Foundational Statistical Principles in Medical Research: A Tutorial on Odds Ratios, Relative Risk, Absolute Risk, and Number Needed to Treat
Abstract
:1. Introduction
2. Measures of Disease Frequency
3. Quantifying Risk
3.1. Risk Versus Odds
3.2. Relative Risk and Odds Ratios
3.3. Risk Difference and Rate Difference
3.4. Number Needed to Treat and Number Needed to Harm
4. Common Pitfalls
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Straus, S.E.; Glasziou, P.; Richardson, W.S.; Haynes, R.B. Evidence-Based Medicine e-Book: How to Practice and Teach EBM; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Djulbegovic, B.; Guyatt, G.H. Progress in evidence-based medicine: A quarter century on. Lancet 2017, 390, 415–423. [Google Scholar] [CrossRef]
- Goldenberg, J.Z.; Burlingham, B.S.; Guiltinan, J.; Oberg, E.B. Shifting attitudes towards research and evidence-based medicine within the naturopathic medical community: The power of people, money and acceptance. Adv. Integr. Med. 2017, 4, 49–55. [Google Scholar] [CrossRef]
- Bartlett, G.; Gagnon, J. Physicians and knowledge translation of statistics: Mind the gap. Can. Med. Assoc. J. 2016, 188, 11–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, Z.S.; Wooding, S.; Grant, J. The answer is 17 years, what is the question: Understanding time lags in translational research. J. R. Soc. Med. 2011, 104, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Pronovost, P.J. Enhancing Physicians’ Use of Clinical Guidelines. JAMA 2013, 310, 2501–2502. [Google Scholar] [CrossRef]
- Aggarwal, R. Statistical Literacy for Healthcare Professionals: Why is It Important? Ann. Card. Anaesth. 2018, 21, 349–350. [Google Scholar] [CrossRef]
- Barkan, H. Statistics in clinical research: Important considerations. Ann. Card. Anaesth. 2015, 18, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Osborn, C.Y. Shared decision making requires statistical literacy. AMA J. Ethics 2009, 11, 301–305. [Google Scholar]
- Swift, L.; Miles, S.; Price, G.M.; Shepstone, L.; Leinster, S.J. Do doctors need statistics? Doctors’ use of and attitudes to probability and statistics. Stat. Med. 2009, 28, 1969–1981. [Google Scholar] [CrossRef]
- Anderson, B.L.; Gigerenzer, G.; Parker, S.; Schulkin, J. Statistical Literacy in Obstetricians and Gynecologists. J. Health Qual. 2014, 36, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Best, A.M.; Laskin, D.M. Oral and Maxillofacial Surgery Residents Have Poor Understanding of Biostatistics. J. Oral Maxillofac. Surg. 2013, 71, 227–234. [Google Scholar] [CrossRef]
- Susarla, S.M.; Redett, R.J. Plastic Surgery Residents’ Attitudes and Understanding of Biostatistics: A Pilot Study. J. Surg. Educ. 2014, 71, 574–579. [Google Scholar] [CrossRef]
- Windish, D.M.; Huot, S.J.; Green, M.L. Medicine Residents’ Understanding of the Biostatistics and Results in the Medical Literature. JAMA 2007, 298, 1010–1022. [Google Scholar] [CrossRef] [Green Version]
- Johnston, B.C.; Alonso-Coello, P.; Friedrich, J.O.; Mustafa, R.A.; Tikkinen, K.A.; Neumann, I.; Vandvik, P.O.; Akl, E.A.; da Costa, B.R.; Adhikari, N.K.; et al. Do clinicians understand the size of treatment effects? A randomized survey across 8 countries. Can. Med. Assoc. J. 2016, 188, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.A.; Altman, D.G. Basic statistical reporting for articles published in Biomedical Journals: The “Statistical Analyses and Methods in the Published Literature” or the SAMPL Guidelines. Int. J. Nurs. Stud. 2015, 52, 5–9. [Google Scholar] [CrossRef]
- George, S.L. Statistics in medical journals: A survey of current policies and proposals for editors. Med. Pediatr. Oncol. 1985, 13, 109–112. [Google Scholar] [CrossRef]
- Grimshaw, J.M.; Eccles, M.P.; Lavis, J.N.; Hill, S.J.; Squires, J.E. Knowledge translation of research findings. Implement. Sci. 2012, 7, 50. [Google Scholar] [CrossRef]
- Westreich, D. Epidemiology by Design: A Causal approach to the Health Sciences; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Spronk, I.; Korevaar, J.C.; Poos, R.; Davids, R.; Hilderink, H.; Schellevis, F.G.; Verheij, R.A.; Nielen, M.M.J. Calculating incidence rates and prevalence proportions: Not as simple as it seems. BMC Public Health 2019, 19, 512. [Google Scholar] [CrossRef] [Green Version]
- Webb, P.; Bain, C.; Page, A. Essential Epidemiology: An Introduction for Students and Health Professionals; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Andriole, G.L.; Bostwick, D.G.; Brawley, O.W.; Gomella, L.G.; Marberger, M.; Montorsi, F.; Pettaway, C.A.; Tammela, T.L.J.; Teloken, C.; Tindall, D.J.; et al. Effect of Dutasteride on the Risk of Prostate Cancer. N. Engl. J. Med. 2010, 362, 1192–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, R. Fast Facts: Medical Statistics; Karger Medical and Scientific Publishers: Basel, Switzerland, 2020. [Google Scholar]
- Mansournia, M.A.; Altman, D.G. Population attributable fraction. BMJ 2018, 360, k757. [Google Scholar] [CrossRef] [Green Version]
- Song, J.W.; Chung, K.C. Observational Studies: Cohort and Case-Control Studies. Plast. Reconstr. Surg. 2010, 126, 2234–2242. [Google Scholar] [CrossRef] [Green Version]
- Cahusac, P.M. Evidence-Based Statistics: An Introduction to the Evidential Approach-from Likelihood Principle to Statistical Practice; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Wallis, C.J.D.; Juvet, T.; Lee, Y.; Matta, R.; Herschorn, S.; Kodama, R.; Kulkarni, G.S.; Satkunasivam, R.; Geerts, W.; McLeod, A.; et al. Association Between Use of Antithrombotic Medication and Hematuria-Related Complications. JAMA 2017, 318, 1260–1271. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.T.O.; Crombie, I.K.; Tavakoli, M. When can odds ratios mislead? BMJ 1998, 316, 989–991. [Google Scholar] [CrossRef] [Green Version]
- Lewallen, S.; Courtright, P. Epidemiology in Practice: Case-Control Studies. Community Eye Heath 1998, 11, 57–58. [Google Scholar]
- Knol, M.J.; Vandenbroucke, J.P.; Scott, P.; Egger, M. What Do Case-Control Studies Estimate? Survey of Methods and Assumptions in Published Case-Control Research. Am. J. Epidemiol. 2008, 168, 1073–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhouse, S.W. Jerome Cornfield’s contributions to epidemiology. Biometrics 1982, 38, 33–45. [Google Scholar] [CrossRef]
- Greenland, S.; Thomas, D.C. On the need for the rare disease assumption in case-control studies. Am. J. Epidemiol. 1982, 116, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo-González, M.; Ruano-Ravina, A.; Torres-Durán, M.; Kelsey, K.T.; Provencio, M.; Parente-Lamelas, I.; Leiro-Fernández, V.; Vidal-García, I.; Castro-Añón, O.; Martínez, C.; et al. Lung cancer and residential radon in never-smokers: A pooling study in the Northwest of Spain. Environ. Res. 2019, 172, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.F.; Altman, D.G.; Moher, D.; CONSORT Group. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ. 2010, 340, c332. [Google Scholar] [CrossRef]
- Naylor, C.D.; Chen, E.; Strauss, B. Measured Enthusiasm: Does the Method of Reporting Trial Results Alter Perceptions of Therapeutic Effectiveness? Ann. Intern. Med. 1992, 117, 916. [Google Scholar] [CrossRef]
- Fang, C.-W.; Hsieh, V.C.-R.; Huang, S.K.-H.; Tsai, I.-J.; Muo, C.-H.; Wu, S.-C. A population-based cohort study examining the association of documented bladder diverticulum and bladder cancer risk in urology patients. PLoS ONE 2019, 14, e0222875. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gutierrez, J.C.; Leslie-Mazwi, T.; Chandra, R.V.; Ong, K.L.; Nogueira, R.G.; Goyal, M.; Albuquerque, F.C.; Hirsch, J.A. Number needed to treat: A primer for neurointerventionalists. Interv. Neuroradiol. 2019, 25, 613–618. [Google Scholar] [CrossRef]
- Mendes, D.; Alves, C.; Batel-Marques, F. Number needed to treat (NNT) in clinical literature: An appraisal. BMC Med. 2017, 15, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feito, Y. Prevalence and Incidence Rates Are Not the Same: Letter to the Editor. Orthop. J. Sports Med. 2014, 2, 2325967114543254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persoskie, A.; Ferrer, R.A. A Most Odd Ratio: Interpreting and Describing Odds Ratios. Am. J. Prev. Med. 2017, 52, 224–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labrecque, J.A.; Hunink, M.M.G.; Ikram, M.A. Do Case-Control Studies Always Estimate Odds Ratios? Am. J. Epidemiol. 2021, 190, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c869. [Google Scholar] [CrossRef] [Green Version]
Incident Prostate Cancer | ||||
Yes | No | Row Total | ||
Dutasteride Therapy | Yes | 659 | 2646 | 3305 |
No | 858 | 2566 | 3424 | |
Column Total | 1517 | 5212 | 6729 |
Outcome of Interest | |||
Positive | Negative | ||
Exposure/Intervention | Present | A | B |
Absent | C | D |
Prostate Cancer | No Prostate Cancer | Row Total | Risk | Odds |
---|---|---|---|---|
Hypothetical Study Population with increased disease frequency (n = 6729) | ||||
4000 | 2729 | 6729 | 4000/6729 = 0.59 | 4000/2729 = 1.47 |
3000 | 3729 | 6729 | 3000/6729 = 0.45 | 3000/3729 = 0.80 |
2000 | 4729 | 6729 | 2000/6729 = 0.30 | 2000/4729 = 0.42 |
Actual study population (n = 6729) | ||||
1517 | 5212 | 6729 | 1517/6729 = 0.23 | 1517/5212 = 0.29 |
Hypothetical study population with decreased disease frequency (n = 6729) | ||||
1000 | 5729 | 6729 | 1000/6729 = 0.15 | 1000/5729 = 0.17 |
500 | 6229 | 6729 | 500/6729 = 0.07 | 500/6229 = 0.08 |
100 | 6629 | 6729 | 100/6729 = 0.015 | 100/6629 = 0.015 |
Prostate Cancer | No Prostate Cancer | Row Total | Odds of Cancer | Odds Ratio | Risk of Cancer | Relative Risk | |
---|---|---|---|---|---|---|---|
Hypothetical study population with increased disease frequency (n = 6729) | |||||||
Intervention | (↑↑↑) 2000 | (↓↓↓) 1305 | (--) 3305 | 2000/1305 = 1.53 | 1.53/0.33 = 4.64 | 2000/3305 = 0.61 | 0.61/0.25 = 2.44 |
Control | (--) 858 | (--) 2566 | (--) 3424 | 858/2566 = 0.33 | 858/3424 = 0.25 | ||
Intervention | (↑↑) 1000 | (↓↓) 2305 | (--) 3305 | 1000/2305 = 0.43 | 0.43/0.33 = 1.30 | 1000/3305 = 0.30 | 0.30/0.25 = 1.20 |
Control | (--) 858 | (--) 2566 | (--) 3424 | 858/2566 = 0.33 | 858/3424 = 0.25 | ||
Intervention | (↑) 828 | (↓) 2477 | (--) 3305 | 828/2477 = 0.33 | 0.33/0.33 = 1.0 | 828/3305 = 0.25 | 0.25/0.25 = 1.0 |
Control | (--) 858 | (--) 2566 | (--) 3424 | 858/2566 = 0.33 | 858/3424 = 0.25 | ||
Actual study population (n = 6729) | |||||||
Dutasteride | 659 | 2646 | 3305 | 659/2646 = 0.25 | 0.25/0.33 = 0.76 | 659/3305 = 0.20 | 0.20/0.25 = 0.8 |
Control | 858 | 2566 | 3424 | 858/2566 = 0.33 | 858/3424 = 0.25 | ||
Hypothetical study population with decreased disease frequency (n = 6729) | |||||||
Intervention | (↓) 100 | (↑) 3205 | (--) 3305 | 100/3205 = 0.03 | 0.03/0.33 = 0.09 | 100/3305 = 0.03 | 0.03/0.25 = 0.12 |
Control | (--) 858 | (--) 2566 | (--) 3424 | 858/2566 = 0.33 | 858/3424 = 0.25 | ||
Intervention | (↓↓) 10 | (↑↑) 3295 | (--) 3305 | 10/3295 = 0.003 | 0.003/0.33 = 0.009 | 10/3305 = 0.003 | 0.003/0.25 = 0.012 |
Control | (--) 858 | (--) 2566 | (--) 3424 | 858/2566 = 0.33 | 858/3424 = 0.25 |
Primary Outcome (Lung Cancer) | |||
Yes (Cases) | No (Controls) | ||
Exposure (High Residential Radon) | Yes | 192 | 195 |
No | 297 | 556 | |
Total | 489 | 751 |
Primary Outcome (Bladder Cancer) | Total Person-Years of Observation | ||||
Yes | No | Row Total | |||
Exposure (Bladder Diverticulum) | Yes | 37 | 2097 | 2134 | 11,674 |
No | 58 | 8470 | 8528 | 47,711 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monaghan, T.F.; Rahman, S.N.; Agudelo, C.W.; Wein, A.J.; Lazar, J.M.; Everaert, K.; Dmochowski, R.R. Foundational Statistical Principles in Medical Research: A Tutorial on Odds Ratios, Relative Risk, Absolute Risk, and Number Needed to Treat. Int. J. Environ. Res. Public Health 2021, 18, 5669. https://doi.org/10.3390/ijerph18115669
Monaghan TF, Rahman SN, Agudelo CW, Wein AJ, Lazar JM, Everaert K, Dmochowski RR. Foundational Statistical Principles in Medical Research: A Tutorial on Odds Ratios, Relative Risk, Absolute Risk, and Number Needed to Treat. International Journal of Environmental Research and Public Health. 2021; 18(11):5669. https://doi.org/10.3390/ijerph18115669
Chicago/Turabian StyleMonaghan, Thomas F., Syed N. Rahman, Christina W. Agudelo, Alan J. Wein, Jason M. Lazar, Karel Everaert, and Roger R. Dmochowski. 2021. "Foundational Statistical Principles in Medical Research: A Tutorial on Odds Ratios, Relative Risk, Absolute Risk, and Number Needed to Treat" International Journal of Environmental Research and Public Health 18, no. 11: 5669. https://doi.org/10.3390/ijerph18115669
APA StyleMonaghan, T. F., Rahman, S. N., Agudelo, C. W., Wein, A. J., Lazar, J. M., Everaert, K., & Dmochowski, R. R. (2021). Foundational Statistical Principles in Medical Research: A Tutorial on Odds Ratios, Relative Risk, Absolute Risk, and Number Needed to Treat. International Journal of Environmental Research and Public Health, 18(11), 5669. https://doi.org/10.3390/ijerph18115669