998 | −0.131 |
(0.702) | (0.347) | (0.358) | (0.416) | |
Divorced or widowed | −0.848 | −0.262 | −0.321 | −0.253 |
(0.745) | (0.389) | (0.398) | (0.477) | |
Gender (reference to female) | −0.0803 | 0.000209 | 0.0222 | −0.179 |
(0.230) | (0.142) | (0.132) | (0.223) | |
Type of relocation (reference to decentralized resettlement) | −0.00831 | -0.0888 | ||
(0.228) | (0.164) | |||
Reason for relocation (reference to poverty alleviation) | ||||
Ecological restoration | 0.244 | 0.324 | 0.316 | −0.575 * |
(0.370) | (0.236) | (0.220) | (0.311) | |
Project-induced | −0.515 * | −0.667 * | −0.308 | −0.945 ** |
(0.304) | (0.398) | (0.273) | (0.435) | |
Disaster-related | 0.0487 | −0.168 | −0.0439 | −0.417 |
(0.277) | (0.158) | (0.149) | (0.294) | |
Other | −0.161 | −0.116 | −0.225 | −0.264 |
(0.288) | (0.176) | (0.184) | (0.266) | |
Area(reference to Yan’an) | −0.01000 | −0.00538 | 0.0366 | 0.201 |
(0.376) | (0.224) | (0.236) | (0.348) | |
cut1 | −1.314 | -0.574 | −1.023 | −0.179 |
(1.573) | (1.082) | (1.015) | (1.688) | |
cut2 | −0.306 | 0.0745 | −0.320 | 0.590 |
(1.527) | (1.082) | (1.015) | (1.656) | |
cut3 | 0.577 | 1.010 | 0.641 | 1.495 |
(1.521) | (1.088) | (1.021) | (1.648) | |
cut4 | 1.913 | 2.430 ** | 1.979 * | 2.860 * |
(1.515) | (1.099) | (1.027) | (1.638) | |
Observations | 137 | 301 | 353 | 124 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, M. The Policy Information Gap and Resettlers’ Well-Being: Evidence from the Anti-Poverty Relocation and Resettlement Program in China. Int. J. Environ. Res. Public Health 2020, 17, 2957. https://doi.org/10.3390/ijerph17082957
Li C, Li M. The Policy Information Gap and Resettlers’ Well-Being: Evidence from the Anti-Poverty Relocation and Resettlement Program in China. International Journal of Environmental Research and Public Health. 2020; 17(8):2957. https://doi.org/10.3390/ijerph17082957
Chicago/Turabian StyleLi, Cong, and Minglai Li. 2020. "The Policy Information Gap and Resettlers’ Well-Being: Evidence from the Anti-Poverty Relocation and Resettlement Program in China" International Journal of Environmental Research and Public Health 17, no. 8: 2957. https://doi.org/10.3390/ijerph17082957