Effects of Vegetation Restoration on Soil Erosion on the Loess Plateau: A Case Study in the Ansai Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Rainfall Erosivity (R) Factor
2.3.2. Soil Erodibility (K) Factor
2.3.3. Slope Length (L) and Steepness (S) Factor
2.3.4. Biological-Control (B) Factor
2.3.5. Engineering-Control (E) Factor
2.3.6. Tillage (T) Factor
3. Results
3.1. Dynamic Land Use Changes Since Vegetation Restoration
3.2. Estimation of Soil Erosion under the Initial Scenario of Vegetation Restoration
3.3. Estimation of Soil Erosion under the Current Scenario of Vegetation Restoration
3.4. Changes in Soil Erosion before and after Vegetation Restoration
4. Discussion
4.1. Effects of Vegetation Restoration on Soil Erosion
4.2. Policy Implications
4.3. Research Limitation and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Agency. United Nations Decade on Ecosystem Restoration (2021–2030) 2019, 73/284. Available online: https://undocs.org/A/RES/73/284 (accessed on 20 March 2021).
- Zhou, J.; Fu, B.J.; Gao, G.Y.; Lü, Y.H.; Liu, Y.; Lü, N.; Wang, S. Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China. Catena 2016, 137, 1–11. [Google Scholar] [CrossRef]
- Huang, C.B.; Zhou, Z.X.; Teng, M.J.; Wu, C.G.; Wang, P.C. Effects of climate and land use/cover changes on soil loss in the Three Gorges Reservoir area, China. Geogr. Sustain. 2020, 1, 200–208. [Google Scholar] [CrossRef]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills area in central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Brandolini, P.; Pepe, G.; Capolongo, D.; Cappadonia, C. Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity for development? Land Degrad. Dev. 2017, 29, 3050–3068. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.N.; Wang, K.Q.; Su, B.; Zhang, X.Q.; Hua, J.X.; Zhu, X.T. Study on soil erodibility of different land utilization styles in the Songhuba water source area. J. Southwest For. Univ. 2016, 5, 118–124. (In Chinese) [Google Scholar]
- Meliho, M.; Khattabi, A.; Mhammdi, N. Spatial assessment of soil erosion risk by integrating remote sensing and GIS techniques: A case of Tensift watershed in Morocco. Environ. Earth Sci. 2020, 79, 1–19. [Google Scholar] [CrossRef]
- Fu, B.J.; Liu, Y.; Lü, Y.H.; He, C.S.; Zeng, Y.; Wu, B.F. Assessing the soil control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Yang, X.; Guo, B.; Lu, Y.F.; Zhang, R.; Zhang, D.F.; Zhen, X.Y.; Chen, S.T.; Wu, H.W.; Wei, C.X.; Yang, L.A.; et al. Spatial-temporal evolution patterns of soil erosion in the Yellow River Basin from 1990 to 2015: Impacts of natural factors and land use change. Geomat. Nat. Hazards Risk 2021, 12, 103–122. [Google Scholar]
- Tuo, D.F.; Xu, M.X.; Gao, G.Y. Relative contributions of wind and water erosion to total soil loss and its effect on soil properties in sloping croplands of the Chinese Loess Plateau-ScienceDirect. Sci. Total Environ. 2018, 633, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Ryken, N.; Nest, T.V.; Al-Barri, B.; Blake, W.; Taylor, A.; Bode, S.; Ruysschaert, G.; Boeckx, P.; Verdoodt, A. Soil erosion rates under different tillage practices in central Belgium: New perspectives from a combined approach of rainfall simulations and measurements. Soil Tillage Res. 2018, 179, 29–37. [Google Scholar] [CrossRef]
- Ministry of Water Resources of China; National Bureau of Statistics China. Bulletin of First National Census for Water; China Water Power Press: Beijing, China, 2013.
- Xi, J.; Zhao, X.; Wang, X.; Zhang, Z. Assessing the impact of land use change on soil erosion on the Loess Plateau of China from the end of the 1980s to 2010. J. Soil Water Conserv. 2017, 72, 452–462. [Google Scholar] [CrossRef]
- Zhao, G.J.; Kondolf, G.M.; Mu, X.M.; Han, M.W.; He, Z.; Rubin, Z.; Wang, F.; Gao, P.; Sun, W.Y. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 2017, 148, 126–137. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.B.; Guo, M.J.; Li, P.; Cheng, S.D.; Yuan, B. Effects of vegetation restoration on soil physical properties of abandoned farmland on the Loess Plateau, China. Environ. Earth Sci. 2018, 77, 205. [Google Scholar] [CrossRef]
- Guo, X.J.; Shao, Q.Q. Spatial pattern of soil erosion drivers and the contribution rate of human activities on the Loess Plateau from 2000 to 2015: A boundary line from northeast to southwest. Remote Sens. 2019, 11, 2429. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.F.; Xiao, F.Y.; Feng, X.M.; Fu, B.J. Soil conservation on the Loess Plateau and the regional effect: Impact of the ‘Grain for Green’ Project. Earth Environ. Sci. Trans. R. Soc. Edinb. 2019, 109, 461–471. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, X.M.; Deng, L.; Yang, Y.Z.; Zhao, Z.; Zhao, P.X.; Peng, C.H.; Fu, B.J. Vegetation quantifying the effects of vegetation restorations on the soil erosion export and nutrient loss on the Loess Plateau. Front. Plant Sci. 2020, 11, 573126. [Google Scholar] [CrossRef]
- Ran, L.S.; Lu, X.X.; Xu, J.C. Effects of Vegetation Restoration on Soil Conservation and Sediment Loads in China: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1384–1415. [Google Scholar] [CrossRef]
- Zheng, F.L. Effect of Vegetation Changes on Soil Erosion on the Loess Plateau. Pedosphere 2006, 16, 420–427. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Gao, Y.; Wang, L.X. Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years. Geogr. Sustain. 2021, 23, 74–85. [Google Scholar]
- Zhao, W.W.; Wei, H.; Jia, L.Z.; Stefani, D.; Zhang, X.; Liu, Y.X. Soil erodibility and its influencing factors on the Loess Plateau of China: A case study in the Ansai watershed. Solid Earth 2018, 9, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.W.; Fu, B.J.; Chen, L.D. A comparison between soil loss evaluation index and the C-factor of RUSLE: A case study in the Loess Plateau of China. Hydrol. Earth Syst. Sci. 2012, 16, 2739–2748. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wei, W.; Chen, L.D.; Jia, F.Y.; Yang, L. Responses of vertical soil moisture to rainfall pulses and land uses in a typical loess hilly area, China. Solid Earth 2015, 6, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Zhao, W.W.; Qiu, Y.; Zhao, M.Y.; Zhong, L.N. Spatial heterogeneity of soil moisture and the scale variability of its influencing factors: A case study in the Loess Plateau of China. Water 2013, 5, 1226–1242. [Google Scholar] [CrossRef]
- National Center for Basic Geographic Information of China. Available online: http://www.ngcc.cn (accessed on 10 December 2020).
- Data Center for Resources and Environmental Sciences at the Chinese Academy of Sciences. Available online: https://www.resdc.cn/ (accessed on 12 December 2020).
- Ministry of Water Resources. Hydrological Yearbook of the People’s Republic of China; Yellow River Conservancy Commission of the Ministry of Water Resources: Beijing, China, 2000–2015.
- Geospatial Data Cloud Website. Available online: http://www.gscloud.cn/ (accessed on 15 December 2020).
- Chen, G.K.; Zhang, Z.X.; Guo, Q.K.; Wang, X.; Wen, Q.K. Quantitative assessment of soil erosion based on CSLE and the 2010 national soil erosion survey at regional scale in Yunnan Province of China. Sustainability 2019, 11, 3252. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.Y.; Zhang, K.L.; Xie, Y. An empirical soil loss equation proceedings-process of soil erosion and its environment effect. In Proceedings of the 12th International Soil Conservation Organization Conference, Beijing, China, 26–31 May 2002; Tsinghua University Press: Beijing, China, 2002; pp. 21–25. [Google Scholar]
- Liu, S.Y.; Huang, S.Z.; Xie, Y.Y.; Leng, G.Y.; Huang, Q.; Wang, L.; Xue, Q. Spatial-temporal changes of rainfall erosivity in the loess plateau, China: Changing patterns, causes and implications. Catena 2018, 166, 279–289. [Google Scholar] [CrossRef]
- Zhang, W.B.; Xie, Y.; Liu, B.Y. Rainfall erosivity estimation using daily rainfall amounts. Sci. Geogr. Sin. 2002, 22, 705–711. (In Chinese) [Google Scholar]
- Cui, Y.S.; Pan, C.Z.; Liu, C.L.; Luo, M.J.; Guo, Y.H. Spatiotemporal variation and tendency analysis on rainfall erosivity in the Loess Plateau of China. Hydrol. Res. 2020, 51, 1048–1062. [Google Scholar] [CrossRef]
- Sun, W.Y.; Shao, Q.Q.; Liu, J.Y.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Zhang, K.L.; Peng, W.Y.; Yang, H.L. Soil erodibility and its estimation for agricultural soil in China. Acta Pedol. Sin. 2007, 44, 7–13. (In Chinese) [Google Scholar] [CrossRef]
- Shirazi, M.A.; Hart, J.W.; Boersma, L. A unifying quantitative analysis of soil texture: Improvement of precision and extension of scale. Soil Sci. Soc. Am. J. 1988, 52, 181–190. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; Agriculture Handbook No. 537; U.S. Department of Agriculture: Washington, DC, USA, 1978; pp. 12–17. [Google Scholar]
- Wen, X. Temporal and spatial relationships between soil erosion and ecological restoration in semi-arid regions: A case study in northern Shaanxi, China. GISci. Remote Sens. 2020, 57, 572–590. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, X.P.; Yan, S.J.; Chen, H. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil Water Conserv. Res. 2018, 6, 13–22. [Google Scholar] [CrossRef]
- Li, P.F.; Zang, Y.Z.; Ma, D.Y.; Yao, W.Q.; Holden, J.; Irvine, B.; Zhao, G.J. Soil erosion rates assessed by RUSLE and PESERA for a Chinese Loess Plateau catchment under land-cover changes. Earth Surf. Process. Landf. 2020, 45, 707–722. [Google Scholar] [CrossRef]
- Zhao, W.W.; Fu, B.J.; Chen, L.D.; Lü, Y.H.; Liu, Y.Q. Effects of land use pattern change on soil and water loss at the catchment scale in the hilly and gully area of the loess plateau of China. Acta Ecol. Sin. 2004, 24, 1358–1364. (In Chinese) [Google Scholar]
- Xie, H.X.; Li, R.; Yang, Q.K.; Li, J.; Liang, W. Effect of returning farmland to forest (Pasture) and changes of precipitation on soil erosion in the Yanhe Basin. Sci. Agric. Sin. 2009, 42, 569–576. (In Chinese) [Google Scholar]
- Xu, L.F.; Xu, X.G.; Meng, X.W. Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with information diffusion model: A case study of Bohai Rim, China. Catena 2012, 100, 74–82. [Google Scholar] [CrossRef]
- Hao, H.X.; Wei, Y.J.; Cao, D.N.; Guo, Z.L.; Shi, Z.H. Vegetation restoration and fine roots promote soil infiltrability in heavy-textured soils. Soil Tillage Res. 2020, 198, 104542. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.Y.; Xie, Y.S.; Luo, H. Evaluation of ecological service function of soil conservation before and after Grain for Green Project in Yanan City. Res. Soil Water Conserv. 2019, 26, 280–286. (In Chinese) [Google Scholar]
- Jiang, C.; Zhang, H.Y.; Zhang, Z.D.; Wang, D.W. Model-based assessment soil loss by wind and water erosion in China’s Loess Plateau: Dynamic change, conservation effectiveness, and strategies for sustainable restoration. Glob. Planet. Chang. 2019, 172, 396–413. [Google Scholar] [CrossRef]
- Wang, Z.J.; Jiao, J.Y.; Rayburg, S.; Wang, Q.L.; Su, Y. Soil erosion resistance of “Grain for Green” vegetation types under extreme rainfall conditions on the Loess Plateau, China. Catena 2016, 141, 109–116. [Google Scholar] [CrossRef]
- Wang, G.Q.; Bai, S.B.; Hu, P. Discussion on the work of returning farmland to forest in Ansai District, Yan’an City. Mod. Agric. Sci. Technol. 2020, 17, 130–131. (In Chinese) [Google Scholar]
- Zhang, W.; Ren, C.J.; Deng, J.; Zhao, F.Z.; Yang, G.H.; Han, X.H.; Tong, X.G.; Feng, Y.Z. Plant functional composition and species diversity affect soil C, N, and P during secondary succession of abandoned farmland on the Loess Plateau. Ecol. Eng. 2018, 122, 91–99. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, Q.K.; Xie, H.X.; Wang, C.M.; Guo, M.L. GIS and CSLE based quantitative assessment of soil erosion in Shaanxi, China. J. Soil Water Conserv. 2009, 23, 61–66. (In Chinese) [Google Scholar]
- Ma, Y.Y.; Wang, J.; Zhang, C.; Liu, G.B.; Pang, G.W. Evaluation of soil erosion based on CSLE model in Zhifanggou Watershed of Northern Shaanxi Province. Bull. Soil Water Conserv. 2018, 38, 95–102. (In Chinese) [Google Scholar]
- Zhang, Y.; Liu, X.C.; Li, G.Z.; Zhu, Q.K. Surveying soil erosion condition in Loess Plateau using soil erosion model. Trans. Chin. Soc. Agric. Eng. 2012, 28, 165–171. (In Chinese) [Google Scholar]
- Liang, Y.; Jiao, J.Y.; Tang, B.Z.; Cao, B.T.; Li, H. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region, China. J. Hydrol. 2020, 584, 124694. [Google Scholar]
- Soil Conservation Monitoring Center. Soil and Water Loss Equation for the Loess Plateau-User’s Guide[Z]; Ministry of Water Resources and Beijing Normal University: Beijing, China, 2005. [Google Scholar]
Land Use Type | Vegetation Coverage (%) | B Factor | Land Use Type | Vegetation Coverage (%) | B Factor |
---|---|---|---|---|---|
Arboreal and shrub land | 0~20 | 0.100 | Grassland | 0~20 | 0.450 |
20~40 | 0.080 | 20~40 | 0.240 | ||
40~60 | 0.060 | 40~60 | 0.150 | ||
60~80 | 0.020 | 60~80 | 0.090 | ||
80~100 | 0.004 | 80~100 | 0.043 | ||
Water | – | 0.000 | Farmland | – | 0.476 |
Construction land | – | 0.353 | Desert land | – | 1.000 |
Slope Gradient | ≤5° | 5–10° | 10–15° | 15–20° | 20–25° | >25° |
---|---|---|---|---|---|---|
T factor | 0.100 | 0.221 | 0.305 | 0.575 | 0.735 | 0.800 |
Land Use Type | 2015 | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Arboreal Land | Shrub Land | Grassland | Farmland | Construction Land | Water | Desert Land | |||
2000 | Arboreal land | 2.41 | 1.20 | 16.01 | 0.04 | 0.14 | 0.16 | 0.01 | 19.96 |
Shrub land | 1.22 | 16.07 | 2.00 | 0.07 | 0.02 | 0.04 | 0.01 | 19.43 | |
Grassland | 44.83 | 23.43 | 643.08 | 1.66 | 2.13 | 3.13 | 1.24 | 719.49 | |
Farmland | 50.72 | 35.25 | 422.78 | 32.57 | 3.84 | 1.86 | 0.89 | 547.90 | |
Construction land | 0.03 | 0.02 | 0.18 | 0.02 | 1.89 | 0.01 | 0.00 | 2.14 | |
Water | 0.04 | 0.01 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.25 | |
Desert land | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Total | 99.26 | 75.97 | 1084.24 | 34.35 | 8.02 | 5.20 | 2.14 | – | |
Change from 2000 to 2015 | 79.30 | 56.54 | 364.75 | −513.55 | 5.88 | 4.95 | 2.14 | – |
Year | Soil Erosion Modulus (t/(hm2·a)) | Area of Different Soil Erosion Intensity (%) | |||||
---|---|---|---|---|---|---|---|
Slight | Light | Moderate | Serious | Extreme | Severe | ||
2000 | 31.18 | 22.88 | 41.67 | 15.47 | 8.51 | 8.86 | 2.60 |
2001 | 116.45 | 8.18 | 18.44 | 18.64 | 13.75 | 16.19 | 24.80 |
2002 | 170.88 | 6.12 | 13.65 | 14.53 | 13.15 | 18.39 | 34.16 |
2003 | 99.92 | 9.55 | 21.30 | 19.14 | 13.77 | 14.60 | 21.63 |
2004 | 147.21 | 7.21 | 15.29 | 16.66 | 13.20 | 17.45 | 30.19 |
2005 | 167.17 | 6.59 | 13.96 | 15.02 | 13.09 | 17.97 | 33.36 |
2006 | 88.56 | 10.69 | 23.77 | 19.44 | 13.11 | 13.90 | 19.09 |
2007 | 91.38 | 10.25 | 22.74 | 19.37 | 13.52 | 14.23 | 19.88 |
2008 | 55.03 | 14.68 | 33.43 | 19.72 | 10.53 | 11.42 | 10.23 |
2009 | 162.21 | 6.74 | 14.46 | 15.26 | 13.31 | 17.67 | 32.55 |
2010 | 80.11 | 11.15 | 25.45 | 19.80 | 12.87 | 13.49 | 17.24 |
2011 | 68.66 | 15.07 | 29.23 | 18.47 | 11.36 | 12.02 | 13.85 |
2012 | 115.97 | 8.52 | 18.78 | 18.40 | 13.71 | 15.92 | 24.67 |
2013 | 291.11 | 4.45 | 9.45 | 8.81 | 10.59 | 17.53 | 49.16 |
2014 | 115.96 | 8.61 | 18.41 | 18.64 | 13.74 | 15.75 | 24.85 |
2015 | 31.19 | 22.34 | 41.79 | 15.98 | 8.41 | 9.10 | 2.38 |
Average | 114.56 | 10.81 | 22.61 | 17.09 | 12.29 | 14.66 | 22.54 |
Year | Soil Erosion Modulus (t/(hm2·a)) | Area of Different Soil Erosion Intensity (%) | |||||
---|---|---|---|---|---|---|---|
Slight | Light | Moderate | Serious | Extreme | Severe | ||
2000 | 20.88 | 22.16 | 49.11 | 20.38 | 5.63 | 2.28 | 0.44 |
2001 | 80.67 | 7.82 | 18.43 | 19.00 | 18.51 | 22.07 | 14.16 |
2002 | 119.51 | 5.85 | 13.72 | 13.52 | 15.16 | 24.09 | 27.67 |
2003 | 68.41 | 8.93 | 20.98 | 21.86 | 18.03 | 20.51 | 9.69 |
2004 | 101.07 | 6.86 | 15.22 | 15.58 | 17.19 | 23.53 | 21.62 |
2005 | 114.77 | 6.19 | 13.98 | 13.84 | 15.71 | 24.07 | 26.22 |
2006 | 60.17 | 9.91 | 23.61 | 23.74 | 17.38 | 18.12 | 7.23 |
2007 | 62.51 | 9.42 | 22.58 | 23.50 | 17.54 | 19.26 | 7.70 |
2008 | 36.16 | 14.47 | 34.98 | 26.34 | 14.77 | 7.32 | 2.12 |
2009 | 111.59 | 6.16 | 14.84 | 14.87 | 15.96 | 23.49 | 24.67 |
2010 | 54.80 | 10.38 | 25.14 | 25.15 | 17.16 | 16.68 | 5.50 |
2011 | 46.05 | 14.21 | 31.27 | 23.00 | 14.28 | 12.81 | 4.44 |
2012 | 80.01 | 7.87 | 19.09 | 19.71 | 17.85 | 21.54 | 13.93 |
2013 | 197.60 | 4.22 | 9.32 | 8.86 | 9.85 | 21.00 | 46.75 |
2014 | 79.13 | 7.94 | 18.72 | 19.33 | 18.50 | 21.91 | 13.60 |
2015 | 21.44 | 22.05 | 48.37 | 20.87 | 5.78 | 2.37 | 0.56 |
Average | 78.42 | 10.28 | 23.71 | 19.35 | 14.96 | 17.57 | 14.14 |
Year | Increased Erosion Area (km2) | Proportion (%) | Decreased Erosion Area (km2) | Proportion (%) |
---|---|---|---|---|
2000 | 630.34 | 47.25 | 703.66 | 52.75 |
2001 | 673.74 | 50.51 | 661.73 | 49.60 |
2002 | 625.30 | 46.87 | 707.83 | 53.06 |
2003 | 634.18 | 47.54 | 699.67 | 52.45 |
2004 | 614.26 | 46.05 | 719.81 | 53.96 |
2005 | 614.26 | 46.05 | 719.81 | 53.96 |
2006 | 640.90 | 48.04 | 693.10 | 51.96 |
2007 | 642.82 | 48.19 | 691.18 | 51.81 |
2008 | 640.46 | 48.01 | 693.54 | 51.99 |
2009 | 640.81 | 48.04 | 693.19 | 51.96 |
2010 | 638.50 | 47.86 | 695.50 | 52.14 |
2011 | 640.93 | 48.05 | 693.06 | 51.95 |
2012 | 638.06 | 47.83 | 695.94 | 52.17 |
2013 | 653.53 | 48.99 | 680.47 | 51.01 |
2014 | 637.94 | 47.82 | 696.06 | 52.18 |
2015 | 627.85 | 47.07 | 706.14 | 52.93 |
Average | 637.12 | 47.76 | 696.92 | 52.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Zhao, W.; Wang, H. Effects of Vegetation Restoration on Soil Erosion on the Loess Plateau: A Case Study in the Ansai Watershed. Int. J. Environ. Res. Public Health 2021, 18, 6266. https://doi.org/10.3390/ijerph18126266
Wei H, Zhao W, Wang H. Effects of Vegetation Restoration on Soil Erosion on the Loess Plateau: A Case Study in the Ansai Watershed. International Journal of Environmental Research and Public Health. 2021; 18(12):6266. https://doi.org/10.3390/ijerph18126266
Chicago/Turabian StyleWei, Hui, Wenwu Zhao, and Han Wang. 2021. "Effects of Vegetation Restoration on Soil Erosion on the Loess Plateau: A Case Study in the Ansai Watershed" International Journal of Environmental Research and Public Health 18, no. 12: 6266. https://doi.org/10.3390/ijerph18126266
APA StyleWei, H., Zhao, W., & Wang, H. (2021). Effects of Vegetation Restoration on Soil Erosion on the Loess Plateau: A Case Study in the Ansai Watershed. International Journal of Environmental Research and Public Health, 18(12), 6266. https://doi.org/10.3390/ijerph18126266