Psychometric Properties and Measurement Invariance of the Maslach Burnout Inventory–General Survey in Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Procedure
2.4. Statistical and Psychometric Analysis
3. Results
3.1. Descriptive Data and Psychometric Quality of the Items
3.2. Validity Evidence Based on Internal Structure
3.2.1. Dimensionality
3.2.2. Construct Reliability and Convergent and Discriminant Validity of the Measurement Model
3.2.3. Measurement Invariance
3.3. Validity Evidence Based on Relationships with Other Variables
3.4. Descriptive Data and Differences in Scores among Sociodemographic Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freudenberger, H.J. Staff Burn-Out. J. Soc. Issues 1974, 30, 159–165. [Google Scholar] [CrossRef]
- Farber, B.A. Stress and Burnout in the Human Service Professions; Pergamon: New York, NY, USA, 1983; Volume 117. [Google Scholar]
- Carlin, M.; Garcés, E.J. El síndrome de burnout: Evolución histórica desde el contexto laboral al ámbito deportivo. An. Psicol. 2010, 26, 169–180. [Google Scholar]
- Gil-Monte, P.R. Validez factorial de la adaptación al español del Maslach Burnout Inventory-General Survey. Salud Pública México 2002, 44, 33–40. Available online: http://www.insp.mx/salud/index.html (accessed on 9 May 2021).
- Ortega, C.; López, F. El burnout o síndrome de estar quemado en los profesionales sanitarios: Revisión y perspectivas. Int. J. Clin. Health Psychol. 2004, 4, 137–160. Available online: https://www.redalyc.org/pdf/337/33740108.pdf (accessed on 9 May 2021).
- Schaufeli, W.B.; Greenglass, E.R. Introduction to special issue on burnout and health. Psychol. Heal. 2001, 16, 501–510. [Google Scholar] [CrossRef]
- World Health Organization. Mental Health and Work: Impact, Issues and Good Practices; World Health Organization: Geneva, Switzerland, 2009. Available online: www.who.int/whr/2001/en/whr01_po.pdf (accessed on 9 May 2021).
- Grau, A.; Flichtentrei, D.; Suñer, R.; Prats, M.; Braga, F. Influencia de factores personales, profesionales y transnacionales en el síndrome de burnout en personal sanitario hispanoamericano y español (2007). Rev. Española Salud Pública 2009, 83, 215–230. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Burnout an “Occupational Phenomenon”: International Classification of Diseases. 2019. Available online: https://www.who.int/news/item/28-05-2019-burn-out-an-occupational-phenomenon-international-classification-of-diseases (accessed on 9 May 2021).
- Llorens-Gumbau, S.; Salanova, M. Burnout: Un Problema Psicológico y Social. Riesgo Labor. 2011, 37, 26–28. [Google Scholar]
- Moreno-Jiménez, B.; Rodríguez-Muñoz, A.; Garrosa-Hernández, E.; Morante-Benadero, M.E.; Rodríguez-Carvajal, R. Diferencias de género en el acoso psicológico en el trabajo: Un estudio en población española. Psicol. Estud. 2005, 10, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Maslach, C.; Jackson, S.E. The measurement of experienced burnout. J. Organ. Behav. 1981, 2, 99–113. [Google Scholar] [CrossRef]
- Maslach, C.; Jackson, S.E.; Leiter, M.P.; Schaufeli, W.B.; Schwab, R.L. Maslach Burnout Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1986; Volume 21, pp. 3463–3464. [Google Scholar]
- Bambula, F.D.; Gómez, I.C. Research on burnout from 2000 to 2010 in Latin America. Psicol. Desde Caribe 2016, 33, 113–131. [Google Scholar] [CrossRef]
- Schutte, N.; Toppinen, S.; Kalimo, R.; Schaufeli, W. The factorial validity of the Maslach Burnout Inventory-General Survey (MBI-GS) across occupational groups and nations. J. Occup. Organ. Psychol. 2000, 73, 53–66. [Google Scholar] [CrossRef]
- Tomás, J.M.; Santos, S.D.L.; Alonso-Andres, A.; Fernández, I. Validation of the Maslach Burnout Inventory-General Survey on a Representative Sample of Dominican Teachers: Normative Data. Span. J. Psychol. 2016, 19, E83. [Google Scholar] [CrossRef]
- Olivares-Faúndez, V.E.; Mena-Miranda, L.; Jélvez-Wilker, C.; Macía-Sepúlveda, F. Validez factorial del Maslach Burnout Inventory Human Services (MBI-HSS) en profesionales chilenos. Univ. Psychol. 2014, 13, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Maslach, C.; Jackson, S.E.; Leiter, M.P. Burnout Inventory Manual; Consulting Psychologists Press: Palo Alto, CA, USA, 1996. [Google Scholar]
- Maslach, C. Job Burnout. Curr. Dir. Psychol. Sci. 2003, 12, 189–192. [Google Scholar] [CrossRef]
- Bocéréan, C.; Dupret, E.; Feltrin, M. Maslach Burnout Inventory–General Survey: French validation in a representative sample of employees. SCIREA J. Health 2019, 3, 24–41. [Google Scholar]
- Guevara, L.; Ocampo, N. Propiedades psicométricas de confiabilidad y validez del Maslach Burnout Inventory–General Survey. Rev. Interam. Psicol. Ocup. 2016, 33, 128–142. [Google Scholar] [CrossRef]
- Millán de Lange, A.C.; D’Aubeterre, M.E. Propiedades psicométricas del Maslach Burnout Inventory-GS en una muestra multiocupacional venezolana. Rev. Psicol. (PUCP) 2012, 30, 103–128. [Google Scholar] [CrossRef]
- Mojsa, J.; Dylag, A.; Palczynska, E. Psychometric properties of a Polish version of the Maslach Burnout Inventory General Survey (MBI-GS) in a group of Information and Communication Technology (ICT) specialists. Ergon. IJEHF 2006, 28, 351–361. [Google Scholar]
- Moreno-Jiménez, B.; Rodríguez-Carvajal, R.; Escobar-Redonda, E. La evaluación del burnout profesional. Factorialización del MBI-GS. Un análisis preliminar. Ansiedad Y Estrés 2001, 7, 69–78. [Google Scholar]
- Roelofs, J.; Verbraak, M.; Keijsers, G.P.J.; De Bruin, M.B.N.; Schmidt, A.J.M. Psychometric properties of a Dutch version of the Maslach Burnout Inventory General Survey (MBI-DV) in individuals with and without clinical burnout. Stress Heal. 2005, 21, 17–25. [Google Scholar] [CrossRef]
- Taris, T.W.; Schreurs, P.J.G.; Schaufeli, W.B. Construct validity of the Maslach Burnout Inventory-General Survey: A two-sample examination of its factor structure and correlates. Work. Stress 1999, 13, 223–237. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Lei, J.; Yu, Y. Burnout in Chinese social work: Differential predictability of the components of the Maslach Burnout Inventory. Int. J. Soc. Welf. 2018, 28, 217–228. [Google Scholar] [CrossRef]
- Malakh-Pines, A.; Aronson, E. Career Burnout: Causes and Cures; Free Press: New York, NY, USA, 1988. [Google Scholar]
- Green, D.E.; Walkey, F.H.; Taylor, A.J. The three-factor structure of the Maslach Burnout Inventory: A multicultural, multinational confirmatory study. J. Soc. Behav. Personal. 1991, 6, 453. [Google Scholar]
- Costello, A.B.; Osborne, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 1–9. [Google Scholar]
- Lloret-Segura, S.; Ferreres-Traver, A.; Hernández-Baeza, A.; Tomás-Marco, I. Exploratory item factor analysis: A practical guide revised and updated. An. Psicol. 2014, 30, 1151–1169. [Google Scholar]
- Oramas, A.; González, A.; Vergara, A. El desgaste profesional: Evaluación y factorialización del MBI-GS [The professional fatigue: Assessment and factor analysis]. Rev. Cuba. Salud Trab. 2007, 8, 37–45. [Google Scholar]
- Schaufeli, W.B.; Salanova, M.; González-Romá, V.; Bakker, A.B. The Measurement of Engagement and Burnout: A Two Sample Confirmatory Factor Analytic Approach. J. Happiness Stud. 2002, 3, 71–92. [Google Scholar] [CrossRef]
- García, A.J.; Soto, C.M.; Arata, M.F.; Jiménez, C.A.F.; Caraballo, M.; Cristiá, C.C. Validación transcultural y funcionamiento diferencial del MBI-GS en docentes de tres países latinoamericanos. Av. Psicol. Latinoam. 2020, 38, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Greiff, S.; Scherer, R. Still Comparing Apples with Oranges? Eur. J. Psychol. Assess. 2018, 34, 141–144. [Google Scholar] [CrossRef]
- Warr, P.; Cook, J.; Wall, T.D. Scales for the measurement of some work attitudes and aspects of psychological well-being. J. Occup. Psychol. 1979, 52, 129–148. [Google Scholar] [CrossRef]
- Munduate, M.L. La Motivación en el Trabajo; Servicio de Publicaciones del Ministerio de Trabajo y Seguridad Social: Madrid, Spain, 1984. [Google Scholar]
- Landa, J.; López-Zafra, E.; de Antoñana, M.; Pulido, M. Perceived emotional intelligence and life satisfaction among university teachers. Psicothema 2006, 18, 152–157. [Google Scholar]
- Schaufeli, W.B.; Bakker, A.B.; Salanova, M. The Measurement of Work Engagement with a Short Questionnaire. Educ. Psychol. Meas. 2006, 66, 701–716. [Google Scholar] [CrossRef]
- Salanova, M.; Schaufeli, W.B.; Llorens, S.; Peiro, J.M.; Grau, R. Desde el “burnout” al “engagement”: Una nueva perspectiva? [From “burnout” to “engagement”: A new perspective?]. Rev. Psicol. Trab. Organ. 2000, 16, 117–134. [Google Scholar]
- Schaufeli, W.B.; Martínez, I.M.; Pinto, A.M.; Salanova, M.; Bakker, A.B. Burnout and Engagement in University Students. J. Cross-Cult. Psychol. 2002, 33, 464–481. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.; Williams, P. A User’s Guide to the General Health Questionnaire; NFER-Nelson: Windsor, UK, 1988. [Google Scholar]
- Rocha, K.B.; Pérez, K.; Rodríguez-Sanz, M.; Borrell, C.; Obiols, J.E. Propiedades psicométricas y valores normativos del General Health Questionnaire (GHQ-12) en población general española. Int. J. Clin. Health Psychol. 2011, 11, 125–139. [Google Scholar]
- Ruiz, F.J.; García-Beltrán, D.M.; Suárez-Falcón, J.C. General Health Questionnaire-12 validity in Colombia and factorial equivalence between clinical and nonclinical participants. Psychiatry Res. 2017, 256, 53–58. [Google Scholar] [CrossRef]
- Bond, F.W.; Hayes, S.C.; Baer, R.A.; Carpenter, K.M.; Guenole, N.; Orcutt, H.K.; Waltz, T.; Zettle, R.D. Preliminary Psychometric Properties of the Acceptance and Action Questionnaire–II: A Revised Measure of Psychological Inflexibility and Experiential Avoidance. Behav. Ther. 2011, 42, 676–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, F.J.; Herrera, A.I.L.; Luciano, C.; Cangas, A.J.; Beltrán, I. Midiendo la evitación experiencial y la inflexibilidad psicológica: Versión española del cuestionario de aceptación y acción-II. Psicothema 2013, 25, 123–130. [Google Scholar] [PubMed]
- Ruiz, F.J.; Suárez-Falcón, J.C.; Cárdenas-Sierra, S.; Durán, Y.; Guerrero, K.; Riaño-Hernández, D. Psychometric Properties of the Acceptance and Action Questionnaire–II in Colombia. Psychol. Rec. 2016, 66, 429–437. [Google Scholar] [CrossRef]
- Ruiz, F.J.; Odriozola-González, P. The Predictive and Moderating role of Psychological Flexibility in the Development of Job Burnout. Univ. Psychol. 2017, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jöreskog, K.G.; Sörbom, D. LISREL 8: User’s Reference Guide; Scientific Software International: Lincolnwood, IL, USA, 1996. [Google Scholar]
- Jöreskog, K.G.; Olsson, U.H.; Wallentin, F.Y. Multivariate Analysis with LISREL; Springer: Basel, Switzerland, 2016. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Chen, F.F. Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance. Struct. Equ. Model. A Multidiscip. J. 2002, 9, 233–255. [Google Scholar] [CrossRef]
- Lenhard, W.; Lenhard, A. Calculation of Effect Sizes; Psychometrica: Dettelbach, Germany, 2016. Available online: https://www.psychometrica.de/effect_size.html (accessed on 9 May 2021).
Item Number and Description | Corrected Item–Total Correlations |
---|---|
1. Me siento emocionalmente agotado por mi trabajo. EE | 0.68 |
2. Me siento acabado al final de la jornada. EE | 0.66 |
3. Me siento fatigado al levantarme por la mañana y tener que 4. Enfrentarme a otro día de trabajo. EE | 0.67 |
5. Trabajar todo el día realmente es estresante para mí. EE | 0.66 |
6. Soy capaz de resolver eficazmente los problemas que surgen en mi trabajo. PE | 0.43 |
7. Me siento quemado por mi trabajo. EE | 0.70 |
8. Siento que estoy haciendo una contribución eficaz a la actividad de mi organización. PE | 0.54 |
9. Desde que comencé el empleo, he ido perdiendo interés en mi trabajo. C | 0.58 |
10. He ido perdiendo el entusiasmo en mi trabajo. C | 0.61 |
11. En mi opinión, soy muy bueno haciendo mi trabajo. PE | 0.58 |
12. Me siento realizado cuando llevo a cabo algo en mi trabajo. PE | 0.61 |
13. He realizado muchas cosas que valen la pena en mi trabajo. PE | 0.62 |
14. Sólo quiero hacer mi trabajo y que no me molesten. C | 0.32 |
15. Me he vuelto más cínico acerca de si mi trabajo vale para algo. C | 0.51 |
Dudo sobre el valor de mi trabajo. C | 0.55 |
16. En mi trabajo estoy seguro de que soy eficaz haciendo las cosas. PE | 0.56 |
Goodness-of-Fit Indicators | One-Factor Model | Two-Factor Model | Three-Factor Model |
---|---|---|---|
RMSEA [90% CI] | 0.171 [0.166, 0.176] | 0.090 [0.0842, 0.0950] | 0.053 [0.0469, 0.0584] |
CFI | 0.838 | 0.956 | 0.985 |
NNFI | 0.813 | 0.949 | 0.982 |
SRMR | 0.154 | 0.076 | 0.056 |
ECVI [90% CI] | 3.218 [3.036, 3.408] | 1.00 [0.905, 1.103] | 0.456 [0.399, 0.520] |
χ2 (df) | 3060.686 (104) | 904.814 (103) | 372.367 (101) |
Model | RMSEA | ΔRMSEA | CFI | ΔCFI | NNFI | ΔNNFI |
---|---|---|---|---|---|---|
Measurement invariance across gender (men = 650, women = 318) | ||||||
MG baseline model | 0.0539 | 0.986 | 0.983 | |||
Metric invariance | 0.0528 | 0.001 | 0.985 | −0.001 | 0.984 | 0.001 |
Scalar invariance | 0.0555 | −0.003 | 0.983 | −0.002 | 0.982 | −0.002 |
Measurement invariance across age group (younger or equal than 35 = 454, older than 35 = 499) | ||||||
MG baseline model | 0.0538 | 0.985 | 0.982 | |||
Metric invariance | 0.0532 | 0.001 | 0.984 | −0.001 | 0.983 | −0.001 |
Scalar invariance | 0.0548 | −0.002 | 0.983 | −0.001 | 0.982 | −0.001 |
Measurement invariance across hierarchical level (assistance and operational = 593, managerial and professional = 366) | ||||||
MG baseline model | 0.0537 | 0.986 | 0.983 | |||
Metric invariance | 0.0526 | 0.001 | 0.986 | −0.000 | 0.984 | 0.001 |
Scalar invariance Partial scalar invariance (9,13) | 0.0635 0.0560 | −0.011 0.008 | 0.978 0.983 | −0.008 0.005 | 0.977 0.982 | −0.007 0.005 |
Measurement invariance across socioeconomic status (low = 527, medium = 399) | ||||||
MG baseline model | 0.0552 | 0.983 | 0.980 | |||
Metric invariance | 0.0544 | 0.001 | 0.983 | 0.000 | 0.981 | 0.001 |
Scalar invariance | 0.0559 | −0.002 | 0.981 | −0.002 | 0.979 | −0.002 |
Measure | Emotional Exhaustion | Cynicism | Professional Efficacy |
---|---|---|---|
UWES–vigor | −0.37 ** | −0.30 ** | 0.44 ** |
UWES–dedication | −0.36 ** | −0.40 ** | 0.43 ** |
UWES–absorption | −0.15 ** | −0.12 ** | 0.29 ** |
OJS–total | −0.46 ** | −0.36 ** | 0.28 ** |
OJS–intrinsic | −0.45 ** | −0.33 ** | 0.26 ** |
OJS–extrinsic | −0.44 ** | −0.36 ** | 0.28 ** |
GHQ–12 | 0.53 ** | −0.43 ** | −0.23 ** |
AAQ–II | 0.42 ** | −0.44 ** | −0.22 ** |
Emotional Exhaustion | Cynicism | Professional Efficacy | |
---|---|---|---|
Gender | |||
Males | 6.61 (5.64) | 4.89 (5.24) | 30.99 (5.94) |
Females | 8.86 (6.30) | 6.05 (5.67) | 30.08 (5.59) |
Groupage | |||
Older than 35 | 6.98 (5.87) | 4.88 (5.40) | 30.47 (6.19) |
Younger or equal 35 | 7.73 (6.00) | 5.47 (5.14) | 31.01 (5.29) |
Hierarchical level | |||
Managerial/professional | 7.35 (6.02) | 4.50 (5.06) | 31.59 (4.88) |
Assistance/operational | 7.36 (5.91) | 5.70 (5.51) | 30.18 (6.24) |
Socioeconomic status | |||
Low | 7.63 (6.09) | 5.53 (5.65) | 30.37 (6.10) |
Medium | 7.01 (5.87) | 4.71 (4.90) | 31.32 (5.10) |
Overall sample | 7.36 (5.96) | 5.27 (5.41) | 30.68 (5.84) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo, D.M.; Suárez-Falcón, J.C.; Bianchi, J.M.; Segura-Vargas, M.A.; Ruiz, F.J. Psychometric Properties and Measurement Invariance of the Maslach Burnout Inventory–General Survey in Colombia. Int. J. Environ. Res. Public Health 2021, 18, 5118. https://doi.org/10.3390/ijerph18105118
Bravo DM, Suárez-Falcón JC, Bianchi JM, Segura-Vargas MA, Ruiz FJ. Psychometric Properties and Measurement Invariance of the Maslach Burnout Inventory–General Survey in Colombia. International Journal of Environmental Research and Public Health. 2021; 18(10):5118. https://doi.org/10.3390/ijerph18105118
Chicago/Turabian StyleBravo, Diana M., Juan C. Suárez-Falcón, Javier M. Bianchi, Miguel A. Segura-Vargas, and Francisco J. Ruiz. 2021. "Psychometric Properties and Measurement Invariance of the Maslach Burnout Inventory–General Survey in Colombia" International Journal of Environmental Research and Public Health 18, no. 10: 5118. https://doi.org/10.3390/ijerph18105118
APA StyleBravo, D. M., Suárez-Falcón, J. C., Bianchi, J. M., Segura-Vargas, M. A., & Ruiz, F. J. (2021). Psychometric Properties and Measurement Invariance of the Maslach Burnout Inventory–General Survey in Colombia. International Journal of Environmental Research and Public Health, 18(10), 5118. https://doi.org/10.3390/ijerph18105118