Gender Differences and Quality of Life in Parkinson’s Disease
Abstract
:1. Introduction
2. General Mechanisms Involved in Gender Differences in Parkinson’s Disease
2.1. Genetic Factors
2.2. Mitochondrial Function
2.3. Inflammatory Response
3. Clinical Features
4. Cognitive Status
5. Motor Functions
6. Mood Symptoms
7. REM Phase of Sleep
8. Response to Treatment
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Study protocol for the World Health Organization project to develop a Quality of Life assessment instrument (WHOQOL). Qual. Life Res. 1993, 2, 153–159. [CrossRef]
- Sosnowski, R.; Kulpa, M.; Ziętalewicz, U.; Wolski, J.K.; Nowakowski, R.; Bakuła, R.; Demkow, T. Basic issues concerning health-related quality of life. Cent. Eur. J. Urol. 2017, 70, 206–211. [Google Scholar] [CrossRef] [Green Version]
- Vitale, S.G.; Caruso, S.; Rapisarda, A.M.C.; Valenti, G.; Rossetti, D.; Cianci, S.; Cianci, A. Biocompatible porcine dermis graft to treat severe cystocele: Impact on quality of life and sexuality. Arch. Gynecol. Obstet. 2016, 293, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 2003, 157, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Dluzen, D.E.; McDermott, J.L. Gender differences in neurotoxicity of the nigrostriatal dopaminergic system: Implications for Parkinson’s disease. J. Gend. Specif. Med. 2000, 3, 36–42. [Google Scholar] [PubMed]
- Cerri, S.; Mus, L.; Blandini, F. Parkinson’s Disease in Women and Men: What’s the Difference? J. Parkinsons Dis 2019, 9, 501–515. [Google Scholar] [CrossRef] [Green Version]
- Balzer-Geldsetzer, M.; Klotsche, J.; Landscape Consortium; Dodel, R.; Riedel, O. Quality of life in a German cohort of Parkinson’s patients assessed with three different measures. J. Neurol. 2018, 265, 2713–2722. [Google Scholar] [CrossRef] [Green Version]
- Heinzel, S.; Kasten, M.; Behnke, S.; Vollstedt, E.-J.; Klein, C.; Hagenah, J.; Pausch, C.; Heilmann, R.; Brockmann, K.; Suenkel, U.; et al. Age- and sex-related heterogeneity in prodromal Parkinson’s disease. Mov. Disord. 2018, 33, 1025–1027. [Google Scholar] [CrossRef]
- Buczak-Stec, E.W.; König, H.-H.; Hajek, A. Impact of Incident Parkinson’s Disease on Satisfaction With Life. Front. Neurol. 2018, 9, 589. [Google Scholar] [CrossRef]
- Yoon, J.-E.; Kim, J.S.; Jang, W.; Park, J.; Oh, E.; Youn, J.; Park, S.; Cho, J.W. Gender Differences of Nonmotor Symptoms Affecting Quality of Life in Parkinson Disease. Neurodegener. Dis. 2017, 17, 276–280. [Google Scholar] [CrossRef]
- Jenkinson, C.; Fitzpatrick, R.; Peto, V.; Greenhall, R.; Hyman, N. The Parkinson’s Disease Questionnaire (PDQ-39): Development and validation of a Parkinson’s disease summary index score. Age Ageing 1997, 26, 353–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ophey, A.; Eggers, C.; Dano, R.; Timmermann, L.; Kalbe, E. Health-Related Quality of Life Subdomains in Patients with Parkinson’s Disease: The Role of Gender. Parkinsons Dis. 2018, 2018, 6532320. [Google Scholar] [CrossRef] [PubMed]
- Caruso, S.; Bandiera, S.; Cavallaro, A.; Cianci, S.; Vitale, S.G.; Rugolo, S. Quality of life and sexual changes after double transobturator tension-free approach to treat severe cystocele. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 151, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Caruso, S.; Iraci, M.; Cianci, S.; Vitale, S.G.; Fava, V.; Cianci, A. Effects of long-term treatment with Dienogest on the quality of life and sexual function of women affected by endometriosis-associated pelvic pain. J. Pain Res. 2019, 12, 2371–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, S.; Cianci, S.; Vitale, S.G.; Fava, V.; Cutello, S.; Cianci, A. Sexual function and quality of life of women adopting the levonorgestrel-releasing intrauterine system (LNG-IUS 13.5 mg) after abortion for unintended pregnancy. Eur. J. Contracept. Reprod. Health Care 2018, 23, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.G.; Laganà, A.S.; Noventa, M.; Giampaolino, P.; Zizolfi, B.; Butticè, S.; La Rosa, V.L.; Gullo, G.; Rossetti, D. Transvaginal Bilateral Sacrospinous Fixation after Second Recurrence of Vaginal Vault Prolapse: Efficacy and Impact on Quality of Life and Sexuality. Biomed. Res. Int. 2018, 2018, 5727165. [Google Scholar] [CrossRef] [PubMed]
- Gillies, G.E.; Pienaar, I.S.; Vohra, S.; Qamhawi, Z. Sex differences in Parkinson’s disease. Front. Neuroendocrinol. 2014, 35, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Cantuti-Castelvetri, I.; Keller-McGandy, C.; Bouzou, B.; Asteris, G.; Clark, T.W.; Frosch, M.P.; Standaert, D.G. Effects of gender on nigral gene expression and parkinson disease. Neurobiol. Dis. 2007, 26, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Simunovic, F.; Yi, M.; Wang, Y.; Stephens, R.; Sonntag, K.C. Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS ONE 2010, 5, e8856. [Google Scholar] [CrossRef]
- Ji, J.; Bourque, M.; Di Paolo, T.; Dluzen, D.E. Genetic alteration in the dopamine transporter differentially affects male and female nigrostriatal transporter systems. Biochem. Pharmacol. 2009, 78, 1401–1411. [Google Scholar] [CrossRef]
- Shih, J.C.; Chen, K.; Ridd, M.J. Monoamine oxidase: From genes to behavior. Annu. Rev. Neurosci. 1999, 22, 197–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelada, S.N.; Costa-Mallen, P.; Costa, L.G.; Smith-Weller, T.; Franklin, G.M.; Swanson, P.D.; Longstreth, W.T.; Checkoway, H. Gender difference in the interaction of smoking and monoamine oxidase B intron 13 genotype in Parkinson’s disease. Neurotoxicology 2002, 23, 515–519. [Google Scholar] [CrossRef]
- Goldwurm, S.; Tunesi, S.; Tesei, S.; Zini, M.; Sironi, F.; Primignani, P.; Magnani, C.; Pezzoli, G. Kin-cohort analysis of LRRK2-G2019S penetrance in Parkinson’s disease. Mov. Disord. 2011, 26, 2144–2145. [Google Scholar] [CrossRef] [PubMed]
- Cilia, R.; Siri, C.; Rusconi, D.; Allegra, R.; Ghiglietti, A.; Sacilotto, G.; Zini, M.; Zecchinelli, A.L.; Asselta, R.; Duga, S.; et al. LRRK2 mutations in Parkinson’s disease: Confirmation of a gender effect in the Italian population. Parkinsonism Relat. Disord. 2014, 20, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Sayad, M.; Zouambia, M.; Chaouch, M.; Ferrat, F.; Nebbal, M.; Bendini, M.; Lesage, S.; Brice, A.; Brahim Errahmani, M.; Asselah, B. Greater improvement in LRRK2 G2019S patients undergoing Subthalamic Nucleus Deep Brain Stimulation compared to non-mutation carriers. BMC Neurosci. 2016, 17, 6. [Google Scholar] [CrossRef] [Green Version]
- San Luciano, M.; Ozelius, L.; Lipton, R.B.; Raymond, D.; Bressman, S.B.; Saunders-Pullman, R. Gender differences in the IL6 -174G>C and ESR2 1730G>A polymorphisms and the risk of Parkinson’s disease. Neurosci. Lett. 2012, 506, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Håkansson, A.; Westberg, L.; Nilsson, S.; Buervenich, S.; Carmine, A.; Holmberg, B.; Sydow, O.; Olson, L.; Johnels, B.; Eriksson, E.; et al. Interaction of polymorphisms in the genes encoding interleukin-6 and estrogen receptor beta on the susceptibility to Parkinson’s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 133B, 88–92. [Google Scholar] [CrossRef]
- Moon, H.E.; Paek, S.H. Mitochondrial Dysfunction in Parkinson’s Disease. Exp. Neurobiol. 2015, 24, 103–116. [Google Scholar] [CrossRef]
- Weiduschat, N.; Kaufmann, P.; Mao, X.; Engelstad, K.M.; Hinton, V.; DiMauro, S.; De Vivo, D.; Shungu, D. Cerebral metabolic abnormalities in A3243G mitochondrial DNA mutation carriers. Neurology 2014, 82, 798–805. [Google Scholar] [CrossRef] [Green Version]
- Shephard, F.; Greville-Heygate, O.; Liddell, S.; Emes, R.; Chakrabarti, L. Analysis of Mitochondrial haemoglobin in Parkinson’s disease brain. Mitochondrion 2016, 29, 45–52. [Google Scholar] [CrossRef]
- Yang, W.; Li, X.; Li, X.; Li, X.; Yu, S. Neuronal hemoglobin in mitochondria is reduced by forming a complex with α-synuclein in aging monkey brains. Oncotarget 2016, 7, 7441–7454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silaidos, C.; Pilatus, U.; Grewal, R.; Matura, S.; Lienerth, B.; Pantel, J.; Eckert, G.P. Sex-associated differences in mitochondrial function in human peripheral blood mononuclear cells (PBMCs) and brain. Biol. Sex. Differ. 2018, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Chiabrando, D.; Fiorito, V.; Petrillo, S.; Tolosano, E. Unraveling the Role of Heme in Neurodegeneration. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Borsche, M.; Pereira, S.L.; Klein, C.; Grünewald, A. Mitochondria and Parkinson’s Disease: Clinical, Molecular, and Translational Aspects. J. Parkinsons Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Radad, K.; Rausch, W.-D.; Gille, G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 2006, 49, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019, 18, e13031. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Chakrabarti, N.; Dutta, S.S.; Ray, S.; Bhattacharya, P.; Sinha, P.; Bhattacharyya, A. Gender-specific brain regional variation of neurons, endogenous estrogen, neuroinflammation and glial cells during rotenone-induced mouse model of Parkinson’s disease. Neuroscience 2015, 292, 46–70. [Google Scholar] [CrossRef]
- Kalampokini, S.; Becker, A.; Fassbender, K.; Lyros, E.; Unger, M.M. Nonpharmacological Modulation of Chronic Inflammation in Parkinson’s Disease: Role of Diet Interventions. Available online: https://www.hindawi.com/journals/pd/2019/7535472/ (accessed on 3 November 2020).
- Travagli, R.A.; Browning, K.N.; Camilleri, M. Parkinson disease and the gut: New insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 673–685. [Google Scholar] [CrossRef]
- Klingelhoefer, L.; Reichmann, H. Pathogenesis of Parkinson disease--the gut-brain axis and environmental factors. Nat. Rev. Neurol. 2015, 11, 625–636. [Google Scholar] [CrossRef]
- Haaxma, C.A.; Bloem, B.R.; Borm, G.F.; Oyen, W.J.G.; Leenders, K.L.; Eshuis, S.; Booij, J.; Dluzen, D.E.; Horstink, M.W.I.M. Gender differences in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Lavalaye, J.; Booij, J.; Reneman, L.; Habraken, J.B.; van Royen, E.A. Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur. J. Nucl. Med. 2000, 27, 867–869. [Google Scholar] [CrossRef] [PubMed]
- Mozley, L.H.; Gur, R.C.; Mozley, P.D.; Gur, R.E. Striatal dopamine transporters and cognitive functioning in healthy men and women. Am. J. Psychiatry 2001, 158, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Munro, C.A.; McCaul, M.E.; Wong, D.F.; Oswald, L.M.; Zhou, Y.; Brasic, J.; Kuwabara, H.; Kumar, A.; Alexander, M.; Ye, W.; et al. Sex differences in striatal dopamine release in healthy adults. Biol. Psychiatry 2006, 59, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.; Borgman, A.; Engler, H.; Johnels, B.; Aquilonius, S.M. Gender differences in Parkinson’s disease symptom profile. Acta Neurol. Scand. 2000, 102, 37–43. [Google Scholar] [CrossRef]
- Hariz, G.-M.; Lindberg, M.; Hariz, M.I.; Bergenheim, A.T. Gender differences in disability and health-related quality of life in patients with Parkinson’s disease treated with stereotactic surgery. Acta Neurol. Scand. 2003, 108, 28–37. [Google Scholar] [CrossRef]
- Accolla, E.; Caputo, E.; Cogiamanian, F.; Tamma, F.; Mrakic-Sposta, S.; Marceglia, S.; Egidi, M.; Rampini, P.; Locatelli, M.; Priori, A. Gender differences in patients with Parkinson’s disease treated with subthalamic deep brain stimulation. Mov. Disord. 2007, 22, 1150–1156. [Google Scholar] [CrossRef]
- Baba, Y.; Putzke, J.D.; Whaley, N.R.; Wszolek, Z.K.; Uitti, R.J. Gender and the Parkinson’s disease phenotype. J. Neurol. 2005, 252, 1201–1205. [Google Scholar] [CrossRef]
- Zappia, M.; Crescibene, L.; Arabia, G.; Nicoletti, G.; Bagalà, A.; Bastone, L.; Caracciolo, M.; Bonavita, S.; Di Costanzo, A.; Scornaienchi, M.; et al. Body weight influences pharmacokinetics of levodopa in Parkinson’s disease. Clin. Neuropharmacol. 2002, 25, 79–82. [Google Scholar] [CrossRef]
- Yoritaka, A.; Ohizumi, H.; Tanaka, S.; Hattori, N. Parkinson’s disease with and without REM sleep behaviour disorder: Are there any clinical differences? Eur. Neurol. 2009, 61, 164–170. [Google Scholar] [CrossRef]
- Liu, J.; Liang, M.; Ma, G.; Liu, X.; Cheng, N.; Cao, D.; Yu, C.; Du, S.; Miao, Q.; Zhang, C. Surgical treatment for intravenous-cardiac leiomyomatosis. Eur. J. Cardiothorac. Surg. 2018, 54, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, H.H.; Lapane, K.L.; Ott, B.R.; Friedman, J.H. Gender differences in the frequency and treatment of behavior problems in Parkinson’s disease. SAGE Study Group. Systematic Assessment and Geriatric drug use via Epidemiology. Mov. Disord. 2000, 15, 490–496. [Google Scholar] [CrossRef]
- Soh, S.-E.; Morris, M.E.; McGinley, J.L. Determinants of health-related quality of life in Parkinson’s disease: A systematic review. Parkinsonism Relat. Disord. 2011, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.; Lekwuwa, G.; Crawford, T. Predictors of quality of life in people with Parkinson’s disease: Evidence for both domain specific and general relationships. Disabil. Rehabil. 2014, 36, 1964–1970. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, X.Y.; Wei, Q.Q.; Song, W.; Chen, K.; Cao, B.; Ou, R.W.; Zhao, B.; Shang, H.F. Determinants of the quality of life in Parkinson’s disease: Results of a cohort study from Southwest China. J. Neurol. Sci. 2014, 340, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Kadastik-Eerme, L.; Rosenthal, M.; Paju, T.; Muldmaa, M.; Taba, P. Health-related quality of life in Parkinson’s disease: A cross-sectional study focusing on non-motor symptoms. Health Qual. Life Outcomes 2015, 13, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hely, M.A.; Reid, W.G.J.; Adena, M.A.; Halliday, G.M.; Morris, J.G.L. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years. Mov. Disord. 2008, 23, 837–844. [Google Scholar] [CrossRef]
- Leroi, I.; McDonald, K.; Pantula, H.; Harbishettar, V. Cognitive impairment in Parkinson disease: Impact on quality of life, disability, and caregiver burden. J. Geriatr. Psychiatry Neurol. 2012, 25, 208–214. [Google Scholar] [CrossRef]
- Bronnick, K.; Ehrt, U.; Emre, M.; De Deyn, P.P.; Wesnes, K.; Tekin, S.; Aarsland, D. Attentional deficits affect activities of daily living in dementia-associated with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2006, 77, 1136–1142. [Google Scholar] [CrossRef] [Green Version]
- Hurt, C.S.; Landau, S.; Burn, D.J.; Hindle, J.V.; Samuel, M.; Wilson, K.; Brown, R.G. PROMS-PD Study Group Cognition, coping, and outcome in Parkinson’s disease. Int. Psychogeriatr. 2012, 24, 1656–1663. [Google Scholar] [CrossRef]
- Lawson, R.A.; Yarnall, A.J.; Duncan, G.W.; Breen, D.P.; Khoo, T.K.; Williams-Gray, C.H.; Barker, R.A.; Collerton, D.; Taylor, J.-P.; Burn, D.J. Cognitive decline and quality of life in incident Parkinson’s disease: The role of attention. Parkinsonism Relat. Disord. 2016, 27, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Cereda, E.; Cilia, R.; Klersy, C.; Siri, C.; Pozzi, B.; Reali, E.; Colombo, A.; Zecchinelli, A.L.; Mariani, C.B.; Tesei, S.; et al. Dementia in Parkinson’s disease: Is male gender a risk factor? Parkinsonism Relat. Disord. 2016, 26, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Chiara, P.; Roberta, Z.; Elena, S.; Brigida, M.; Ilaria, B.; Claudio, P. Cognitive function in Parkinson’s disease: The influence of gender. Basal Ganglia 2013, 3, 131–135. [Google Scholar] [CrossRef]
- Cropley, V.L.; Fujita, M.; Bara-Jimenez, W.; Brown, A.K.; Zhang, X.-Y.; Sangare, J.; Herscovitch, P.; Pike, V.W.; Hallett, M.; Nathan, P.J.; et al. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Psychiatry Res. 2008, 163, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Sawamoto, N.; Honda, M.; Hanakawa, T.; Aso, T.; Inoue, M.; Toyoda, H.; Ishizu, K.; Fukuyama, H.; Shibasaki, H. Cognitive slowing in Parkinson disease is accompanied by hypofunctioning of the striatum. Neurology 2007, 68, 1062–1068. [Google Scholar] [CrossRef]
- Sawamoto, N.; Piccini, P.; Hotton, G.; Pavese, N.; Thielemans, K.; Brooks, D.J. Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain 2008, 131, 1294–1302. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.C.; Ivry, R.B. Spatial and temporal sequence learning in patients with Parkinson’s disease or cerebellar lesions. J. Cogn. Neurosci. 2003, 15, 1232–1243. [Google Scholar] [CrossRef]
- Smith, J.G.; McDowall, J. The implicit sequence learning deficit in patients with Parkinson’s disease: A matter of impaired sequence integration? Neuropsychologia 2006, 44, 275–288. [Google Scholar] [CrossRef]
- Cotelli, M.; Borroni, B.; Manenti, R.; Zanetti, M.; Arévalo, A.; Cappa, S.F.; Padovani, A. Action and object naming in Parkinson’s disease without dementia. Eur. J. Neurol. 2007, 14, 632–637. [Google Scholar] [CrossRef]
- Crevits, L.; Vandierendonck, A.; Stuyven, E.; Verschaete, S.; Wildenbeest, J. Effect of intention and visual fixation disengagement on prosaccades in Parkinson’s disease patients. Neuropsychologia 2004, 42, 624–632. [Google Scholar] [CrossRef]
- Kawai, Y.; Suenaga, M.; Takeda, A.; Ito, M.; Watanabe, H.; Tanaka, F.; Kato, K.; Fukatsu, H.; Naganawa, S.; Kato, T.; et al. Cognitive impairments in multiple system atrophy: MSA-C vs MSA-P. Neurology 2008, 70, 1390–1396. [Google Scholar] [CrossRef]
- Rowe, J.B.; Hughes, L.; Ghosh, B.C.P.; Eckstein, D.; Williams-Gray, C.H.; Fallon, S.; Barker, R.A.; Owen, A.M. Parkinson’s disease and dopaminergic therapy--differential effects on movement, reward and cognition. Brain 2008, 131, 2094–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgson, T.L.; Tiesman, B.; Owen, A.M.; Kennard, C. Abnormal gaze strategies during problem solving in Parkinson’s disease. Neuropsychologia 2002, 40, 411–422. [Google Scholar] [CrossRef]
- Lewis, S.J.G.; Dove, A.; Robbins, T.W.; Barker, R.A.; Owen, A.M. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J. Neurosci. 2003, 23, 6351–6356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- York, M.K.; Dulay, M.; Macias, A.; Levin, H.S.; Grossman, R.; Simpson, R.; Jankovic, J. Cognitive declines following bilateral subthalamic nucleus deep brain stimulation for the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2008, 79, 789–795. [Google Scholar] [CrossRef]
- Davidsdottir, S.; Wagenaar, R.; Young, D.; Cronin-Golomb, A. Impact of optic flow perception and egocentric coordinates on veering in Parkinson’s disease. Brain 2008, 131, 2882–2893. [Google Scholar] [CrossRef] [Green Version]
- Schendan, H.E.; Amick, M.M.; Cronin-Golomb, A. Role of a lateralized parietal-basal ganglia circuit in hierarchical pattern perception: Evidence from Parkinson’s disease. Behav. Neurosci. 2009, 123, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Amick, M.M.; Schendan, H.E.; Ganis, G.; Cronin-Golomb, A. Frontostriatal circuits are necessary for visuomotor transformation: Mental rotation in Parkinson’s disease. Neuropsychologia 2006, 44, 339–349. [Google Scholar] [CrossRef]
- Cronin-Golomb, A. Parkinson’s disease as a disconnection syndrome. Neuropsychol. Rev. 2010, 20, 191–208. [Google Scholar] [CrossRef] [Green Version]
- Nagano-Saito, A.; Kato, T.; Arahata, Y.; Washimi, Y.; Nakamura, A.; Abe, Y.; Yamada, T.; Iwai, K.; Hatano, K.; Kawasumi, Y.; et al. Cognitive- and motor-related regions in Parkinson’s disease: FDOPA and FDG PET studies. Neuroimage 2004, 22, 553–561. [Google Scholar] [CrossRef]
- Riedel, O.; Klotsche, J.; Spottke, A.; Deuschl, G.; Förstl, H.; Henn, F.; Heuser, I.; Oertel, W.; Reichmann, H.; Riederer, P.; et al. Cognitive impairment in 873 patients with idiopathic Parkinson’s disease. Results from the German Study on Epidemiology of Parkinson’s Disease with Dementia (GEPAD). J. Neurol. 2008, 255, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Kalbe, E.; Calabrese, P.; Kohn, N.; Hilker, R.; Riedel, O.; Wittchen, H.-U.; Dodel, R.; Otto, J.; Ebersbach, G.; Kessler, J. Screening for cognitive deficits in Parkinson’s disease with the Parkinson neuropsychometric dementia assessment (PANDA) instrument. Parkinsonism Relat. Disord. 2008, 14, 93–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locascio, J.J.; Corkin, S.; Growdon, J.H. Relation between clinical characteristics of Parkinson’s disease and cognitive decline. J. Clin. Exp. Neuropsychol. 2003, 25, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Clark, U.S.; Neargarder, S.; Cronin-Golomb, A. Specific Impairments in the Recognition of Emotional Facial Expressions in Parkinson’s Disease. Neuropsychologia 2008, 46, 2300–2309. [Google Scholar] [CrossRef] [Green Version]
- Davidsdottir, S.; Cronin-Golomb, A.; Lee, A. Visual and spatial symptoms in Parkinson’s disease. Vis. Res. 2005, 45, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Maulik, U.; Uversky, V.N.; Sen, S. A Statistical Approach to Detect Intrinsically Disordered Proteins Associated with Uterine Leiomyoma. Protein Pept. Lett. 2018, 25, 483–491. [Google Scholar] [CrossRef]
- Shulman, L.M. Gender differences in Parkinson’s disease. Gend Med. 2007, 4, 8–18. [Google Scholar] [CrossRef]
- Cronin-Golomb, A.; Braun, A.E. Visuospatial dysfunction and problem solving in Parkinson’s disease. Neuropsychology 1997, 11, 44–52. [Google Scholar] [CrossRef]
- Laricchiuta, P.; Russo, V.; Costagliola, A.; Piegari, G.; Capasso, M.; Silvestre, P.; Martano, M.; Paciello, O. Histological and immunohistochemical characterisation of uterine adenocarcinoma in an Asian elephant (Elephas Maximus). Folia Morphol. (Warsz) 2018, 77, 771–774. [Google Scholar] [CrossRef] [Green Version]
- Solla, P.; Cannas, A.; Ibba, F.C.; Loi, F.; Corona, M.; Orofino, G.; Marrosu, M.G.; Marrosu, F. Gender differences in motor and non-motor symptoms among Sardinian patients with Parkinson’s disease. J. Neurol. Sci. 2012, 323, 33–39. [Google Scholar] [CrossRef]
- Picillo, M.; Palladino, R.; Moccia, M.; Erro, R.; Amboni, M.; Vitale, C.; Barone, P.; Pellecchia, M.T. Gender and non motor fluctuations in Parkinson’s disease: A prospective study. Parkinsonism Relat. Disord. 2016, 27, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Lubomski, M.; Louise Rushworth, R.; Lee, W.; Bertram, K.L.; Williams, D.R. Sex differences in Parkinson’s disease. J. Clin. Neurosci. 2014, 21, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk-Krolikowski, K.; Tomlinson, P.; Nithi, K.; Wade-Martins, R.; Talbot, K.; Ben-Shlomo, Y.; Hu, M.T.M. The influence of age and gender on motor and non-motor features of early Parkinson’s disease: Initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort. Parkinsonism Relat. Disord. 2014, 20, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Gu, Z.; An, J.; Chan, P. Chinese Parkinson Study Group Gender differences on motor and non-motor symptoms of de novo patients with early Parkinson’s disease. Neurol. Sci. 2014, 35, 1991–1996. [Google Scholar] [CrossRef]
- Navarta-Sánchez, M.V.; Senosiain García, J.M.; Riverol, M.; Ursúa Sesma, M.E.; Díaz de Cerio Ayesa, S.; Anaut Bravo, S.; Caparrós Civera, N.; Portillo, M.C. Factors influencing psychosocial adjustment and quality of life in Parkinson patients and informal caregivers. Qual. Life Res. 2016, 25, 1959–1968. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; He, M.; Hu, X.; Ni, C.; Yang, L. Deep sequencing reveals the molecular pathology characteristics between primary uterine leiomyoma and pulmonary benign metastasizing leiomyoma. Clin. Transl. Oncol. 2018, 20, 1080–1086. [Google Scholar] [CrossRef]
- Pontone, G.M.; Bakker, C.C.; Chen, S.; Mari, Z.; Marsh, L.; Rabins, P.V.; Williams, J.R.; Bassett, S.S. The longitudinal impact of depression on disability in Parkinson disease. Int. J. Geriatr. Psychiatry 2016, 31, 458–465. [Google Scholar] [CrossRef]
- Balestrino, R.; Martinez-Martin, P. Neuropsychiatric symptoms, behavioural disorders, and quality of life in Parkinson’s disease. J. Neurol. Sci. 2017, 373, 173–178. [Google Scholar] [CrossRef]
- Dowding, C.H.; Shenton, C.L.; Salek, S.S. A review of the health-related quality of life and economic impact of Parkinson’s disease. Drugs Aging 2006, 23, 693–721. [Google Scholar] [CrossRef]
- Althaus, A.; Becker, O.A.; Spottke, A.; Dengler, R.; Schneider, F.; Kloss, M.; Eggert, K.; Oertel, W.H.; Dillmann, U.; Herting, B.; et al. Frequency and treatment of depressive symptoms in a Parkinson’s disease registry. Parkinsonism Relat. Disord. 2008, 14, 626–632. [Google Scholar] [CrossRef]
- Cubo, E.; Bernard, B.; Leurgans, S.; Raman, R. Cognitive and motor function in patients with Parkinson’s disease with and without depression. Clin. Neuropharmacol. 2000, 23, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Weissman, M.M.; Bland, R.; Joyce, P.R.; Newman, S.; Wells, J.E.; Wittchen, H.U. Sex differences in rates of depression: Cross-national perspectives. J. Affect. Disord. 1993, 29, 77–84. [Google Scholar] [CrossRef]
- Martinez-Martin, P.; Rodriguez-Blazquez, C.; Kurtis, M.M.; Chaudhuri, K.R. NMSS Validation Group The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov. Disord. 2011, 26, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Song, W.; Chen, K.; Chen, X.; Zheng, Z.; Cao, B.; Huang, R.; Zhao, B.; Wu, Y.; Shang, H.-F. Gender and onset age-related features of non-motor symptoms of patients with Parkinson’s disease—a study from Southwest China. Parkinsonism Relat. Disord. 2013, 19, 961–965. [Google Scholar] [CrossRef]
- Picillo, M.; Erro, R.; Amboni, M.; Longo, K.; Vitale, C.; Moccia, M.; Pierro, A.; Scannapieco, S.; Santangelo, G.; Spina, E.; et al. Gender differences in non-motor symptoms in early Parkinson’s disease: A 2-years follow-up study on previously untreated patients. Parkinsonism Relat. Disord. 2014, 20, 850–854. [Google Scholar] [CrossRef]
- Palmeri, R.; Lo Buono, V.; Bonanno, L.; Sorbera, C.; Cimino, V.; Bramanti, P.; Di Lorenzo, G.; Marino, S. Potential predictors of quality of life in Parkinson’s Disease: Sleep and mood disorders. J. Clin. Neurosci. 2019, 70, 113–117. [Google Scholar] [CrossRef]
- Dos Santos, A.B.; Kohlmeier, K.A.; Barreto, G.E. Are sleep disturbances preclinical markers of Parkinson’s disease? Neurochem. Res. 2015, 40, 421–427. [Google Scholar] [CrossRef]
- Dos Santos, A.B.; Barreto, G.E.; Kohlmeier, K.A. Treatment of sleeping disorders should be considered in clinical management of Parkinson’s disease. Front. Aging Neurosci. 2014, 6, 273. [Google Scholar] [CrossRef] [Green Version]
- Bjørnarå, K.A.; Dietrichs, E.; Toft, M. REM sleep behavior disorder in Parkinson’s disease--is there a gender difference? Parkinsonism Relat. Disord. 2013, 19, 120–122. [Google Scholar] [CrossRef]
- Postuma, R.B.; Gagnon, J.F.; Vendette, M.; Fantini, M.L.; Massicotte-Marquez, J.; Montplaisir, J. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology 2009, 72, 1296–1300. [Google Scholar] [CrossRef]
- Stacy, M.A.; Murck, H.; Kroenke, K. Responsiveness of motor and nonmotor symptoms of Parkinson disease to dopaminergic therapy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Colombo, D.; Abbruzzese, G.; Antonini, A.; Barone, P.; Bellia, G.; Franconi, F.; Simoni, L.; Attar, M.; Zagni, E.; Haggiag, S.; et al. The “gender factor” in wearing-off among patients with Parkinson’s disease: A post hoc analysis of DEEP study. Sci. World J. 2015, 2015, 787451. [Google Scholar] [CrossRef] [Green Version]
- Chandran, S.; Krishnan, S.; Rao, R.M.; Sarma, S.G.; Sarma, P.S.; Kishore, A. Gender influence on selection and outcome of deep brain stimulation for Parkinson’s disease. Ann. Indian Acad. Neurol. 2014, 17, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Picillo, M.; Nicoletti, A.; Fetoni, V.; Garavaglia, B.; Barone, P.; Pellecchia, M.T. The relevance of gender in Parkinson’s disease: A review. J. Neurol. 2017, 264, 1583–1607. [Google Scholar] [CrossRef] [PubMed]
- Cianci, A.; Colacurci, N.; Paoletti, A.M.; Perino, A.; Cicinelli, E.; Maffei, S.; Di Martino, M.; Daguati, R.; Stomati, M.; Pilloni, M.; et al. Soy isoflavones, inulin, calcium, and vitamin D3 in post-menopausal hot flushes: An observational study. Clin. Exp. Obstet. Gynecol. 2015, 42, 743–745. [Google Scholar]
- Vitale, S.G.; Caruso, S.; Rapisarda, A.M.C.; Cianci, S.; Cianci, A. Isoflavones, calcium, vitamin D and inulin improve quality of life, sexual function, body composition and metabolic parameters in menopausal women: Result from a prospective, randomized, placebo-controlled, parallel-group study. Przegla̜d Menopauzalny 2018, 17, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Parkinson Study Group POETRY Investigators A randomized pilot trial of estrogen replacement therapy in post-menopausal women with Parkinson’s disease. Parkinsonism Relat. Disord. 2011, 17, 757–760. [CrossRef]
- Song, Y.-J.; Li, S.-R.; Li, X.-W.; Chen, X.; Wei, Z.-X.; Liu, Q.-S.; Cheng, Y. The Effect of Estrogen Replacement Therapy on Alzheimer’s Disease and Parkinson’s Disease in Postmenopausal Women: A Meta-Analysis. Front. Neurosci. 2020, 14, 157. [Google Scholar] [CrossRef]
- Wu, M.; Li, M.; Yuan, J.; Liang, S.; Chen, Z.; Ye, M.; Ryan, P.M.; Clark, C.; Tan, S.C.; Rahmani, J.; et al. Postmenopausal hormone therapy and Alzheimer’s disease, dementia, and Parkinson’s disease: A systematic review and time-response meta-analysis. Pharmacol. Res. 2020, 155, 104693. [Google Scholar] [CrossRef]
- Sethi, K.D. The impact of levodopa on quality of life in patients with Parkinson disease. Neurologist 2010, 16, 76–83. [Google Scholar] [CrossRef]
- Martinez-Martin, P.; Rodriguez-Blazquez, C.; Forjaz, M.J.; Kurtis, M.M. Impact of Pharmacotherapy on Quality of Life in Patients with Parkinson’s Disease. CNS Drugs 2015, 29, 397–413. [Google Scholar] [CrossRef] [PubMed]
- Vegeto, E.; Benedusi, V.; Maggi, A. Estrogen anti-inflammatory activity in brain: A therapeutic opportunity for menopause and neurodegenerative diseases. Front. Neuroendocrinol. 2008, 29, 507–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berganzo, K.; Tijero, B.; González-Eizaguirre, A.; Somme, J.; Lezcano, E.; Gabilondo, I.; Fernandez, M.; Zarranz, J.J.; Gómez-Esteban, J.C. Motor and non-motor symptoms of Parkinson’s disease and their impact on quality of life and on different clinical subgroups. Neurología 2016, 31, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-M.; Lin, R.-J.; Yu, R.-L.; Tai, C.-H.; Lin, C.-H.; Wu, R.-M. The impact of nonmotor symptoms on quality of life in patients with Parkinson’s disease in Taiwan. Neuropsychiatr. Dis. Treat. 2015, 11, 2865–2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, J.; Dogan, I.; Schulz, J.B.; Reetz, K. Evidence for Gender Differences in Cognition, Emotion and Quality of Life in Parkinson’s Disease? Aging Dis. 2013, 5, 63–75. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crispino, P.; Gino, M.; Barbagelata, E.; Ciarambino, T.; Politi, C.; Ambrosino, I.; Ragusa, R.; Marranzano, M.; Biondi, A.; Vacante, M. Gender Differences and Quality of Life in Parkinson’s Disease. Int. J. Environ. Res. Public Health 2021, 18, 198. https://doi.org/10.3390/ijerph18010198
Crispino P, Gino M, Barbagelata E, Ciarambino T, Politi C, Ambrosino I, Ragusa R, Marranzano M, Biondi A, Vacante M. Gender Differences and Quality of Life in Parkinson’s Disease. International Journal of Environmental Research and Public Health. 2021; 18(1):198. https://doi.org/10.3390/ijerph18010198
Chicago/Turabian StyleCrispino, Pietro, Miriam Gino, Elena Barbagelata, Tiziana Ciarambino, Cecilia Politi, Immacolata Ambrosino, Rosalia Ragusa, Marina Marranzano, Antonio Biondi, and Marco Vacante. 2021. "Gender Differences and Quality of Life in Parkinson’s Disease" International Journal of Environmental Research and Public Health 18, no. 1: 198. https://doi.org/10.3390/ijerph18010198
APA StyleCrispino, P., Gino, M., Barbagelata, E., Ciarambino, T., Politi, C., Ambrosino, I., Ragusa, R., Marranzano, M., Biondi, A., & Vacante, M. (2021). Gender Differences and Quality of Life in Parkinson’s Disease. International Journal of Environmental Research and Public Health, 18(1), 198. https://doi.org/10.3390/ijerph18010198