Using Social Media Mining and PLS-SEM to Examine the Causal Relationship between Public Environmental Concerns and Adaptation Strategies
Abstract
:1. Introduction
2. Literature Review
2.1. Environmental Concerns and the Value-Belief-Norm Theory
2.2. Public Perceptions of Air Pollution
2.3. Air Pollution Detection by Using Social Media
2.4. Air Pollution in Taiwan
2.5. Hypothesis Development
3. Research Method
3.1. Text-Mining, Topic Model and LDA
- α is the per-document topic distributions,
- β is the per-topic word distribution,
- is the topic distribution for document d,
- is the word distribution for topic k,
- is the topic for the n-th word in document d, and
- is the specific word.
- For each topic i in (1, K):
- Choose per-corpus topic distribution
- For each document i in (1, D):
- Choose per-document topic proportion
- For each word j in (1, N):
- Choose topic with
- Choose word given
3.2. PLS-SEM
4. Social Media Mining and Theoretical Framework Confirmation Results
4.1. Data Crawling and Pre-Processing from Social Media
4.2. Topic Extractions Using the LDA
4.3. Topic Clustering Using the Hierarchical Cluster Aanalysis
4.4. Path Model Construction Using PLS-SEM
4.4.1. Measurement Model
4.4.2. Structural Model
4.4.3. Hypothesis Test Results
4.4.4. Multi-Group Analysis
5. Discussion
5.1. The Topics of Most Concern for Taiwanese
5.2. The Relationship among Egoistic, Altruistic, and Biosphere Concerns
5.3. Impacts of Environmental Concerns on Adaptation Strategies
5.4. Moderations of Gender in the Relationship of Altruistic and Adaptation Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Latent Variables | Items | Out Loadings | Cronbach’s Alpha | Dijkstra-Henseler’s Rho | CR | AVE |
---|---|---|---|---|---|---|
Egoistic Concerns | 0.767 | 0.779 | 0.852 | 0.592 | ||
t3 | 0.813 | |||||
t4 | 0.651 | |||||
t5 | 0.768 | |||||
0.833 | ||||||
Altruistic Concerns | 0.698 | 0.706 | 0.832 | 0.623 | ||
t6 | 0.813 | |||||
t7 | 0.821 | |||||
t11 | 0.732 | |||||
Biosphere Concerns | 0.557 | 0.660 | 0.809 | 0.682 | ||
t1 | 0.914 | |||||
t8 | 0.726 | |||||
Adaptation Strategies | 0.731 | 0.733 | 0.8432 | 0.623 | ||
t2 | 0.816 | |||||
t10 | 0.793 | |||||
t12 | 0.809 |
Latent Variables | EC | AC | BC | AS |
---|---|---|---|---|
EC | 0.769 | |||
AC | 0.678 | 0.790 | ||
BC | 0.611 | 0.667 | 0.826 | |
AS | 0.647 | 0.633 | 0.576 | 0.806 |
Variables | EC | AC | BC | AS | |
---|---|---|---|---|---|
Topics | |||||
t3 | 0.813 | 0.582 | 0.522 | 0.552 | |
t4 | 0.651 | 0.452 | 0.434 | 0.408 | |
t5 | 0.768 | 0.523 | 0.464 | 0.474 | |
t9 | 0.833 | 0.521 | 0.459 | 0.543 | |
t6 | 0.555 | 0.813 | 0.544 | 0.509 | |
t7 | 0.584 | 0.821 | 0.547 | 0.546 | |
t11 | 0.459 | 0.732 | 0.485 | 0.438 | |
t1 | 0.609 | 0.653 | 0.914 | 0.587 | |
t8 | 0.359 | 0.410 | 0.726 | 0.317 | |
t2 | 0.538 | 0.565 | 0.512 | 0.816 | |
t10 | 0.528 | 0.475 | 0.439 | 0.793 | |
t12 | 0.496 | 0.484 | 0.436 | 0.809 |
References
- Hamidi, A.; Ramavandi, B. Evaluation and scientometric analysis of researches on air pollution in developing countries from 1952 to 2018. Air Qual. Atmos. Health 2020, 13, 797–806. [Google Scholar] [CrossRef]
- Bailey, M.J.; Naik, N.N.; Wild, L.E.; Patterson, W.B.; Alderete, T.L. Exposure to air pollutants and the gut microbiota: A potential link between exposure, obesity, and type 2 diabetes. Gut Microbes 2020, 11, 1188–1202. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.-R.; Hsieh, H.-Y.; Hwang, B.-F. Air pollution as a potential determinant of rheumatoid arthritis: A population-based cohort study in Taiwan. Epidemiology 2017, 28, S54–S59. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-C.; Liu, L.-L.; Sun, Y.; Chen, Y.-A.; Liu, C.-C.; Li, C.-Y.; Yu, H.-L.; Ritz, B. Traffic-related air pollution increased the risk of Parkinson’s disease in Taiwan: A nationwide study. Environ. Int. 2016, 96, 75–81. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.-J.; Lee, C.-H.; Lee, C.H.; Lee, H.W. Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: A systematic review and meta-analysis. Environ. Res. 2021, 194, 110703. [Google Scholar] [CrossRef]
- World Health Organization. Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 1 April 2021).
- World Bank. Pollution. Available online: https://www.worldbank.org/en/topic/pollution (accessed on 1 April 2021).
- Parveen, R.; Ahmad, A. Public behavior in reducing urban air pollution: An application of the theory of planned behavior in Lahore. Environ. Sci. Pollut. Res. 2020, 27, 17815–17830. [Google Scholar] [CrossRef]
- Snelgar, R.S. Egoistic, altruistic, and biospheric environmental concerns: Measurement and structure. J. Environ. Psychol. 2006, 26, 87–99. [Google Scholar] [CrossRef]
- Stren, P. Toward a coherent theory of environmentally significant behaviour. J. Soc. Issues 2000, 56, 407–424. [Google Scholar] [CrossRef]
- Chin, Y.S.J.; De Pretto, L.; Thuppil, V.; Ashfold, M.J. Public awareness and support for environmental protection—A focus on air pollution in peninsular Malaysia. PLoS ONE 2019, 14, e0212206. [Google Scholar] [CrossRef] [PubMed]
- Sawitri, D.R.; Hadiyanto, H.; Hadi, S.P. Pro-environmental behavior from a socialcognitive theory perspective. Procedia Environ. Sci. 2015, 23, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980. [Google Scholar]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Schwartz, S.H. Normative influences on altruism. Adv. Exp. Soc. Psychol. 1977, 10, 221–279. [Google Scholar]
- Ramírez, O.; Mura, I.; Franco, J.F. How do people understand urban air pollution? Exploring citizens’ perception on air quality, its causes and impacts in Colombian cities. Open J. Air Pollut. 2017, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tvinnereim, E.; Liu, X.; Jamelske, E.M. Public perceptions of air pollution and climate change: Different manifestations, similar causes, and concerns. Clim. Chang. 2017, 140, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Oltra, C.; Sala, R. Perception of risk from air pollution and reported behaviors: A cross-sectional survey study in four cities. J. Risk. Res. 2018, 21, 869–884. [Google Scholar] [CrossRef]
- Pu, S.; Shao, Z.; Fang, M.; Yang, L.; Liu, R.; Bi, J.; Ma, Z. Spatial distribution of the public’s risk perception for air pollution: A nationwide study in China. Sci. Total Environ. 2019, 655, 454–462. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Jager, J.; Putnick, D.L. Sampling in developmental science: Situations, shortcomings, solutions, and standards. Dev. Rev. 2013, 33, 357–370. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Paul, M.J.; Dredze, M. Social media as a sensor of air quality and public response in China. J. Med. Internet Res. 2015, 17, e22. [Google Scholar] [CrossRef] [PubMed]
- Hswen, Y.; Qin, Q.; Brownstein, J.S.; Hawkins, J.B. Feasibility of using social media to monitor outdoor air pollution in London, England. Prev. Med. 2019, 121, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Chen, C.; Zhang, D.; Yu, Z.; Chin, A. Mobile crowd sensing and computing: When participatory sensing meets participatory social media. IEEE Commun. Mag. 2016, 54, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Westergaard, N.; Gehring, U.; Slama, R.; Pedersen, M. Ambient air pollution and low birth weight-are some women more vulnerable than others? Environ. Int. 2017, 104, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Clougherty, J.E. A growing role for gender analysis in air pollution epidemiology. Environ. Health Perspect. 2010, 118, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Mosquera, N. Gender differences, theory of planned behavior and willingness to pay. J. Environ. Psychol. 2016, 45, 165–175. [Google Scholar] [CrossRef]
- Tenouri, N.F. Understanding the “Who” in Conservation: Why Gender Matters; University of Otago: Dunedin, New Zealand, 2020. [Google Scholar]
- Dunlap, R.E.; Jones, R.E. Environmental concern: Conceptual and measurement issues. In Handbook of Environmental Sociology; Dunlap, R.E., Michelson, W., Eds.; Greenwood: Westport, CT, USA; London, UK, 2002; pp. 482–524. [Google Scholar]
- Schultz, P.W.; Gouveia, V.V.; Cameron, L.D.; Tankha, G.; Schmuck, P.; Franěk, M. Values and their relationship to environmental concern and conservation behavior. J. Cross Cult. Psychol. 2005, 36, 457–475. [Google Scholar] [CrossRef]
- Stern, P.C.; Dietz, T.; Abel, T.; Guagnano, G.A.; Kalof, L. A value-belief-norm theory of support for social movements: The case of environmentalism. Hum. Ecol. Rev. 1999, 6, 81–97. [Google Scholar]
- Duan, W.; Sheng, J. How can environmental knowledge transfer into pro-environmental behavior among Chinese individuals? Environmental pollution perception matters. J. Public Health 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Schwartz, S.H.; Howard, J.A. A Normative Decision-Making Model of Altruism; Rushton, J.P., Ed.; Erlbaum: Hillsdale, NJ, USA, 1981; pp. 189–211. [Google Scholar]
- De Dominicis, S.; Schultz, P.; Bonaiuto, M. Protecting the environment for self-interested reasons: Altruism is not the only pathway to sustainability. Front. Psychol. 2017, 8, 1065. [Google Scholar] [CrossRef] [Green Version]
- Imaningsih, E.S.; Tjiptoherijanto, P.; Heruwasto, I.; Aruan, D.T.H. Linking of egoistic, altruistic, and biospheric values to green loyalty: The role of green functional benefit, green monetary cost and green satisfaction. J. Asian Financ. Econ. Bus. 2019, 6, 277–286. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Represa, N.S.; Fernández-Sarría, A.; Porta, A.; Palomar-Vázquez, J. Data mining paradigm in the study of air quality. Environ. Process. 2020, 7, 1–21. [Google Scholar] [CrossRef]
- Williams, I.D.; Bird, A. Public perceptions of air quality and quality of life in urban and suburban areas of London. J. Envion. Monitor. 2003, 5, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Reames, T.G.; Bravo, M.A. People, place and pollution: Investigating relationships between air quality perceptions, health concerns, exposure, and individual-and area-level characteristics. Environ. Int. 2019, 122, 244–255. [Google Scholar] [CrossRef]
- Howel, D.; Moffatt, S.; Bush, J.; Dunn, C.E.; Prince, H. Public views on the links between air pollution and health in Northeast England. Environ. Res. 2003, 91, 163–171. [Google Scholar] [CrossRef]
- Chakraborty, J.; Collins, T.W.; Grineski, S.E.; Maldonado, A. Racial differences in perceptions of air pollution health risk: Does environmental exposure matter? Int. J. Environ. Res. Public Health 2017, 14, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sansom, G.; Berke, P.; McDonald, T.; Shipp, E.; Horney, J. Evaluating the Impact of Race and Gender on Environmental Risk Perceptions in the Houston Neighborhood of Manchester. Environ. Justice 2019, 12, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.K. Women’s awareness of and attitudes towards the Flood Action Plan (FAP) of Bangladesh: A comparative study. Environ. Manag. 1999, 23, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Yen, I.H.; Scherzer, T.; Cubbin, C.; Gonzalez, A.; Winkleby, M.A. Women’s perceptions of neighborhood resources and hazards related to diet, physical activity, and smoking: Focus group results from economically distinct neighborhoods in a mid-sized US city. Am. J. Health Promot. 2007, 22, 98–106. [Google Scholar] [CrossRef]
- Carvajal-Escobar, Y.; Quintero-Angel, M.; Garcia-Vargas, M. Women’s role in adapting to climate change and variability. Adv. Geosci. 2008, 14, 277–280. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, J.-C.; Gorman-Murray, A.; Fordham, M. Sexual and gender minorities in disaster. Gend. Place Cult. 2017, 24, 18–26. [Google Scholar] [CrossRef] [Green Version]
- McCay-Peet, L.; Quan-Haase, A. What is social media and what questions can social media research help us answer. In The SAGE Handbook of Social Media Research Methods; Sloan, L., Anabel Quan-Haase, A., Eds.; SAGE Publications: New York, NY, USA, 2017; pp. 13–26. [Google Scholar]
- Mansour, E. The adoption and use of social media as a source of information by Egyptian government journalists. Int. J. Lib. Inf. Sci. 2018, 50, 48–67. [Google Scholar] [CrossRef]
- Liao, X.; Tu, H.; Maddock, J.E.; Fan, S.; Lan, G.; Wu, Y.; Yuan, Z.K.; Lu, Y. Residents’ perception of air quality, pollution sources, and air pollution control in Nanchang, China. Atmos. Pollut. Res. 2015, 6, 835–841. [Google Scholar] [CrossRef]
- Tseng, C.-H.; Tsuang, B.-J.; Chiang, C.-J.; Ku, K.-C.; Tseng, J.-S.; Yang, T.-Y.; Hsu, K.-H.; Chen, K.-C.; Yu, S.-L.; Lee, W.-C. The relationship between air pollution and lung cancer in nonsmokers in Taiwan. J. Thorac. Oncol. 2019, 14, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Administration. Taiwan Air Quality Monitoring Network. Available online: https://airtw.epa.gov.tw/ENG/default.aspx (accessed on 1 April 2021).
- Helm, S.V.; Pollitt, A.; Barnett, M.A.; Curran, M.A.; Craig, Z.R. Differentiating environmental concern in the context of psychological adaption to climate change. Glob. Environ. Chang. 2018, 48, 158–167. [Google Scholar] [CrossRef]
- De Groot, J.I.; Steg, L. Value orientations and environmental beliefs in five countries: Validity of an instrument to measure egoistic, altruistic and biospheric value orientations. J. Cross Cult. Psychol. 2007, 38, 318–332. [Google Scholar] [CrossRef]
- De Groot, J.I.; Steg, L. Value orientations to explain beliefs related to environmental significant behavior: How to measure egoistic, altruistic, and biospheric value orientations. Environ. Behav. 2008, 40, 330–354. [Google Scholar] [CrossRef]
- De Groot, J.I.; Steg, L.; Keizer, M.; Farsang, A.; Watt, A. Environmental values in post-socialist Hungary: Is it useful to distinguish egoistic, altruistic and biospheric values? Sociol. Rev. 2012, 48, 421–440. [Google Scholar] [CrossRef]
- Kareklas, I.; Carlson, J.R.; Muehling, D.D. “I eat organic for my benefit and yours”: Egoistic and altruistic considerations for purchasing organic food and their implications for advertising strategists. J. Advert. 2014, 43, 18–32. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Synthesis Report; The Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014; p. 26. [Google Scholar]
- Steg, L.; Bolderdijk, J.W.; Keizer, K.; Perlaviciute, G. An integrated framework for encouraging pro-environmental behaviour: The role of values, situational factors and goals. J. Environ. Psychol. 2014, 38, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Sarpong, K.A.; Amankwaa, G.; Frimpong, O.; Xu, W.; Cao, Y.; Ni, X.; Nkrumah, N.K. Consumers’ purchasing intentions for efficient water-saving products: The mediating effects of altruistic and egoistic values. J. Water Supply Res. T. 2021, 70, 226–238. [Google Scholar] [CrossRef]
- Aprile, M.C.; Fiorillo, D. Water conservation behavior and environmental concerns: Evidence from a representative sample of Italian individuals. J. Clean. Prod. 2017, 159, 119–129. [Google Scholar] [CrossRef]
- Schultz, P.W. The structure of environmental concern: Concern for self, other people, and the biosphere. J. Environ. Psychol. 2001, 21, 327–339. [Google Scholar] [CrossRef] [Green Version]
- van den Bergh, B.; Griskevicius, V.; Tybur, J. Consumer choices: Going green to be seen. RSM Discov. Mgmt. Knowl. 2010, 4, 10–11. [Google Scholar]
- Schwartz, S.H. Universals in the content and structure of values: Theoretical advances and empirical tests in 20 countries. Adv. Exp. Soc. Psychol. 1992, 25, 1–65. [Google Scholar]
- Prakash, G.; Choudhary, S.; Kumar, A.; Garza-Reyes, J.A.; Khan, S.A.R.; Panda, T.K. Do altruistic and egoistic values influence consumers’ attitudes and purchase intentions towards eco-friendly packaged products? An empirical investigation. J. Retail. Consum. Serv. 2019, 50, 163–169. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Lobo, A.; Greenland, S. Pro-environmental purchase behaviour: The role of consumers’ biospheric values. J. Retail. Consum. Serv. 2016, 33, 98–108. [Google Scholar] [CrossRef]
- Kiatkawsin, K.; Han, H. Young Travelers’ intention to behave pro-environmentally: Merging the value-belief-norm theory and the expectancy theory. Tour. Manag. 2017, 59, 76–88. [Google Scholar] [CrossRef]
- Swami, V.; Chamorro-Premuzic, T.; Snelgar, R.; Furnham, A. Egoistic, altruistic, and biospheric environmental concerns: A path analytic investigation of their determinants. Scand. J. Psychol. 2010, 51, 139–145. [Google Scholar] [CrossRef]
- Mersha, A.A.; van Laerhoven, F. A gender approach to understanding the differentiated impact of barriers to adaptation: Responses to climate change in rural Ethiopia. Reg. Environ. Chang. 2016, 16, 1701–1713. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Molina, M.; Fernández-Sainz, A.; Izagirre-Olaizola, J. Does gender make a difference in pro-environmental behavior? The case of the Basque Country University students. J. Clean. Prod. 2018, 176, 89–98. [Google Scholar] [CrossRef]
- Saga, R.; Kunimoto, R. LDA-based path model construction process for structure equation modeling. Artif. Life Robot. 2016, 21, 155–159. [Google Scholar] [CrossRef]
- Ray, A.; Bala, P.K.; Dwivedi, Y.K. Exploring values affecting e-Learning adoption from the user-generated-content: A consumption-value-theory perspective. J. Strateg. Mark. 2020, 1–23. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, X. Social media analytics for natural disaster management. Int. J. Geogr. Inf. Sci. 2018, 32, 49–72. [Google Scholar] [CrossRef]
- Salloum, S.A.; Al-Emran, M.; Monem, A.A.; Shaalan, K. A survey of text mining in social media: Facebook and Twitter perspectives. Adv. Sci. Technol. Eng. Syst. J 2017, 2, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; Zhang, H. A Text Mining Research Based on LDA Topic Modelling. In Proceedings of the International Conference on Computer Science, Engineering and Information Technology, Vienna, Austria, 21–22 May 2016. [Google Scholar]
- Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; Zhao, L. Latent Dirichlet Allocation (LDA) and Topic modeling: Models, applications, a survey. Multimed. Tools Appl. 2019, 78, 15169–15211. [Google Scholar] [CrossRef] [Green Version]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- He, W.; Zha, S.; Li, L. Social media competitive analysis and text mining: A case study in the pizza industry. Int. J. Inf. Manag. Sci. 2013, 33, 464–472. [Google Scholar] [CrossRef]
- Krishnan, N.; Thenmozhi, S.; ThamizhArasan, R. Normalization of text in social media: Analyzing the need for pre-processing techniques and its roles. Int. J. Pure Appl. Math. 2018, 119, 2033–2036. [Google Scholar]
- Saif, H.; Fernandez, M.; He, Y.; Alani, H. On stopwords, filtering and data sparsity for sentiment analysis of twitter. In Proceedings of the ISWC 2014 Posters & Demonstrations Track. 3th International Semantic Web Conference (ISWC 2014), Riva del Garda, Italy, 21 October 2014. [Google Scholar]
- Valls Martínez, M.d.C.; Ramírez-Orellana, A. Patient satisfaction in the Spanish national health service: Partial least squares structural equation modeling. Int. J. Environ. Res. Public Health 2019, 16, 4886. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.; Boudreau, M.-C. Structural equation modeling and regression: Guidelines for research practice. Commun. AIS 2000, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares; Springer: Berlin, Germany, 2010; pp. 655–690. [Google Scholar]
- O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 821. [Google Scholar]
- Shiau, W.-L.; Chau, P.Y. Management, Understanding Behavioral Intention to Use A Cloud Computing Classroom: A Multiple Model Comparison Approach. Inf. Manag. 2016, 53, 355–365. [Google Scholar] [CrossRef]
- Hu, L.-T.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychol. Methods 1998, 3, 424. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Sage publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Chen, M.-L.; Chou, L.-N.; Zheng, Y.-C. Providing a Clean Environment for Adolescents: Evaluation of the Tobacco Hazards Prevention Act in Taiwan. Int. J. Environ. Res. Public Health 2017, 14, 634. [Google Scholar] [CrossRef] [Green Version]
- Lam, J.C.; Cheung, L.Y.; Wang, S.; Li, V.O. Stakeholder concerns of air pollution in Hong Kong and policy implications: A big-data computational text analysis approach. Environ. Sci. Policy 2019, 101, 374–382. [Google Scholar] [CrossRef]
- MOEA. Energy Statistics Handbook 2018. Available online: https://www.moeaboe.gov.tw/ECW/english/content/SubMenu.aspx?menu_id=1537 (accessed on 1 April 2021).
- Lo, W.-C.; Shie, R.-H.; Chan, C.-C.; Lin, H.-H. The Attributable Mortality Burden Due to PM2.5 Exposure in Taiwan. Formosan J. Med. 2016, 20, 396–405. [Google Scholar]
- Heinrichs, H.U.; Schumann, D.; Vögele, S.; Biß, K.H.; Shamon, H.; Markewitz, P.; Többen, J.; Gillessen, B.; Gotzens, F.; Ernst, A. Integrated assessment of a phase-out of coal-fired power plants in Germany. Energy 2017, 126, 285–305. [Google Scholar] [CrossRef]
- Severnini, E. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s. Nat. Energy 2017, 2, 1–9. [Google Scholar] [CrossRef]
- De Groot, J.I.; Steg, L. Mean or green: Which values can promote stable pro-environmental behavior? Conserv. Lett. 2009, 2, 61–66. [Google Scholar] [CrossRef]
- Crompton, T.; Kasser, T. Meeting Environmental Challenges: The Role of Human Identity; World Wide Fund for Nature Godalming: Woking, UK, 2009. [Google Scholar]
- Song, S.Y.; Kim, Y.-K. Doing good better: Impure altruism in green apparel advertising. Sustainability 2019, 11, 5762. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.-Y.; Huang, Y.-H.; Wu, J.-H. Impact of electricity shortages during energy transitions in Taiwan. Energy 2018, 151, 622–632. [Google Scholar] [CrossRef]
- Bickerstaff, K. Risk perception research: Socio-cultural perspectives on the public experience of air pollution. Environ. Int. 2004, 30, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Bain, P.G.; Hornsey, M.J.; Bongiorno, R.; Jeffries, C. Promoting pro-environmental action in climate change deniers. Nat. Clim. Chang 2012, 2, 600–603. [Google Scholar] [CrossRef]
- Bord, R.J.; O’Connor, R.E. The gender gap in environmental attitudes: The case of perceived vulnerability to risk. Soc. Sci. Q. 1997, 78, 830–840. [Google Scholar]
- Anderson, M. Men Catch up with Women on Overall Social Media Use; Pew Research Center: Washington, DC, USA, 2015. [Google Scholar]
- Lindsey, L.L. The sociology of gender: Theoretical perspectives and feminist frameworks. In Gender Roles: A Sociological Perspective; Routledge: New York, NY, USA, 2005; pp. 1–21. [Google Scholar]
- Zelezny, L.C.; Chua, P.P.; Aldrich, C. New ways of thinking about environmentalism: Elaborating on gender differences in environmentalism. J. Soc. Issues 2000, 56, 443–457. [Google Scholar] [CrossRef]
- Bright, J.; Margetts, H.; Hale, S.A.; Yasseri, T. The Use of Social Media for Research and Analysis: A Feasibility Study; Department for Work and Pensions: London, UK, 2014. [Google Scholar]
Latent Variables | Item Code | Item Name | Count (Men/Women) | Top Five Keywords Belonging to Each Topic |
---|---|---|---|---|
Egoistic Concerns | t3 | Fuel | 55 (36/19) | U.S., Taiwan, natural, fuel, smoking forbidden |
t4 | Mask | 146 (99/47) | air, air pollution, air quality, mask, research | |
t5 | E-cigarette | 50 (36/14) | e-cigarette, tobacco, Taiwan, harm reduction, cigarette | |
t9 | Smoking | 140 (83/57) | smokes, cigarette smoke, cigarette butts, smells, school | |
Altruistic Concerns | t6 | Coal-fired power generation | 61 (42/19) | shen’ao power plant, air poolution, govermenal, EPA(*), coal burning |
t7 | Refuse combustion | 62 (39/23) | air, garbage, earth, burning, joss paper | |
t11 | Power generation | 68 (50/18) | tai-power, power plant, power unit, generator set, gas | |
Biophere Concerns | t1 | Policy ambiguity | 30 (26/4) | plebiscite, green with nuclear, nuclear, gavernment, cosignatory |
t8 | Climate change | 83 (63/20) | climate, energy, global, climate change, renewable energy | |
Adaptation Strategies | t2 | Wind power generation policy | 64 (39/25) | Taiwan, wind power, offshore wind power, polar bear, |
t10 | Allergy and healthy | 165 (56/109) | allergy, nose, dortor, feel | |
t12 | Air purifier products | 119 (52/67) | air purifier, allergy, recommad, air filter |
Hypothesis | Sample Mean (M) | Std. Deviation (STDEV) | Path Coefficients (β) | t Statistics | p Values | VIF |
---|---|---|---|---|---|---|
H1 (AC→EC) | 0.680 | 0.018 | 0.678 | 37.433 | 0.000 | 1.000 |
H2 (AC→BC) | 0.668 | 0.020 | 0.667 | 32.721 | 0.000 | 1.000 |
H3 (EC→AS) | 0.351 | 0.037 | 0.351 | 9.352 | 0.000 | 2.203 |
H4 (AC→AS) | 0.277 | 0.041 | 0.277 | 6.776 | 0.000 | 2.279 |
H5 (BC→AS) | 0.178 | 0.039 | 0.177 | 4.517 | 0.000 | 1.966 |
Hypotheses | Results |
---|---|
H1 (AC → EC) | Supported |
H2 (AC → BC) | Supported |
H3 (EC → AS) | Supported |
H4 (AC → AS) | Supported |
H5 (BC → AS) | Supported |
Relationships | Direct | Indirect | Total |
---|---|---|---|
H1 (AC → EC) | 0.678 | N.A. | 0.678 |
H2 (AC → BC) | 0.667 | N.A. | 0.667 |
H3 (EC → AS) | 0.351 | N.A. | 0.351 |
H4 (AC → AS) | 0.277 | 0.356 | 0.277 |
H5 (BC → AS) | 0.177 | N.A. | 0.177 |
Relationships | Path Coefficients-Diff (Men–Women) | p-Value (Men–Women) |
---|---|---|
H6a (AC → EC) | 0.004 | 0.540 |
H6b (AC → BC) | 0.107 | 0.997 |
H6c (EC → AS) | 0.150 | 0.044 * |
H6d (AC → AS) | 0.163 | 0.036 * |
H6e (BC → AS) | 0.128 | 0.919 |
Rank | Men | Women |
---|---|---|
1 | EC → AS | BC → AS |
2 | AC → AS | EC → AS |
3 | BC → AS | AC → AS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-L.; Huang, C.-Y.; Hsiao, Y.-H. Using Social Media Mining and PLS-SEM to Examine the Causal Relationship between Public Environmental Concerns and Adaptation Strategies. Int. J. Environ. Res. Public Health 2021, 18, 5270. https://doi.org/10.3390/ijerph18105270
Yang C-L, Huang C-Y, Hsiao Y-H. Using Social Media Mining and PLS-SEM to Examine the Causal Relationship between Public Environmental Concerns and Adaptation Strategies. International Journal of Environmental Research and Public Health. 2021; 18(10):5270. https://doi.org/10.3390/ijerph18105270
Chicago/Turabian StyleYang, Chia-Lee, Chi-Yo Huang, and Yi-Hao Hsiao. 2021. "Using Social Media Mining and PLS-SEM to Examine the Causal Relationship between Public Environmental Concerns and Adaptation Strategies" International Journal of Environmental Research and Public Health 18, no. 10: 5270. https://doi.org/10.3390/ijerph18105270
APA StyleYang, C. -L., Huang, C. -Y., & Hsiao, Y. -H. (2021). Using Social Media Mining and PLS-SEM to Examine the Causal Relationship between Public Environmental Concerns and Adaptation Strategies. International Journal of Environmental Research and Public Health, 18(10), 5270. https://doi.org/10.3390/ijerph18105270