Virtual Reality-Based Cognitive Stimulation on People with Mild to Moderate Dementia due to Alzheimer’s Disease: A Pilot Randomized Controlled Trial
Abstract
:1. Introduction
1.1. Alzheimer’s Disease
1.2. Cognitive Stimulation and the Use of Virtual Reality
2. Materials and Methods
2.1. Trial Design
2.2. Recruitment
2.3. Eligibility Criteria
2.4. Intervention
2.5. Outcomes
2.5.1. Primary Outcomes
2.5.2. Secondary Outcomes
2.6. Procedure
2.7. Statistical Analysis
3. Results
3.1. Sample Description
3.2. Primary Outcomes of Intervention
3.3. Secondary Outcomes of Intervention
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, R.; Pilozzi, A.; Huang, X. Current Cognition Tests, Potential Virtual Reality Applications, and Serious Games in Cognitive Assessment and Non-Pharmacological Therapy for Neurocognitive Disorders. JCM 2020, 9, 3287. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on the Public Health Response to Dementia 2017–2025; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- World Health Organization, Dementia. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 20 March 2021).
- PORDATA. Indicadores de Envelhecimento (Indicators of Ageing). 2021. Available online: https://www.pordata.pt/Portugal/Indicadores+de+envelhecimento-526 (accessed on 20 March 2021).
- OECD. Health at a Glance 2019: OECD Indicators; OECD Publishing: Paris, France, 2019; Available online: https://doi.org/10.1787/4dd50c09-en (accessed on 21 March 2021).
- Lesuis, S.L.; Hoeijmakers, L.; Korosi, A.; de Rooij, S.R.; Swaab, D.F.; Kessels, H.W.; Krugers, H.J. Vulnerability and resilience to Alzheimer’s disease: Early life conditions modulate neuropathology and determine cognitive reserve. Alzheimer’s Res. Ther. 2018, 10, 95. [Google Scholar] [CrossRef]
- Apostolova, L.G. Alzheimer Disease. Contin. Lifelong Learn. Neurol. 2016, 22, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s Disease: Past, Present, and Future. J. Int. Neuropsychol. Soc. 2017, 23, 818–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdev, P.S.; Blacker, D.; Blazer, D.G.; Ganguli, M.; Jeste, D.V.; Paulsen, J.S.; Petersen, R.C. Classifying Neurocognitive Disorders: The DSM-5 Approach. Nat. Rev. Neurol. 2014, 10, 634–642. [Google Scholar] [CrossRef]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild Cognitive Impairment: Clinical Characterization and Outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Schneider, L.S.; Mangialasche, F.; Andreasen, N.; Feldman, H.; Giacobini, E.; Jones, R.; Mantua, V.; Mecocci, P.; Pani, L.; Winblad, B.; et al. Clinical Trials and Late-Stage Drug Development for Alzheimer’s Disease: An Appraisal from 1984 to 2014. J. Intern. Med. 2014, 275, 251–283. [Google Scholar] [CrossRef]
- Vemuri, P.; Fields, J.; Peter, J.; Klöppel, S. Cognitive interventions in Alzheimer’s and Parkinson’s diseases: Emerging mechanisms and role of imaging. Curr. Opin. Neurol. 2016, 29, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Woods, B.; Aguirre, E.; Spector, A.E.; Orrell, M. Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst. Rev. 2012, 2, CD005562. [Google Scholar] [CrossRef]
- Aguirre, E.; Woods, R.T.; Spector, A.; Orrell, M. Cognitive stimulation for dementia: A systematic review of the evidence of effectiveness from randomised controlled trials. Ageing Res. Rev. 2013, 12, 253–262. [Google Scholar] [CrossRef]
- Spector, A.; Woods, B.; Orrell, M. Cognitive stimulation for the treatment of Alzheimer’s disease. Expert Rev. Neurother. 2008, 8, 751–757. [Google Scholar] [CrossRef]
- Moyle, W.; Jones, C.; Dwan, T.; Petrovich, T. Effectiveness of a Virtual Reality Forest on People With Dementia: A Mixed Methods Pilot Study. Gerontologist 2018, 58, 478–487. [Google Scholar] [CrossRef] [Green Version]
- Man, D.W.; Chung, J.C.; Lee, G.Y. Evaluation of a virtual reality-based memory training programme for Hong Kong Chinese older adults with questionable dementia: A pilot study. Int. J. Geriatr. Psychiatry 2012, 27, 513–520. [Google Scholar] [CrossRef]
- Moreno, A.; Wall, K.J.; Thangavelu, K.; Craven, L.; Ward, E.; Dissanayaka, N.N. A systematic review of the use of virtual reality and its effects on cognition in individuals with neurocognitive disorders. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 834–850. [Google Scholar] [CrossRef] [PubMed]
- Herniack, E.P. Not just fun and games: Applications of virtual reality in the identification and rehabilitation of cognitive disorders of the elderly. Disabil. Rehabil. Assist. Technol. 2011, 6, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Coyle, H.; Traynor, V.; Solowij, N. Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: Systematic review of the literature. Am. J. Geriatr. Psychiatry 2015, 23, 335–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riva, G.; Mancuso, V.; Cavedon, S.; Stramba-Badiale, C. Virtual reality in neurorehabilitation: A review of its effects on multiple cognitive domains. Expert Rev. Med. Devices 2020, 17, 1035–1061. [Google Scholar] [CrossRef] [PubMed]
- Gamito, P.; Oliveira, J.; Brito, R.; Lopes, P.; Rodelo, L.; Pinto, L.; Morais, D. Evaluation of Cognitive Functions through the Systemic Lisbon Battery: Normative Data. Methods Inf. Med. 2016, 55, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Gamito, P.; Oliveira, J.; Alves, C.; Santos, N.; Coelho, C.; Brito, R. Virtual reality-based cognitive stimulation to improve cognitive functioning in community elderly: A controlled study. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 150–156. [Google Scholar] [CrossRef]
- Gamito, P.; Oliveira, J.; Caires, C.; Morais, D.; Brito, R.; Lopes, P.; Saraiva, T.; Soares, F.; Sottomayor, C.; Barata, F.; et al. Virtual kitchen test. Assessing frontal lobe functions in patients with alcohol dependence syndrome. Methods Inf. Med. 2015, 54, 122–126. [Google Scholar]
- Gamito, P.; Oliveira, J.; Morais, D.; Coelho, C.; Santos, N.; Alves, C.; Galamba, A.; Soeiro, M.; Yerra, M.; French, H.; et al. Cognitive stimulation of elderly individuals with instrumental virtual reality-based activities of daily life: Pre-post treatment study. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.; Pang, Y.; Kim, J.H. The effectiveness of virtual reality for people with mild cognitive impairment or dementia: A meta-analysis. BMC Psychiatry 2019, 19, 219. [Google Scholar]
- Oliveira, J.; Gamito, P.; Lopes, B.; Silva, A.R.; Galhordas, J.; Pereira, E.; Ramos, E.; Silva, A.P.; Jorge, Á.; Fantasia, A. Computerized cognitive training using virtual reality on everyday life activities for patients recovering from stroke. Disabil. Rehabil. Assist. Technol. 2020, 7, 1–6. [Google Scholar]
- Dubois, R.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A Frontal Assessment Battery at bedside. Neurology 2000, 55, 1621–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, C.F.; Meireles, L.P.; Fonseca, R.; Castro, S.R.; Garret, C. The Frontal Assessment Battery (FAB) in Parkinson’s disease and correlations with formal measures of executive functioning. J. Neurol. 2008, 255, 1756–1761. [Google Scholar] [CrossRef] [PubMed]
- Army Individual Test Battery. Manual of Directions and Scoring; War Department, Adjutant General’s Office: Washington, DC, USA, 1944. [Google Scholar]
- Cavaco, S.; Gonçalves, A.; Pinto, C.; Almeida, E.; Gomes, F.; Moreira, I.; Fernandes, J.; Teixeira-Pinto, A. Trail Making Test: Regression-based norms for the Portuguese population. Arch. Clin. Neuropsychol. 2013, 28, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Santana, I.; Duro, D.; Lemos, R.; Costa, V.; Pereira, M.; Simões, M.R.; Freitas, S. Mini-Mental State Examination: Avaliação dos Novos Dados Normativos no Rastreio e Diagnóstico do Défice Cognitivo [Mini-Mental State Examination: Screening and Diagnosis of Cognitive Decline, Using New Normative Data]. Acta Med. Port. 2016, 29, 240–248. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, M.; Silva, A.P.; Botelho, M.; Leitão, O.; Castro-Caldas, A.; Garcia, C. Adaptação à população portuguesa da tradução do Mini Mental State Examination. Rev. Port. Neurol. 1994, 1, 9–10. [Google Scholar]
- Tuokko, H.; Hadjistavropoulos, T.; Miller, J.A.; Horton, A.; Beattie, B.L. The Clock Test: Administration and Scoring Manual; Mental Health Systems: Toronto, Canada, 1995. [Google Scholar]
- Santana, I.; Duro, D.; Freitas, S.; Alves, L.; Simões, M.R. The Clock Drawing Test: Portuguese norms, by age and education, for three different scoring systems. Arch. Clin. Neuropsychol. 2013, 28, 375–387. [Google Scholar] [CrossRef] [Green Version]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar]
- Graf, C.; Hartford Institute for Geriatric Nursing. The Lawton instrumental activities of daily living (IADL) scale. Medsurg Nurs. 2008, 17, 343–344. [Google Scholar]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef]
- Hughes, C.P.; Berg, L.; Danziger, W.L.; Coben, L.A.; Martin, R.L. A new clinical scale for the staging of dementia. Br. J. Psychiatry 1982, 140, 566–572. [Google Scholar] [CrossRef]
- Morris, J. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 26, 863–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1998. [Google Scholar]
- Lenhard, W.; Lenhard, A. Calculation of Effect Sizes; Psychometrica: Dettelbach, Germany, 2016; Available online: https://www.psychometrica.de/effect_size.html (accessed on 7 May 2021).
- Thapa, N.; Park, H.J.; Yang, J.G.; Son, H.; Jang, M.; Lee, J.; Kang, S.W.; Park, K.W.; Park, H. The Effect of a Virtual Reality-Based Intervention Program on Cognition in Older Adults with Mild Cognitive Impairment: A Randomized Control Trial. J. Clin. Med. 2020, 29, 1283. [Google Scholar]
- Mondini, S.; Madella, I.; Zangrossi, A.; Bigolin, A.; Tomasi, C.; Michieletto, M.; Mapelli, D. Cognitive reserve in dementia: Implications for cognitive training. Front. Aging Neurosci. 2016, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Stern, Y. Cognitive Reserve in Ageing and Alzheimer’s Disease. Lancet Neurol 2012, 11, 1006–1012. [Google Scholar] [CrossRef] [Green Version]
- Landenberger, T.; Cardoso, N.D.O.; Oliveira, C.R.D.; Argimon, I.I.D.L. Instruments for measuring cognitive reserve: A systematic review. Psicol. Teor. Prática 2019, 21, 58–74. [Google Scholar]
- Serino, S.; Pedroli, E.; Tuena, C.; De Leo, G.; Stramba-Badiale, M.; Goulene, K.; Mariotti, N.G.; Riva, G. A Novel Virtual Reality-Based Training Protocol for the Enhancement of the “Mental Frame Syncing” in Individuals with Alzheimer’s Disease: A Development-of-Concept Trial. Front. Aging Neurosci. 2017, 27, 240–249. [Google Scholar]
- Miller, H.L.; Bugnariu, N.L. Level of Immersion in Virtual Environments Impacts the Ability to Assess and Teach Social Skills in Autism Spectrum Disorder. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 246–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millum, J.; Grady, C. The Ethics of Placebo-Controlled Trials: Methodological Justifications. Contemp. Clin. Trials 2013, 36, 510–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boot, W.R.; Simons, D.J.; Stothart, C.; Stutts, C. The Pervasive Problem With Placebos in Psychology: Why Active Control Groups Are Not Sufficient to Rule Out Placebo Effects. Perspect. Psychol. Sci. 2013, 8, 445–454. [Google Scholar] [CrossRef] [PubMed]
Sociodemographic Variables | Experimental Group | Control Group |
---|---|---|
n | n | |
Gender | ||
1.Male | 3 | 2 |
2.Female | 7 | 5 |
Education | ||
1.Below than primary school | 2 | 0 |
2.Primary school | 6 | 5 |
3.Higher than primary school | 2 | 2 |
Civil status | ||
1.Married | 2 | 0 |
2.Divorced | 1 | 3 |
3.Widowed | 7 | 4 |
Clinical Dementia Rating | Experimental Group | Control Group | ||||
---|---|---|---|---|---|---|
Mode | Min. | Max. | Mode | Min. | Max. | |
Memory | 1 | 0.5 | 2 | 1 | 1 | 2 |
Orientation | 0.5 | 0.5 | 3 | 2 | 0.5 | 2 |
Judgment and problem solving | 2 | 0.5 | 3 | 1 | 1 | 3 |
Community activities | 2 | 0.5 | 2 | 2 | 1 | 2 |
Home activities | 1 | 0.5 | 2 | 1 | 1 | 2 |
Personal care | 1 | 0 | 2 | 2 | 0 | 2 |
Outcomes | Experimental Group | Control Group | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Post-Test | Baseline | Post-Test | ||||||
M | SD | M | SD | M | SD | M | SD | F | |
FAB | 9.30 | 4.64 | 10.00 | 4.989 | 8.00 | 5.292 | 7.71 | 4.821 | 2.032 |
MMSE | 18.60 | 6.484 | 19.80 | 7.269 | 13.00 | 7.528 | 12.43 | 7.185 | 4.930 * |
IADL | 17.20 | 4.050 | 16.60 | 5.190 | 10.71 | 3.861 | 10.29 | 2.984 | 0.015 |
Outcomes | Experimental Group1 | Control Group2 | Z1 | Z2 | ||||
---|---|---|---|---|---|---|---|---|
(+) Change | (−) Change | (0) Change | (+) Change | (−) Change | (0) Change | |||
TMT-A | 4 | 0 | 6 | 0 | 0 | 7 | 0.063 | 1.000 |
TMT-B | 2 | 0 | 8 | 0 | 0 | 7 | 0.500 | 1.000 |
CDT | 1 | 1 | 8 | 0 | 0 | 7 | 0.000 | 0.000 |
GDS-15 | 1 | 5 | 4 | 1 | 2 | 4 | −1.897 | −0.272 |
CDR | 0 | 0 | 10 | 0 | 0 | 7 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.; Gamito, P.; Souto, T.; Conde, R.; Ferreira, M.; Corotnean, T.; Fernandes, A.; Silva, H.; Neto, T. Virtual Reality-Based Cognitive Stimulation on People with Mild to Moderate Dementia due to Alzheimer’s Disease: A Pilot Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 5290. https://doi.org/10.3390/ijerph18105290
Oliveira J, Gamito P, Souto T, Conde R, Ferreira M, Corotnean T, Fernandes A, Silva H, Neto T. Virtual Reality-Based Cognitive Stimulation on People with Mild to Moderate Dementia due to Alzheimer’s Disease: A Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2021; 18(10):5290. https://doi.org/10.3390/ijerph18105290
Chicago/Turabian StyleOliveira, Jorge, Pedro Gamito, Teresa Souto, Rita Conde, Maria Ferreira, Tatiana Corotnean, Adriano Fernandes, Henrique Silva, and Teresa Neto. 2021. "Virtual Reality-Based Cognitive Stimulation on People with Mild to Moderate Dementia due to Alzheimer’s Disease: A Pilot Randomized Controlled Trial" International Journal of Environmental Research and Public Health 18, no. 10: 5290. https://doi.org/10.3390/ijerph18105290
APA StyleOliveira, J., Gamito, P., Souto, T., Conde, R., Ferreira, M., Corotnean, T., Fernandes, A., Silva, H., & Neto, T. (2021). Virtual Reality-Based Cognitive Stimulation on People with Mild to Moderate Dementia due to Alzheimer’s Disease: A Pilot Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 18(10), 5290. https://doi.org/10.3390/ijerph18105290