Cardiovascular Comorbidities and Pharmacological Treatments of COVID-19 Patients Not Requiring Hospitalization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collected
2.3. Objectives
2.4. Statistical Analysis
3. Results
4. Discussions
Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hui, D.; I Azhar, E.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; McHugh, T.D.; Memish, Z.A.; Drosten, C.; et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis. 2020, 91, 264–266. [Google Scholar] [CrossRef] [Green Version]
- Russo, V.; Bottino, R.; Carbone, A.; Rago, A.; Papa, A.A.; Golino, P.; Nigro, G. COVID-19 and heart: From clinical features to pharmacological implications. J. Clin. Med. 2020, 9, 1944. [Google Scholar] [CrossRef]
- World Health Organization Coronavirus Disease (COVID-19). Situation Report 146. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200614-covid-19-sitrep-146.pdf?sfvrsn=5b89bdad_4 (accessed on 14 June 2020).
- Italy: Government of Italy Decree of the President of the Council of Ministers. Available online: https://www.gazzettaufficiale.it/eli/id/2020/03/09/20A01558/sg (accessed on 3 September 2020). (In Italian).
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, J.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Onder, G.; Rezza, G.; Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Iaccarino, G.; Borghi, C.; Cicero, A.F.G.; Ferri, C.; Minuz, P.; Muiesan, M.L.; Mulatero, P.; Mulè, G.; Pucci, G.; Salvetti, M.; et al. Renin-angiotensin system inhibition in cardiovascular patients at the time of COVID19: Much ado for nothing? A statement of activity from the Directors of the Board and the Scientific Directors of the Italian Society of Hypertension. High Blood Press. Cardiovasc. Prev. 2020, 27, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Angiotensin Receptor Blockers and Angiotensin-converting Enzyme Inhibitors and Adverse Outcomes in Patients with COVID19 (BRACE-CORONA). Available online: https://clinicaltrials.gov/ct2/show/NCT04364893 (accessed on 3 September 2020).
- Giampaoli, S.; Vescio, M.F.; Gaggioli, A.; Vanuzzo, D. Prevalence of Arterial Hypertension in the Italian Population. Available online: https://www.epicentro.iss.it/ben/2002/settembre02/2_en (accessed on 3 September 2020).
- Tocci, G.; Ferrucci, A.; Pontremoli, R.; Ferri, C.; Rosei, E.A.; Morganti, A.; Trimarco, B.; Mancia, G.; Borghi, C.; Volpe, M. Blood pressure levels and control in Italy: Comprehensive analysis of clinical data from 2000–2005 and 2005–2011 hypertension surveys. J. Hum. Hypertens. 2015, 29, 696–701. [Google Scholar] [CrossRef]
- Russo, V.; Rago, A.; Carbone, A.; Bottino, R.; Ammendola, E.; della Cioppa, N.; Galante, D.; Golino, P.; Nigro, G. Atrial fibrillation in COVID-19: From epidemiological association to pharmacological implications. J. Cardiovasc. Pharmacol. 2020, 76, 138–145. [Google Scholar] [CrossRef]
- Russo, V.; di Maio, M.; Mottola, F.F.; Pagnano, G.; Attena, E.; Verde, N.; di Micco, P.; Silverio, A.; Scudiero, F.; Nunziata, L.; et al. Clinical characteristics and prognosis of hospitalized COVID-19 patients with incident sustained tachyarrhythmias: A multicenter observational study. Eur. J. Clin. Investig. 2020, 50. [Google Scholar] [CrossRef]
- Available online: https://www.acep.org/corona/covid-19-field-guide/triage/risk-stratification-and-triage-in-urgent-care/ (accessed on 3 September 2020).
- Turner, A.J.; Hiscox, J.A.; Hooper, N.M. ACE2: From vasopeptidase to SARS virus receptor. Trends Pharmacol. Sci. 2004, 25, 291–294. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Mickley, H.; Crea, F.; van de Werf, F.; et al. Fourth universal definition of myocardial infarction (2018). Eur. Heart J. 2019, 40, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Bergquist, S.H.; Partin, C.; Roberts, D.L.; O’Keefe, J.B.; Tong, E.J.; Zreloff, J.; Jarrett, T.L.; Moore, M.A. Non-hospitalized adults with COVID-19 differ noticeably from hospitalized adults in their demographic, clinical, and social characteristics. SN Compr. Clin. Med. 2020, 14, 1–9. [Google Scholar] [CrossRef]
- Russo, V.; di Maio, M.; Attena, E.; Silverio, A.; Scudiero, F.; Celentani, D.; Lodigiani, C.; di Micco, P. Clinical impact of pre-admission antithrombotic therapy in hospitalized patients with COVID-19: A multicenter observational study. Pharmacol. Res. 2020, 159, 104965. [Google Scholar] [CrossRef] [PubMed]
- Bleyzac, N.; Goutelle, S.; Bourguignon, L.; Tod, M. Azithromycin for COVID-19: More than just an antimicrobial? Clin. Drug Investig. 2020, 40, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.V.; Roman, Y.M.; Pasupuleti, V.; Barboza, M.J.J.; White, C.M. Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: A living systematic review. Ann. Intern. Med. 2020. [Google Scholar] [CrossRef]
- Russo, V.; Carbone, A.; Mottola, F.F.; Mocerino, R.; Verde, R.; Attena, E.; Verde, N.; Di Micco, P.; Nunziata, L.; Santelli, F.; et al. Effect of triple combination therapy with lopinavir-ritonavir, azithromycin and hydroxychloroquine on QT interval and arrhythmic risk in hospitalized COVID-19 patients. Front. Pharmacol. 2020, 11, 582348. [Google Scholar] [CrossRef]
- Porfidia, A.; Valeriani, E.; Pola, R.; Porreca, E.; Rutjes, A.W.; di Nisio, M. Venous thromboembolism in patients with COVID-19: Systematic review and meta-analysis. Thromb Res. 2020, 196, 67–74. [Google Scholar] [CrossRef]
- Kahn, S.R.; Lim, W.; Dunn, A.S.; Cushman, M.; Dentali, F.; Akl, E.A.; Cook, D.J.; Balekian, A.A.; Klein, R.C.; Le, H.; et al. Prevention of VTE in nonsurgical patients: Antithrombotic therapy and prevention of thrombosis, 9th ed.: American College of chest Physicians Evidence—Based clinical practice guidelines. Chest 2012, 141, 195–226. [Google Scholar] [CrossRef] [Green Version]
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef]
- Russo, V.; Cardillo, G.; Viggiano, G.V.; Mangiacapra, S.; Cavalli, A.; Fontanella, A.; Agrusta, F.; Bellizzi, A.; Amitrano, M.; Iannuzzo, M.; et al. Fondaparinux use in patients with COVID-19: A preliminary multicenter real-world experience. J. Cardiovasc. Pharmacol. 2020, 76, 369–371. [Google Scholar] [CrossRef]
- Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can. J. Cardiol. 2018, 34, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Micco, P.; Russo, V.; Carannante, N.; Imparato, M.; Rodolfi, S.; Cardillo, G.; Lodigiani, C. Clotting factors in COVID-19: Epidemiological association and prognostic values in different clinical presentations in an Italian cohort. J. Clin. Med. 2020, 9, 1371. [Google Scholar] [CrossRef] [PubMed]
Variable | Overall | Male | Female | p-Value |
---|---|---|---|---|
n: 351 | n: 193 | n: 158 | ||
Age (mean ± SD) | 53.52 ± 17.17 | 53.52 ± 17.17 | 53.46 ± 17.23 | 0.999 |
Smokers, n (%) | 19 (5.41%) | 15 (7.77%) | 4 (2.53%) | 0.0311 |
AF, n (%) | 11 (3.13%) | 7 (3.62%) | 4 (2.53%) | 0.5601 |
Dyslipidemia, n (%) | 44 (12.53%) | 28 (14.50%) | 16 (10.12%) | 0.2181 |
Hypertension, n (%) | 123 (35.04%) | 69 (35.75%) | 54 (34.17%) | 0.7579 |
Diabetes Mellitus, n (%) | 32 (9.11%) | 19 (9.84%) | 13 (8.22%) | 0.6003 |
CAD, n (%) | 14 (3.98%) | 11 (5.69%) | 3 (1.89%) | 0.0704 |
CKD, n (%) | 12 (3.41%) | 6 (3.10%) | 6 (3.79%) | 0.7235 |
COPD, n (%) | 84 (23.93%) | 41 (21.24%) | 43 (27.21%) | 0.1928 |
ACEIs/ARBs, n (%) | 94 (26.78%) | 55 (28.49%) | 39 (24.68%) | 0.4232 |
Ca-antagonists, n (%) | 38 (10.82%) | 22 (11.39%) | 16 (10.12%) | 0.7035 |
Beta-blockers, n (%) | 59 (16.80%) | 33 (17.09%) | 26 (16.45%) | 0.8734 |
Amiodarone, n (%) | 1 (0.28%) | 0 | 1 (0.63%) | 0.2702 |
Antiplatelet drugs, n (%) | 47 (13.39%) | 30 (15.54%) | 17 (10.75%) | 0.1904 |
Statins, n (%) | 58 (16.52%) | 39 (20.20%) | 19 (12.02%) | 0.0403 |
Anticoagulants, n (%) | 12 (3.41%) | 6 (3.10%) | 6 (3.79%) | 0.7235 |
Insulin, n (%) | 12 (3.41%) | 6 (3.10%) | 6 (3.79%) | 0.7235 |
Oral hypoglycemic agents, n (%) | 22 (6.26%) | 15 (7.77%) | 7 (4.43%) | 0.1996 |
Ivabradine, n (%) | 4 (1.13%) | 2 (1.03%) | 2 (1.26%) | 0.8397 |
Treated Group | Non-Treated Group | p-Value | |
---|---|---|---|
n: 201 | n: 150 | ||
Age (mean ± SD) | 53.38 ± 17.19 | 53.24 ± 17.22 | 0.999 |
Male, n (%) | 115 (57.21%) | 78 (52%) | 0.33 |
Smokers, n (%) | 12 (5.97%) | 7 (4.66%) | 0.59 |
AF, n (%) | 10 (4.97%) | 1 (0.66%) | 0.02 |
Dyslipidemia, n (%) | 33 (16.41%) | 11 (7.33%) | 0.01 |
Hypertension, n (%) | 84 (41.79%) | 39 (26%) | 0.002 |
Diabetes Mellitus, n (%) | 27 (13.43%) | 5 (3.33%) | 0.001 |
CAD, n (%) | 12 (5.97%) | 2 (1.33%) | 0.02 |
CKD, n (%) | 10 (4.97%) | 2 (1.33%) | 0.06 |
COPD, n (%) | 51 (25.37%) | 33 (22%) | 0.46 |
ACEIs/ARBs, n (%) | 70 (34.82%) | 24 (16%) | 0.0001 |
Ca-antagonists, n (%) | 28 (13.93%) | 10 (6.66%) | 0.03 |
Beta-blockers, n (%) | 41 (20.39%) | 18 (12%) | 0.03 |
Amiodarone, n (%) | 1 (0.49%) | 0 | 0.39 |
Antiplatelet drugs, n (%) | 38 (18.90%) | 9 (6%) | 0.0005 |
Statins, n (%) | 45 (22.38%) | 13 (8.66%) | 0.0006 |
Oral anticoagulants, n (%) | 12 (5.97%) | 0 | 0.002 |
Insulin, n (%) | 10 (4.97%) | 2 (1.33%) | 0.06 |
Oral hypoglycemic agents, n (%) | 20 (9.95%) | 2 (1.33%) | 0.001 |
Ivabradine, n (%) | 4 (1.99%) | 0 | 0.08 |
Overall | Male | Female | p-Value | |
---|---|---|---|---|
n: 201 | n: 115 | n: 86 | ||
Azithromycin alone, (%) | 86 (42.78%) | 47 (40.86%) | 39 (45.34%) | 0.52 |
Hydroxychloroquine alone, n (%) | 4 (1.99%) | 3 (2.60%) | 1 (1.16%) | 0.47 |
Cortisone alone, n (%) | 5 (2.48%) | 2 (1.74%) | 3 (3.48%) | 0.43 |
Azithromycin + Hydroxychloroquine, n (%) | 22 (10.94%) | 13 (11.30%) | 9 (10.46%) | 0.85 |
Azithromycin + Cortisone, n (%) | 21 (10.44%) | 14 (12.17%) | 7 (8.14%) | 0.35 |
Azithromycin + Hydroxychloroquine + Cortisone, n (%) | 13 (6.46%) | 7 (6.08%) | 6 (6.97%) | 0.80 |
Low Molecular Weight Heparin, n (%) | 50 (24.87%) | 29 (25.21%) | 21 (24.41%) | 0.89 |
LWMH Group | No LWMH Group | p-Value | |
---|---|---|---|
n: 50 | n: 301 | ||
Age (mean ± SD) | 53.48 ± 17.37 | 53.46 ± 17.15 | 0.999 |
Male, n (%) | 29 (58%) | 164 (54.5%) | 0.645 |
Smokers, n (%) | 4 (8%) | 15 (5%) | 0.386 |
AF, n (%) | 1 (2%) | 10 (3.32%) | 0.620 |
Dyslipidemia, n (%) | 5 (10%) | 39 (13%) | 0.554 |
Hypertension, n (%) | 24 (48%) | 99 (33%) | 0.039 |
Diabetes Mellitus, n (%) | 9 (18%) | 23 (7.64%) | 0.019 |
CAD, n (%) | 5 (10%) | 9 (3%) | 0.02 |
CKD, n (%) | 2 (4%) | 10 (3.32%) | 0.806 |
COPD, n (%) | 8 (16%) | 76 (25.2%) | 0.158 |
ACEIs/ARBs, n (%) | 21 (42%) | 73 (24.2%) | 0.008 |
Ca-antagonists, n (%) | 6 (12%) | 32 (10.63%) | 0.773 |
Beta-blockers, n (%) | 10 (20%) | 49 (16.27%) | 0.514 |
Amiodarone, n (%) | 0 | 1 (0.33%) | 0.684 |
Antiplatelet drugs, n (%) | 13 (26%) | 34 (11.29%) | 0.010 |
Statins, n (%) | 10 (20%) | 48 (15.94%) | 0.474 |
Oral anticoagulants, n (%) | 3 (6%) | 9 (2.99%) | 0.278 |
Insulin, n (%) | 3 (6%) | 9 (2.99%) | 0.278 |
Oral hypoglycemic agents, n (%) | 9 (18%) | 13 (4.31%) | 0.0002 |
Ivabradine, n (%) | 1 (2%) | 3 (0.99%) | 0.532 |
Azithromycin, n (%) | 44 (88%) | 141 (46.84%) | <0.0001 |
Hydroxychloroquine, n (%) | 29 (58%) | 38 (12.62%) | <0.0001 |
Cortisone, n (%) | 18 (36%) | 39 (12.95%) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, V.; Piccinocchi, G.; Mandaliti, V.; Annunziata, S.; Cimmino, G.; Attena, E.; Moio, N.; Di Micco, P.; Severino, S.; Trotta, R.; et al. Cardiovascular Comorbidities and Pharmacological Treatments of COVID-19 Patients Not Requiring Hospitalization. Int. J. Environ. Res. Public Health 2021, 18, 102. https://doi.org/10.3390/ijerph18010102
Russo V, Piccinocchi G, Mandaliti V, Annunziata S, Cimmino G, Attena E, Moio N, Di Micco P, Severino S, Trotta R, et al. Cardiovascular Comorbidities and Pharmacological Treatments of COVID-19 Patients Not Requiring Hospitalization. International Journal of Environmental Research and Public Health. 2021; 18(1):102. https://doi.org/10.3390/ijerph18010102
Chicago/Turabian StyleRusso, Vincenzo, Gaetano Piccinocchi, Vincenzo Mandaliti, Saverio Annunziata, Giovanni Cimmino, Emilio Attena, Nicola Moio, Pierpaolo Di Micco, Sergio Severino, Roberta Trotta, and et al. 2021. "Cardiovascular Comorbidities and Pharmacological Treatments of COVID-19 Patients Not Requiring Hospitalization" International Journal of Environmental Research and Public Health 18, no. 1: 102. https://doi.org/10.3390/ijerph18010102
APA StyleRusso, V., Piccinocchi, G., Mandaliti, V., Annunziata, S., Cimmino, G., Attena, E., Moio, N., Di Micco, P., Severino, S., Trotta, R., & Del Guercio, M. (2021). Cardiovascular Comorbidities and Pharmacological Treatments of COVID-19 Patients Not Requiring Hospitalization. International Journal of Environmental Research and Public Health, 18(1), 102. https://doi.org/10.3390/ijerph18010102