The Influence of Anthropometric Indices and Intermediary Determinants of Hypertension in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Variables
2.3. Data Analyses
3. Results
3.1. Descriptive Analysis on the Distributions of Sociodemographic and Anthropometric Characteristics of Males and Females
3.2. Multivariate Logistic Regression Analyses on Anthropometric, Sociodemographic and Behavioural Factors Associated with Hypertension
4. Discussion
4.1. Strengths and Limitations
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- Islam, J.Y.; Zaman, M.M.; Haq, S.A.; Ahmed, S.; Al-Quadir, Z. Epidemiology of hypertension among bangladeshi adults using the 2017 ACC/AHA hypertension clinical practice guidelines and joint national committee 7 guidelines. J. Human Hypertens. 2018, 32, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Alam, D.S.; Chowdhury, M.A.H.; Siddiquee, A.T.; Ahmed, S.; Niessen, L.W. Awareness and control of hypertension in bangladesh: Follow-up of a hypertensive cohort. BMJ Open 2014, 4, e004983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanam, M.A.; Lindeboom, W.; Koehlmoos, T.L.P.; Alam, D.S.; Niessen, L.; Milton, A.H. Hypertension: Adherence to treatment in rural Bangladesh—Findings from a population-based study. Global Health Action 2014, 7, 25028. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; Amann, M.; Anderson, H.R.; Andrews, K.G.; Aryee, M.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Olives, C.; Myerson, R.; Mokdad, A.H.; Murray, C.J.L.; Lim, S.S. Prevalence, awareness, treatment, and control of hypertension in United States counties, 2001–2009. PLoS ONE 2013, 8, e60308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the global burden of disease study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef]
- Chowdhury, M.A.B.; Uddin, M.J.; Haque, M.R.; Ibrahimou, B. Hypertension among adults in Bangladesh: Evidence from a national cross-sectional survey. BMC Cardiovasc. Disord. 2016, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, K.N.; Mainuddin, A.K.M.; Wahiduzzaman, M.; Islam, S.M.S. Serum lipid profile and its association with hypertension in Bangladesh. Vasc. Health Risk Manag. 2014, 10, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.; Islam, S.; Pais, P.; Reddy, S.; Dorairaj, P.; Kazmi, K.; Pandey, M.R.; Haque, S.; Mendis, S.; Rangarajan, S.; et al. Risk factors for early myocardial infarction in South Asians compared with individuals in other countries. JAMA 2007, 297, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, K.; Lear, S.; Islam, S.; Mony, P.; Dehghan, M.; Li, W.; Rosengren, A.; Lopez-Jaramillo, P.; Diaz, R.; Oliveira, G.; et al. Prevalence of a healthy lifestyle among individuals with cardiovascular disease in high-, middle- and low-income countries: The prospective urban rural epidemiology (PURE) study. JAMA 2013, 309, 1613–1621. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; Abu-Rmeileh, N.M.; et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Hanif, A.A.M.; Shamim, A.A.; Hossain, M.M.; Hasan, M.; Khan, M.S.A.; Hossaine, M.; Ullah, M.A.; Sarker, S.K.; Rahman, S.M.M.; Mitra, D.K.; et al. Gender-specific prevalence and associated factors of hypertension among elderly Bangladeshi people: Findings from a nationally representative cross-sectional survey. BMJ Open 2021, 11, e038326. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Williams, G.; Al Mamun, A. Gender differences in hypertension awareness, antihypertensive use and blood pressure control in Bangladeshi adults: Findings from a national cross-sectional survey. J Health Popul. Nutr. 2017, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, T.; Pervin, S.; Tanim, M.I.A.; Niessen, L.; Islam, A. Bangladesh policy on prevention and control of non-communicable diseases: A policy analysis. BMC Public Health 2017, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, P.; Pillai, R. Overnutrition: Current scenario and combat strategies. Indian J. Med. Res. 2019, 149, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Gaziano, T.A.; Abrahams-Gessel, S.; Denman, C.A.; Montano, C.M.; Khanam, M.; Puoane, T.; Levitt, N.S. An assessment of community health workers’ ability to screen for cardiovascular disease risk with a simple, non-invasive risk assessment instrument in Bangladesh, Guatemala, Mexico, and South Africa: An observational study. Lancet Global Health 2015, 3, e556–e563. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, B.; Munir, S.B.; Diep, L.M.; Siddiquee, T.; Habib, S.H.; Samad, M.A.; Khan, A.K.A.; Hussain, A. Anthropometric indicators of obesity for identifying cardiometabolic risk factors in a rural Bangladeshi population. J. Diabetes Investig. 2013, 4, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H.; Talukder, S.H. Nutrition transition in Bangladesh: Is the country ready for this double burden. Obes. Rev. 2013, 14, 126–133. [Google Scholar] [CrossRef]
- Rosengren, A.; Smyth, A.; Rangarajan, S.; Ramasundarahettige, C.; Bangdiwala, S.I.; AlHabib, K.F.; Avezum, A.; Boström, K.B.; Chifamba, J.; Gulec, S.; et al. Socioeconomic status and risk of cardiovascular disease in 20 low-income, middle-income, and high-income countries: The prospective urban rural epidemiologic (PURE) study. Lancet Global Health 2019, 7, e748–e760. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011; ISBN 978-92-4-150149-1. [Google Scholar]
- World Health Organisation. Bangladesh-STEPS 2018-Data Dictionary. Available online: https://extranet.who.int/ncdsmicrodata/index.php/catalog/770/data_dictionary (accessed on 21 March 2021).
- Riaz, B.K.; Islam, M.Z.; Islam, A.N.M.S.; Zaman, M.M.; Hossain, M.A.; Rahman, M.M.; Khanam, F.; Amin, K.M.B.; Noor, I.N. Risk factors for non-communicable diseases in Bangladesh: Findings of the population-based cross-sectional national survey 2018. BMJ Open 2020, 10, e041334. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Rahman, M.M.; Rahman, M.R.; Bhuiyan, M.; Karim, M.N.; Chowdhury, M.A. Prevalence of risk factors for non-communicable diseases in Bangladesh: Results from STEPS survey 2010. Indian J. Public Health 2016, 60, 17. [Google Scholar] [CrossRef]
- Fraiman, R.; Justel, A.; Svarc, M. Selection of variables for cluster analysis and classification rules. J. Am. Stat. Assoc. 2008, 103, 1294–1303. [Google Scholar] [CrossRef]
- Sigelman, C.K.; Rider, E.A. Life-Span Human Development; Cengage Learning: Boston, MA, USA, 2014; ISBN 978-1-285-45431-3. [Google Scholar]
- Chalmers, J.; MacMahon, S.; Mancia, G.; Whitworth, J.; Beilin, L.; Hansson, L.; Neal, B.; Rodgers, A.; Ni Mhurchu, C.; Clark, T. 1999 World Health Organization-International Society of Hypertension Guidelines for the Management of Hypertension. Guidelines Sub-Committee of the World Health Organization. Clin Exp Hypertens 1999, 21, 1009–1060. [Google Scholar] [CrossRef] [PubMed]
- NCD risk factor collaboration (NCD-RisC) trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [CrossRef] [Green Version]
- Ekoru, K.; Murphy, G.A.V.; Young, E.H.; Delisle, H.; Jerome, C.S.; Assah, F.; Longo–Mbenza, B.; Nzambi, J.P.D.; On’Kin, J.B.K.; Buntix, F.; et al. Deriving an optimal threshold of waist circumference for detecting cardiometabolic risk in Sub-Saharan Africa. Int. J. Obes 2018, 42, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Nuttall, F.Q. Body mass index. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanam, R.; Ahmed, S.; Rahman, S.; Kibria, G.M.A.; Syed, J.R.R.; Khan, A.M.; Moin, S.M.I.; Ram, M.; Gibson, D.G.; Pariyo, G.; et al. Prevalence and factors associated with hypertension among adults in rural sylhet district of Bangladesh: A cross-sectional study. BMJ Open 2019, 9, e026722. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood, A.M.; Carpenter, J.R. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ 2009, 338, b2393. [Google Scholar] [CrossRef] [PubMed]
- Chao, Y.-C.E.; Zhao, Y.; Kupper, L.L.; Nylander-French, L.A. Quantifying the relative importance of predictors in multiple linear regression analyses for public health studies. J. Occup. Environ. Hyg. 2008, 5, 519–529. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Lumley, T. Survey Package | R Documentation. Available online: https://www.rdocumentation.org/packages/survey/versions/4.0 (accessed on 27 February 2021).
- Wickham, H.; François, R.; Henry, L.; Müller, K. . RStudio Dplyr: A Grammar of Data Manipulation. R Package Version 0.4; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wiley, J.F. Extraoperators: Extra Binary Relational and Logical Operators; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Islam, F.; Kathak, R.R.; Sumon, A.H.; Molla, N.H. Prevalence and associated risk factors of general and abdominal obesity in rural and urban women in Bangladesh. PLoS ONE 2020, 15. [Google Scholar] [CrossRef]
- Siddiquee, T.; Bhowmik, B.; Da Vale Moreira, N.C.; Mujumder, A.; Mahtab, H.; Khan, A.K.A.; Hussain, A. Prevalence of obesity in a rural Asian Indian (Bangladeshi) population and its determinants. BMC Public Health 2015, 15, 860. [Google Scholar] [CrossRef] [Green Version]
- Kurian, A.K.; Cardarelli, K.M. Racial and ethnic differences in cardiovascular disease risk factors: A systematic review. Ethn. Dis. 2007, 17, 143–152. [Google Scholar] [PubMed]
- Caminha, T.C.S.; Ferreira, H.S.; Costa, N.S.; Nakano, R.P.; Carvalho, R.E.S.; Xavier, A.F.S.; Assunção, M.L. Waist-to-height ratio is the best anthropometric predictor of hypertension: A population-based study with women from a state of Northeast of Brazil. Medicine 2017, 96, e5874. [Google Scholar] [CrossRef]
- Sommer, I.; Teufer, B.; Szelag, M.; Nussbaumer-Streit, B.; Titscher, V.; Klerings, I.; Gartlehner, G. The performance of anthropometric tools to determine obesity: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 12699. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.A.; Deepa, M.; Shivashankar, R.; Ali, M.K.; Kapoor, D.; Gupta, R.; Lall, D.; Tandon, N.; Mohan, V.; Kadir, M.M.; et al. Comparison of multiple obesity indices for cardiovascular disease risk classification in South Asian adults: The CARRS study. PLoS ONE 2017, 12, e0174251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, A.H.E.M.; Franke, H.R. Women’s health in menopause with a focus on hypertension. Neth. Heart J. 2009, 17, 68–72. [Google Scholar] [CrossRef]
- Kozakowski, J.; Gietka-Czernel, M.; Leszczyńska, D.; Majos, A. Obesity in menopause–Our negligence or an unfortunate inevitability? Prz. Menopauzalny 2017, 16, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Kretchy, I.A.; Owusu-Daaku, F.T.; Danquah, S. Locus of control and anti-hypertensive medication adherence in Ghana. Pan Afr. Med. J. 2014, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Lynam, I.; Catley, D.; Goggin, K.; Rabinowitz, J.L.; Gerkovich, M.M.; Williams, K.; Wright, J. MOTIV8 autonomous regulation and locus of control as predictors of antiretroviral medication adherence. J. Health Psychol. 2009, 14, 578–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Singh, D. Personality characteristics, locus of control and hostility among alcoholics and non-alcoholics. IJPS 2011, 3, p99. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.A.B.; Adnan, M.M.; Hassan, M.Z. Trends, prevalence and risk factors of overweight and obesity among women of reproductive age in Bangladesh: A pooled analysis of five national cross-sectional surveys. BMJ Open 2018, 8, e018468. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.I.; Rahman, M.; Akter, T.; Akhter, T.; Ahmed, A.; Shovon, M.A.; Farhana, Z.; Chowdhury, N.; Turin, T.C. Hypertension prevalence and its trend in Bangladesh: Evidence from a systematic review and meta-analysis. Clin. Hypertens. 2020, 26, 10. [Google Scholar] [CrossRef]
- Al Kibria, G.M.; Burrowes, V.; Choudhury, A.; Sharmeen, A.; Swasey, K. Sex Differences in prevalence and associated factors of prehypertension and hypertension among Bangladeshi adults. Int. J. Cardiol. Hypertens. 2019, 1, 100006. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. A Global Brief on Hypertension: Silent Killer, Global Public Health Crisis. Available online: https://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/ (accessed on 21 March 2021).
- Lin, Y.-A.; Chen, Y.-J.; Tsao, Y.-C.; Yeh, W.-C.; Li, W.-C.; Tzeng, I.-S.; Chen, J.-Y. Relationship between obesity indices and hypertension among middle-aged and elderly populations in Taiwan: A community-based, cross-sectional study. BMJ Open 2019, 9, e031660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khader, Y.; Batieha, A.; Jaddou, H.; El-Khateeb, M.; Ajlouni, K. The performance of anthropometric measures to predict diabetes mellitus and hypertension among adults in Jordan. BMC Public Health 2019, 19, 1416. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-Y.; Lee, L.-T.; Chen, C.-Y.; Lo, H.; Hsia, H.-H.; Liu, I.-L.; Lin, R.-S.; Shau, W.-Y.; Huang, K.-C. Optimal cut-off values for obesity: Using simple anthropometric indices to predict cardiovascular risk factors in Taiwan. Int. J. Obes Relat. Metab. Disord. 2002, 26, 1232–1238. [Google Scholar] [CrossRef] [Green Version]
- Pua, Y.-H.; Ong, P.-H. Anthropometric indices as screening tools for cardiovascular risk factors in singaporean women. Asia Pac. J. Clin. Nutr. 2005, 14, 74–79. [Google Scholar]
- Zhang, Z.; Deng, J.; He, L.; Ling, W.; Su, Y.; Chen, Y. Comparison of various anthropometric and body fat indices in identifying cardiometabolic disturbances in chinese men and women. PLoS ONE 2013, 8, e70893. [Google Scholar] [CrossRef]
- Schulze, M.B.; Heidemann, C.; Schienkiewitz, A.; Bergmann, M.M.; Hoffmann, K.; Boeing, H. Comparison of anthropometric characteristics in predicting the incidence of type 2 diabetes in the EPIC-potsdam study. Diabetes Care 2006, 29, 1921–1923. [Google Scholar] [CrossRef] [Green Version]
- Everett, B.; Zajacova, A. Gender differences in hypertension and hypertension awareness among young adults. Biodemography Soc. Biol. 2015, 61, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, E. Blood pressure and ageing. Postgrad. Med. J. 2007, 83, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Hawkley, L.C.; Thisted, R.A.; Masi, C.M.; Cacioppo, J.T. Loneliness predicts increased blood pressure: Five-year cross-lagged analyses in middle-aged and older adults. Psychol. Aging 2010, 25, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Diaz, K.M.; Shimbo, D. Physical activity and the prevention of hypertension. Curr. Hypertens Rep. 2013, 15, 659–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaziano, T.A.; Bitton, A.; Anand, S.; Abrahams-Gessel, S.; Murphy, A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr. Probl. Cardiol. 2010, 35, 72–115. [Google Scholar] [CrossRef] [Green Version]
- Hegde, S.M.; Solomon, S.D. Influence of physical activity on hypertension and cardiac structure and function. Curr. Hypertens. Rep. 2015, 17, 77. [Google Scholar] [CrossRef] [Green Version]
- Rêgo, M.L.; Cabral, D.A.; Costa, E.C.; Fontes, E.B. Physical exercise for individuals with hypertension: It is time to emphasize its benefits on the brain and cognition. Clin. Med. Insights Cardiol. 2019, 13, 1179546819839411. [Google Scholar] [CrossRef]
- Peltzer, K.; Matseke, G. Determinants of HIV testing among young people aged 18–24 years in South Africa. Afr. Health Sci. 2013, 13, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Pengpid, S.; Vonglokham, M.; Kounnavong, S.; Sychareun, V.; Peltzer, K. The prevalence and social determinants of fruit and vegetable consumption and its associations with noncommunicable diseases risk factors among adults in Laos. Asia Pac. J. Public Health 2019, 31, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Tachi, K.; Tetteh, J.; Yawson, A.E.; Agyei-Nkansah, A.; Archampong, T. Alcohol consumption and fruits and vegetable intake among older adults in Ghana: A cross-sectional survey based on WHO-SAGE wave 2 data. BMJ Nutr. Prev. Health 2020, 3, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Guo, Y.; Chatterji, S.; Zheng, Y.; Naidoo, N.; Jiang, Y.; Biritwum, R.; Yawson, A.; Minicuci, N.; Salinas-Rodriguez, A.; et al. Common risk factors for chronic non-communicable diseases among older adults in China, Ghana, Mexico, India, Russia and South Africa: The study on global AGEing and adult health (SAGE) wave 1. BMC Public Health 2015, 15, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, M.A.B.; Uddin, M.J.; Khan, H.M.R.; Haque, M.R. Type 2 diabetes and its correlates among adults in Bangladesh: A population based study. BMC Public Health 2015, 15, 1070. [Google Scholar] [CrossRef] [Green Version]
Sex of Respondents | ||||
---|---|---|---|---|
Females (n = 4215 [53%]) | Males (n = 3804 [47%]) | Total (n = 8019 [100%]) | p-Value | |
n (100%) | n (100%) | n (100%) | ||
Characteristics | ||||
Age | <0.001 | |||
18–39 | 2491 (59.1%) | 1875 (49.3%) | 4366 (54.4%) | |
40–59 | 1509 (35.8%) | 1560 (41.0%) | 3069 (38.3%) | |
60+ | 215 (5.1%) | 369 (9.7%) | 584 (7.3%) | |
Residence | 0.029 | |||
Urban | 2028 (48.1%) | 1885 (49.6%) | 3913 (48.8%) | |
Rural | 2187 (51.9%) | 1919 (50.4%) | 4106 (51.2%) | |
Level of Education | <0.001 | |||
No Education | 1933 (45.9%) | 1718 (45.2%) | 3651 (45.5%) | |
Primary | 1450 (34.4%) | 1008 (26.5%) | 2458 (30.7%) | |
Secondary | 615 (14.6%) | 745 (19.6%) | 1360 (17.0%) | |
Tertiary | 217 (5.1%) | 333 (8.8%) | 550 (6.9%) | |
Employment | <0.001 | |||
Yes | 473 (11.2%) | 3517 (92.5%) | 3990 (49.8%) | |
No | 3742 (88.8%) | 287 (7.5%) | 4029 (50.2%) | |
Fruits and vegetable intake per day | <0.001 | |||
<2 servings | 161 (3.8%) | 138 (3.6%) | 299 (3.7%) | |
2–4 servings | 2679 (63.6%) | 2650 (69.7%) | 5329 (66.5%) | |
5+ servings | 1375 (32.6%) | 1016 (26.7%) | 2391 (29.8%) | |
Physical activities | <0.001 | |||
low PA (<600 MET-min/week) | 1253 (29.7%) | 538 (14.1%) | 1791 (22.3%) | |
Moderate PA (600–3000 MET-min/week) | 2587 (61.4%) | 2322 (61.0%) | 4909 (61.2%) | |
High PA (3000+ MET-min/week) | 375 (8.9%) | 944 (24.8%) | 1319 (16.4%) | |
Alcohol Consumption | <0.001 | |||
Yes | 529 (12.6%) | 1572 (41.3%) | 2101 (26.2%) | |
No | 3686 (87.4%) | 2232 (58.7%) | 5918 (73.8%) | |
Tobacco Use | <0.001 | |||
Yes | 37 (0.9%) | 1886 (49.6%) | 1923 (24.0%) | |
No | 4178 (99.1%) | 1918 (50.4%) | 6096 (76.0%) | |
Hypertension | <0.001 | |||
Yes | 984 (23.3%) | 713 (18.7%) | 1697 (21.2%) | |
No | 3231 (76.7%) | 3091 (81.3%) | 6322 (78.8%) | |
Waist Circumference (WC) | <0.001 | |||
Low | 2179 (51.7%) | 3326 (87.4%) | 5505 (68.6%) | |
Moderate | 942 (22.3%) | 376 (9.9%) | 1318 (16.4%) | |
High | 1094 (26.0%) | 102 (2.7%) | 1196 (14.9%) | |
Body Mass Index (BMI) | <0.001 | |||
Underweight | 487 (11.6%) | 578 (15.2%) | 1065 (13.3%) | |
Normal | 2157 (51.2%) | 2384 (62.7%) | 4541 (56.6%) | |
Overweight | 429 (10.2%) | 127 (3.3%) | 556 (6.9%) | |
Obese | 1142 (27.1%) | 715 (18.8%) | 1857 (23.2%) | |
Waist-Hip Ratio (WHR) | <0.001 | |||
Low | 1268 (30.1%) | 2938 (77.2%) | 4206 (52.5%) | |
Moderate | 876 (20.8%) | 589 (15.5%) | 1465 (18.3%) | |
High | 2071 (49.1%) | 277 (7.3%) | 2348 (29.3%) | |
Waist-to Height-Ratio (WHtR) | <0.001 | |||
Slim | 238 (5.6%) | 514 (13.5%) | 752 (9.4%) | |
Normal | 1051 (24.9%) | 2072 (54.5%) | 3123 (38.9%) | |
Overweight | 1029 (24.4%) | 661 (17.4%) | 1690 (21.1%) | |
Obese | 1897 (45.0%) | 557 (14.6%) | 2454 (30.6%) |
Sex of Respondents | |||
---|---|---|---|
Females (49.50%) | Males (50.40%) | Total (100%) | |
Categories | %, 95% CI | %, 95% CI | %, 95% CI |
Systolic blood pressure | |||
Normal | 24.00, (0.46–0.51) | 23.54, (0.44–0.49) | 47.54, (0.45–0.50) |
Prehypertension | 16.78, (0.32–0.36) | 19.82, (0.37–0.42) | 36.60, (0.34–0.39) |
Hypertension | 8.72, (0.15–0.20) | 7.14, (0.12–0.16) | 7.89, (0.14–0.18) |
Diastolic blood pressure | |||
Normal | 22.99, (0.44–0.49) | 29.87, (0.56–0.62) | 27.53, (0.51–0.57) |
Prehypertension | 14.51, (0.27–0.31) | 12.61, (0.23–0.27) | 13.62, (0.24–0.29) |
Hypertension | 12.00, (0.22–0.27) | 8.02, (0.14–0.18) | 11.02, (0.18–0.23) |
Pulse rate | |||
Abnormal | 4.16, (0.07–0.10) | 6.74, (0.12–0.15) | 5.56, (0.90–0.13) |
Normal | 45.34, (0.90–0.93) | 43.75, (0.85–0.88) | 44.69, (0.88–0.91) |
Antihypertension medications | |||
Yes | 34.03, (0.66–0.71) | 31.5, (0.60–0.65) | 65.53, (0.63–0.68) |
No | 15.48, (0.29–0.34) | 19.00, (0.35–0.40) | 34.47, (0.33–0.38) |
Hypertension: a1 = No, Yes | ||||
---|---|---|---|---|
Females | Males | |||
OR, 95% CI | AOR, 95% CI | OR, 95% CI | AOR, 95% CI | |
Characteristics | ||||
Age | ||||
18–39 | a1 | a1 | a1 | a1 |
40–59 | 2.19, 2.04–2.48 ** | 3.36, 2.83–3.99 ** | 2.08, 2.02–2.19 * | 2.61, 2.14–3.19 * |
60+ | 2.90, 2.43–3.73 *** | 4.71, 3.87–6.27 *** | 3.42, 2.65–4.73 *** | 3.78, 2.76–5.17 *** |
Residence | ||||
Urban | a1 | a1 | a1 | a1 |
Rural | 1.04, 1.01–1.09 * | 1.12, 1.05–1.22 * | 1.10, 1.02–1.18 * | 1.19, 1.01–1.37 ** |
Level of Education | ||||
No Education | a1 | a1 | a1 | a1 |
Primary | 0.72, 0.65–0.88 *** | 0.77, 0.73–0.96 * | 0.91, 0.84–0.98 * | 0.86, 0.82–0.91 * |
Secondary | 0.59, 0.41–0.79 * | 0.52, 0.53–0.86 ** | 0.64, 0.56–0.75 * | 0.61, 0.56–0.69 * |
Tertiary | 0.53, 0.43–0.72 ** | 0.48, 0.31–0.74 ** | 0.39, 0.16–0.61 *** | 0.42, 0.26–0.64 *** |
Fruits and Vegetable Intake per Day | ||||
<2 servings | <2 servings | a1 | a1 | a1 |
2–4 servings | 2–4 servings | 0.58, 0.44–0.72 * | 0.45, 0.31–0.71 * | 0.61, 0.54–0.76 *** |
5+ servings | 5+ servings | 0.35, 0.26–0.49 ** | 0.31, 0.23–0.45 * | 0.43, 0.35–0.58 *** |
Physical Activities | <0.001 | |||
low PA (<600 MET-min/week) | a1 | a1 | a1 | a1 |
Moderate PA (600–3000 MET-min/week) | 0.56, 0.35–0.82 ** | 0.69, 0.57–0.95 *** | 0.73, 0.59–0.93 *** | 0.87, 0.82–0.99 *** |
High PA (3000+ MET-min/week) | 0.42, 0.33–0.54 *** | 0.47, 0.39–0.64 *** | 0.51, 0.42–0.66 *** | 0.67, 0.62–0.79 *** |
Alcohol Consumption | ||||
Yes | a1 | a1 | a1 | a1 |
No | 0.41, 0.24–0.68 * | 0.39, 0.21–0.63 * | 0.55, 0.36–0.74 ** | 0.53 0.34–0.80 ** |
Tobacco Use | <0.001 | |||
Yes | a1 | a1 | a1 | a1 |
No | 0.65, 0.53–0.87 * | 0.69, 0.51–0.89 * | 0.72, 0.61–0.91 *** | 0.78, 0.69–0.93 *** |
Waist Circumference (WC) | ||||
Low | a1 | a1 | a1 | a1 |
Moderate | 1.72, 1.64–1.91 ** | 1.96, 1.83–2.48 ** | 2.14, 2.05–2.28 ** | 2.03, 2.02–2.13 ** |
High | 2.51, 2.05–2.98 ** | 2.67, 2.55–2.86 ** | 2.65, 2.34–2.85 ** | 2.87, 2.82–2.99 ** |
Body Mass Index (BMI) | <0.001 | |||
Underweight | a1 | a1 | a1 | a1 |
Normal | 1.21, 1.13–1.45 * | 1.67, 1.49–1.91 * | 2.32, 2.11–2.69 ** | 2.21, 2.15–2.72 ** |
Overweight | 1.35, 1.23–1.62 * | 2.05, 1.98–2.18 ** | 2.40, 2.34–2.62 * | 2.49, 1.84–3.20 ** |
Obese | 1.68, 1.44–1.89 *** | 2.32, 2.14–2.46 ** | 2.62, 2.02–2.94 *** | 2.73 2.26–3.09 *** |
Waist-Hip Ratio (WHR) | ||||
Low | a1 | a1 | a1 | a1 |
Moderate | 1.12, 1.04–1.31 ** | 1.11, 1.02–1.39 * | 2.34, 2.29–2.68 * | 2.22, 2.01–2.53 * |
High | 1.39, 1.16–1.79 *** | 2.08, 1.45–3.94 ** | 2.86, 2.45–3.07 * | 2.72, 1.81–4.35 * |
Waist-to Height-Ratio (WHtR) | <0.001 | |||
Slim | a1 | a1 | a1 | a1 |
Normal | 0.63, 0.58–0.87 * | 0.78, 0.71–0.92 ** | 0.89, 0.81–0.99 * | 0.95, 0.91–1.03 |
Overweight | 1.19, 1.02–1.39 * | 1.08, 1.01–2.27 *** | 2.32, 2.22–2.81 ** | 2.22, 2.15–2.45 * |
Obese | 1.53, 1.28–1.98 ** | 2.03, 1.82–2.51 *** | 2.61, 2.48–3.17 *** | 2.56, 2.38–2.89 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simmons, S.S.; Hagan Jr., J.E.; Schack, T. The Influence of Anthropometric Indices and Intermediary Determinants of Hypertension in Bangladesh. Int. J. Environ. Res. Public Health 2021, 18, 5646. https://doi.org/10.3390/ijerph18115646
Simmons SS, Hagan Jr. JE, Schack T. The Influence of Anthropometric Indices and Intermediary Determinants of Hypertension in Bangladesh. International Journal of Environmental Research and Public Health. 2021; 18(11):5646. https://doi.org/10.3390/ijerph18115646
Chicago/Turabian StyleSimmons, Sally Sonia, John Elvis Hagan Jr., and Thomas Schack. 2021. "The Influence of Anthropometric Indices and Intermediary Determinants of Hypertension in Bangladesh" International Journal of Environmental Research and Public Health 18, no. 11: 5646. https://doi.org/10.3390/ijerph18115646
APA StyleSimmons, S. S., Hagan Jr., J. E., & Schack, T. (2021). The Influence of Anthropometric Indices and Intermediary Determinants of Hypertension in Bangladesh. International Journal of Environmental Research and Public Health, 18(11), 5646. https://doi.org/10.3390/ijerph18115646