Effect of Handgrip Training in Extreme Heat on the Development of Handgrip Maximal Isometric Strength among Young Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.2.1. Health Security Criteria
2.2.2. Initial Evaluation
2.2.3. Strength Training Protocol
2.2.4. Heat Exposure Protocol
2.2.5. Body Composition and Body Temperature Evaluations
2.2.6. Muscular Strength Evaluations
2.3. Statistical Analysis
3. Results
3.1. Body Composition
3.2. Maximal Isometric Handgrip Strength
3.3. Body Temperature and Bodyweight Evolution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casadio, J.R.; Kilding, A.E.; Cotter, J.D.; Laursen, P.B. From lab to real world: Heat acclimation considerations for elite athletes. Sports Med. 2017, 47, 1467–1476. [Google Scholar] [CrossRef]
- Corbett, J.; Neal, R.A.; Lunt, H.C.; Tipton, M.J. Adaptation to heat and exercise performance under cooler conditions: A new hot topic. Sports Med. 2014, 44, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, D. Warm up I: Potential mechanisms and the effects of passive warm up on exercise performance. Sports Med. 2003, 33, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Racinais, S.; Wilson, M.G.; Périard, J.D. Passive heat acclimation improves skeletal muscle contractility in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R101–R107. [Google Scholar] [CrossRef] [PubMed]
- McGorm, H.; Roberts, L.A.; Coombes, J.S.; Peake, J.M. Turning up the heat: An evaluation of the evidence for heating to promote exercise recovery, muscle rehabilitation and adaptation. Sports Med. 2018, 48, 1311–1328. [Google Scholar] [CrossRef] [PubMed]
- Girard, O.; Brocherie, F.; Bishop, D.J. Sprint performance under heat stress: A review. Scand. J. Med. Sci. Sports 2015, 25, 79–89. [Google Scholar] [CrossRef]
- Nybo, L.; Rasmussen, P.; Sawka, M.N. Performance in the heat—Physiological factors of importance for hyperthermia-induced fatigue. Compr. Physiol. 2014, 4, 657–689. [Google Scholar]
- Schoenfeld, B. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013, 43, 179–194. [Google Scholar] [CrossRef]
- Zając, A.; Chalimoniuk, M.; Gołaś, A.; Lngfort, J.; Maszczyk, A. Central and peripheral fatigue during resistance exercise—A critical review. J. Hum. Kinet. 2015, 49, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Close, R.; Hoh, J.F.Y. Influence of temperature on isometric contractions of rat skeletal muscles. Nature 1968, 217, 1179–1180. [Google Scholar] [CrossRef]
- Segal, S.S.; Faulkner, J.A.; White, T.P. Skeletal muscle fatigue in vitro is temperature dependent. J. Appl. Physiol. 1986, 61, 660–665. [Google Scholar] [CrossRef]
- Stephenson, D.G.; Williams, D.A. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures. J. Physiol. 1981, 317, 281–302. [Google Scholar] [CrossRef] [PubMed]
- Kelty, J.D.; Noseworthy, P.A.; Feder, M.E.; Robertson, R.M.; Ramirez, J.M. Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress. J. Neurosci. 2002, 22, RC193. [Google Scholar] [CrossRef]
- Radakovic, S.S.; Maric, J.; Surbatovic, M.; Radjen, S.; Stefanova, E.; Stankovic, N.; Filipovic, N. Effects of acclimation on cognitive performance in soldiers during exertional heat stress. Mil. Med. 2007, 172, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Racinais, S.; Wilson, M.G.; Gaoua, N.; Périard, J.D. Heat acclimation has a protective effect on the central but not peripheral nervous system. J. Appl. Physiol. 2017, 123, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Lee, M.J.; Lee, H.M.; Lee, J.S. Effect of low-intensity resistance training with heat stress on the HSP72, anabolic hormones, muscle size, and strength in elderly women. Aging Clin. Exp. Res. 2016, 29, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, S.; Halliwill, J.R.; Sawka, M.N.; Minson, C.T. Heat acclimation improves exercise performance. J. Appl. Physiol. 2010, 1140–1147. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W.; Wang, Y.-C.; Bubela, D.; Gershon, R.C. Handgrip strength. Pediatr. Phys. Ther. 2017, 29, 118–123. [Google Scholar] [CrossRef]
- Taekema, D.G.; Gussekloo, J.; Maier, A.B.; Westendorp, R.G.J.; de Craen, A.J.M. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 2010, 39, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Racinais, S.; Périard, J.D.; Karlsen, A.; Nybo, L. Effect of heat and heat acclimatization on cycling time trial performance and pacing. Med. Sci. Sports Exerc. 2014, 47, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Siquier-Coll, J.; Bartolomé, I.; Pérez-Quintero, M.; Muñoz, D.; Robles, M.C.; Maynar-Mariño, M. Effect of exposure to high temperatures in the excretion of cadmium and lead. J. Therm. Biol. 2020, 89, 102545. [Google Scholar] [CrossRef] [PubMed]
- Chow, S.-C.; Shao, J.; Wang, H.; Lokhnygina, Y. Sample Size Calculations in Clinical Research; CRC Press: Boca Raton, FL, USA, 2017; ISBN 1351727125. [Google Scholar]
- Suresh, K.P. An overview of randomization techniques: An unbiased assessment of outcome in clinical research. J. Hum. Reprod. Sci. 2011, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- The Committee on Cooperation, International Relations. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. 2005. Available online: http//www.ipaq.ki.se/scoring.pdf (accessed on 23 April 2021).
- Sale, D.G. Neural adaptation to resistance training. Med. Sci. Sports Exerc. 1988, 20, S135–S145. [Google Scholar] [CrossRef] [PubMed]
- Moritani, T. Neural factors versus hypertrophy in the time course of muscle strength gain. Am. J. Phys. Med. 1979, 58, 115–130. [Google Scholar]
- Folland, J.P.; Williams, A.G. Morphological and neurological contributions to increased strength. Sports Med. 2007, 37, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Seynnes, O.; de Boer, M.; Narici, M. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. 2007, 102, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Carroll, T.J.; Herbert, R.D.; Munn, J.; Lee, M.; Gandevia, S.C. Contralateral effects of unilateral strength training: Evidence and possible mechanisms. J. Appl. Physiol. 2006, 101, 1514–1522. [Google Scholar] [CrossRef]
- Carroll, T.J.; Selvanayagam, V.S.; Riek, S.; Semmler, J.G. Neural adaptations to strength training: Moving beyond transcranial magnetic stimulation and reflex studies. Acta Physiol. 2011, 202, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Gatt, I.; Smith-Moore, S.; Steggles, C.; Loosemore, M. The takei handheld dynamometer: An effective clinical outcome measure tool for hand and wrist function in boxing. Hand 2018, 13, 319–324. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2. [Google Scholar] [CrossRef] [Green Version]
- Périard, J.D.; Racinais, S.; Sawka, M.N. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand. J. Med. Sci. Sports 2015, 25, 20–38. [Google Scholar] [CrossRef]
- Ward, L.C. Bioelectrical impedance analysis for body composition assessment: Reflections on accuracy, clinical utility, and standardisation. Eur. J. Clin. Nutr. 2019, 73, 194–199. [Google Scholar] [CrossRef]
- González-Alonso, J.; Quistorff, B.; Krustrup, P.; Bangsbo, J.; Saltin, B. Heat production in human skeletal muscle at the onset of intense dynamic exercise. J. Physiol. 2000, 524, 603–615. [Google Scholar] [CrossRef]
- Chong, D.; Zhu, N. Human heat acclimatization in extremely hot environments: A review. Procedia Eng. 2017, 205, 248–253. [Google Scholar] [CrossRef]
- Poirier, M.P.; Gagnon, D.; Friesen, B.J.; Hardcastle, S.G.; Kenny, G.P. Whole-body heat exchange during heat acclimation and its decay. Med. Sci. Sports Exerc. 2015, 47, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Lambert, M.I. General adaptations to exercise: Acute versus chronic and strength versus endurance training. In Exercise and Human Reproduction: Induced Fertility Disorders and Possible Therapies; Springer: New York, NY, USA, 2016; ISBN 9781493934027. [Google Scholar]
- Périard, J.; Racinais, S. Heat Stress in Sport and Exercise; Springer: Heidelberg, Germany, 2019; ISBN 3319935143. [Google Scholar]
- Cheuvront, S.N.; Kenefick, R.W.; Montain, S.J.; Sawka, M.N. Mechanisms of aerobic performance impairment with heat stress and dehydration. J. Appl. Physiol. 2010, 109, 1989–1995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Febbraio, M.A.; Snow, R.J.; Stathis, C.G.; Hargreaves, M.; Carey, M.F. Effect of heat stress on muscle energy metabolism during exercise. J. Appl. Physiol. 1994, 77, 2827–2831. [Google Scholar] [CrossRef]
- Hodson-Tole, E.F.; Wakeling, J.M. Motor unit recruitment for dynamic tasks: Current understanding and future directions. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2009, 179, 57–66. [Google Scholar] [CrossRef]
- Gardiner, P.; Dai, Y.; Heckman, C.J. Effects of exercise training on α-motoneurons. J. Appl. Physiol. 2006, 101, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, P.P.; Casti, A.; Michelini, M.; Maninetti, L.; Pedrazzoni, M.; Passeri, M. Plasma ACTH, beta-endorphin, prolactin, growth hormone and luteinizing hormone levels after thermal stress, heat and cold. Stress Med. 1992. [Google Scholar] [CrossRef]
- Kukkonen-Harjula, K.; Oja, P.; Laustiola, K.; Vuori, I.; Jolkkonen, J.; Siitonen, S.; Vapaatalo, H. Haemodynamic and hormonal responses to heat exposure in a Finnish sauna bath. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 58, 543–550. [Google Scholar] [CrossRef]
- Adamson, M.; MacQuaide, N.; Helgerud, J.; Hoff, J.; Kemi, O.J. Unilateral arm strength training improves contralateral peak force and rate of force development. Eur. J. Appl. Physiol. 2008, 103, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Farrell, M.J.; Trevaks, D.; Taylor, N.A.S.; McAllen, R.M. Regional brain responses associated with thermogenic and psychogenic sweating events in humans. J. Neurophysiol. 2015, 114, 2578–2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakigi, R.; Naito, H.; Ogura, Y.; Kobayashi, H.; Saga, N.; Ichinoseki-Sekine, N.; Yoshihara, T.; Katamoto, S. Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J. Physiol. Sci. 2011, 61, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Okuyama, R.; Sugiyama, H.; Honda, M.; Kobayashi, T.; Uehara, K.; Akema, T.; Sugiura, T.; Yamada, S.; Ohira, Y.; et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch. Eur. J. Physiol. 2003, 447, 247–253. [Google Scholar] [CrossRef]
- Zembron-Lacny, A.; Ziemann, E.; Zurek, P.; Hübner-Wozniak, E. Heat shock protein 27 response to wrestling training in relation to the muscle damage and inflammation. J. Strength Cond. Res. 2017, 31, 1221–1228. [Google Scholar] [CrossRef]
- Gray, S.R.; De Vito, G.; Nimmo, M.A.; Farina, D.; Ferguson, R.A. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R376–R382. [Google Scholar] [CrossRef] [Green Version]
- Febbraio, M.A.; Carey, M.F.; Snow, R.J.; Stathis, C.G.; Hargreaves, M. Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am. J. Physiol. Integr. Comp. Physiol. 1996, 271, R1251–R1255. [Google Scholar] [CrossRef] [PubMed]
- Stienen, G.J.M.; Kiers, J.L.; Bottinelli, R.; Reggiani, C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: Fibre type and temperature dependence. J. Physiol. 1996, 493, 299–307. [Google Scholar] [CrossRef]
- Bolton, C.F.; Sawa, G.M.; Carter, K. The effects of temperature on human compound action potentials. J. Neurol. Neurosurg. Psychiatry 1981, 44, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Farina, D.; Arendt-Nielsen, L.; Graven-Nielsen, T. Effect of temperature on spike-triggered average torque and electrophysiological properties of low-threshold motor units. J. Appl. Physiol. 2005, 99, 197–203. [Google Scholar] [CrossRef]
- De Ruiter, C.J.; De Haan, A. Temperature effect on the force/velocity relationship of the fresh and fatigued human adductor pollicis muscle. Pflügers Arch. 2000, 440, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, A.J. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Ball, D.; Burrows, C.; Sargeant, A.J. Human power output during repeated sprint cycle exercise: The influence of thermal stress. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 79, 360–366. [Google Scholar] [CrossRef] [PubMed]
- McCord, J.L.; Kaufman, M.P. Reflex autonomic responses evoked by group III and IV muscle afferents. In Translational Pain Research: From Mouse to Man; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781439812105. [Google Scholar]
- Kluess, H.A.; Buckwalter, J.B.; Hamann, J.J.; Clifford, P.S. Elevated temperature decreases sensitivity of P2X purinergic receptors in skeletal muscle arteries. J. Appl. Physiol. 2005, 99, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Kehoe, V.; Xing, J.; Sinoway, L.; Li, J. Temperature modulates P2X receptor-mediated cardiovascular responses to muscle afferent activation. Am. J. Physiol. Hear. Circ. Physiol. 2006, 291, H1255–H1261. [Google Scholar] [CrossRef] [PubMed]
- Petrofsky, J.S.; Laymon, M.; Lee, H. Effect of heat and cold on tendon flexibility and force to flex the human knee. Med. Sci. Monit. 2013, 19, 661–667. [Google Scholar] [CrossRef] [Green Version]
Normothermia Group (NG; n = 29) | Hyperthermia Group (HG; n = 25) | ||
---|---|---|---|
Day 1 | Bodyweight (Kg) | 72.06 ± 7.46 | 72.75 ± 6.89 |
Body Mass Index | 23.01 ± 2.26 | 23.88 ± 2.10 | |
Basal Metabolism (Kcal/day) | 1811.18 ± 121.57 | 1806.09 ± 110.36 | |
Body Fat Mass (%) | 13.77 ± 4.00 | 13.65 ± 4.38 | |
Body Lean Mass (%) | 86.37 ± 4.01 | 85.80 ± 6.19 | |
Body Water (%) | 63.20 ± 2.93 | 63.30 ± 3.15 | |
Day 3 | Bodyweight (Kg) | 71.31 ± 9.47 | 72.33 ± 6.85 |
Body Mass Index | 23.31 ± 2.08 | 23.70 ± 2.02 | |
Basal Metabolism (Kcal/day) | 1818.13 ± 105.37 | 1766.90 ± 192.44 | |
Body Fat Mass (%) | 13.95 ± 3.92 | 13.69 ± 4.04 | |
Body Lean Mass (%) | 86.05 ± 3.93 | 85.82 ± 4.16 | |
Body Water (%) | 86.05 ± 3.93 | 61.93 ± 6.24 | |
Day 6 | Bodyweight (Kg) | 71.97 ± 7.14 | 72.12 ± 6.28 |
Body Mass Index | 23.30 ± 2.34 | 24.40 ± 2.05 | |
Basal Metabolism (Kcal/day) | 1805.86 ± 105.35 | 1845.92 ± 100.57 | |
Body Fat Mass (%) | 14.32 ± 4.04 | 14.95 ± 4.51 | |
Body Lean Mass (%) | 85.28 ± 4.11 | 84.82 ± 4.58 ♦,R1 | |
Body Water (%) | 62.15 ± 3.27 | 61.49 ± 4.66 ^,♦,R2 |
Normothermia Group (NG; n = 29) | Hyperthermia Group (HG; n = 25) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | |||||||||
Pre-Session | Post-Session | Diff. | Pre-Session | Post-Session | Diff. | Pre-Session | Post-Session | Diff. | Pre-Session | Post-Session | Diff. | |
Trained Hand (N) | 44.29 ± 7.65 | 44.33 ± 6.82 | 0.45 ± 3.38 | 43.61 ± 6.59 | 44.50 ± 6.46 | 0.71 ± 3.99 | 46.56 ± 7.60 | 43.64 ± 6.94 | −2.84 ± 3.85 | 49.20 ± 8.05 +,♦,R1 | 47.13 ± 7.20 | −2.06 ± 5.10 |
Untrained Hand (N) | 40.43 ± 7.04 | 39.75 ± 7.03 | −0.71 ± 3.99 | 39.52 ± 5.05 | 38.85 ± 5.96 | −0.66 ± 1.74 | 43.31 ± 8.38 | 42.31 ± 7.91 | −1.00 ± 6.61 | 46.40 ± 6.68 ++,♦,R2 | 45.53 ± 5.85 ++ | −0.86 ± 3.41 |
Hands Diff. (N) | 3.95 ± 4.45 | 4.41 ± 4.35 | 0.46 ± 0.10 | 3.64 ± 2.89 | 5.47 ± 2.71 * | 1.83 ± 0.18 ♦,R4 | 3.19 ± 6.24 | 1.33 ± 5.73 | −1.86 ± 0.51 | 2.80 ± 2.51 ♦,R3 | 1.60 ± 3.20 ++ | −1.20 ± 0.69 ++ |
I Temp (°C) | 36.77 ± 0.54 | 37.18 ± 0.68 *** | 0.40 ± 0.59 | 36.76 ± 0.46 | 36.99 ± 0.72 | 0.23 ± 0.70 | 36.79 ± 0.59 | 37.84 ± 1.25 ***+ | 1.05 ± 1.25 ++ | 36.80 ± 0.48 | 38.00 ± 0.99 ***,++ | 1.19 ± 0.83 +++ |
E Temp (°C) | 36.55 ± 0.43 | 36.70 ± 0.63 * | 0.14 ± 0.54 | 36.25 ± 0.40 | 36.62 ± 0.57 ** | 0.37 ± 0.55 | 36.60 ± 0.50 | 37.20 ± 0.72 ***+ | 0.60 ± 0.87 | 36.54 ± 0.25 + | 37.58 ± 0.85 ***,+++ | 0.91 ± 0.86 + |
Bodyweight (Kg) | 72.06 ± 7.46 | 72.07 ± 7.47 | 0.01 ± 0.23 | 71.97 ± 7.14 | 71.89 ± 7.17 | −0.08 ± 0.25 | 72.41 ± 6.92 | 72.28 ± 6.89 ** | −0.12 ± 0.50 +++ | 72.12 ± 6.28 | 72.28 ± 6.64 ** | 0.16 ± 0.15 + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomé, I.; Siquier-Coll, J.; Pérez-Quintero, M.; Robles-Gil, M.C.; Muñoz, D.; Maynar-Mariño, M. Effect of Handgrip Training in Extreme Heat on the Development of Handgrip Maximal Isometric Strength among Young Males. Int. J. Environ. Res. Public Health 2021, 18, 5240. https://doi.org/10.3390/ijerph18105240
Bartolomé I, Siquier-Coll J, Pérez-Quintero M, Robles-Gil MC, Muñoz D, Maynar-Mariño M. Effect of Handgrip Training in Extreme Heat on the Development of Handgrip Maximal Isometric Strength among Young Males. International Journal of Environmental Research and Public Health. 2021; 18(10):5240. https://doi.org/10.3390/ijerph18105240
Chicago/Turabian StyleBartolomé, Ignacio, Jesús Siquier-Coll, Mario Pérez-Quintero, María Concepción Robles-Gil, Diego Muñoz, and Marcos Maynar-Mariño. 2021. "Effect of Handgrip Training in Extreme Heat on the Development of Handgrip Maximal Isometric Strength among Young Males" International Journal of Environmental Research and Public Health 18, no. 10: 5240. https://doi.org/10.3390/ijerph18105240
APA StyleBartolomé, I., Siquier-Coll, J., Pérez-Quintero, M., Robles-Gil, M. C., Muñoz, D., & Maynar-Mariño, M. (2021). Effect of Handgrip Training in Extreme Heat on the Development of Handgrip Maximal Isometric Strength among Young Males. International Journal of Environmental Research and Public Health, 18(10), 5240. https://doi.org/10.3390/ijerph18105240