The Dynamic Impact of the COVID-19 Pandemic on Air Quality: The Beijing Lessons
Abstract
:1. Introduction
2. Methodology and Data
2.1. Methodology
2.2. Data
3. The Dynamic Impacts of COVID-19 on Air Quality in Beijing
3.1. Unit Root Test
3.2. Estimation Results by MCMC
3.3. Time-Varying Impulse Analysis of Equal Interval
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | N | Mean | Min | Max | Std. Dev. |
---|---|---|---|---|---|
new | 242 | 3.967 | 0 | 36 | 7.603 |
pas | 242 | 396.741 | 412 | 10265 | 248.790 |
pek | 242 | 40.774 | 4 | 206 | 33.919 |
References
- Gurajala, S.; Dhaniyala, S.; Matthews, J.N. Understanding Public Response to Air Quality Using Tweet Analysis. Soc. Media Soc. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Hill, J.; Goodkind, A.; Tessum, C.; Thakrar, S.; Tilman, D.; Polasky, S.; Smith, T.; Hunt, N.; Mullins, K.; Clark, M.; et al. Air-quality-related health damages of maize. Nat. Sustain. 2019, 2, 397–403. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, F.; Xu, W.; Wang, Z.; Yang, Y.; Xu, C.; Wu, P.; Li, X. Atmospheric air quality in Beijing improved by application of air source heat pump (ASHP) systems. J. Clean. Prod. 2020, 257, 120582. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Achilleos, S.; Kioumourtzoglou, M.A.; Wu, C.D.; Schwartz, J.D.; Koutrakis, P.; Papatheodorou, S.I. Acute effects of fine par-ticulate matter constituents on mortality: A systematic review and meta-regression analysis. Environ. Int. 2017, 109, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Kurisu, K.; Hanaki, K.; Che, Y. Influential factors of public intention to improve the air quality in China. J. Clean. Prod. 2019, 209, 595–607. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef] [Green Version]
- Guan, T.; Yao, M.; Wang, J.; Fang, Y.; Hu, S.; Wang, Y.; Dutta, A.; Yang, J.; Wu, Y.; Hu, M.; et al. Airborne endotoxin in fine particulate matter in Beijing. Atmos. Environ. 2014, 97, 35–42. [Google Scholar] [CrossRef]
- Meetham, A.R.; Bottom, D.W.; Cayton, S. Atmospheric Pollution: Its History, Origins and Prevention; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Chen, Z.; Barros, C.P.; Gil-Alana, L.A. The persistence of air pollution in four mega-cities of China. Habitat Int. 2016, 56, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.; Mol, A.P.; Zhang, L.; Yang, S. Living under the dome: Individual strategies against air pollution in Beijing. Habitat Int. 2017, 59, 110–117. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of China. The Ministry of Ecology and Environment Released the Air Quality Status of Key Regions and 74 Cities in 2013. 2014. Available online: http://www.mee.gov.cn/gkml/sthjbgw/qt/201403/t20140325_269648.htm?keywords= (accessed on 25 August 2020). (In Chinese)
- Mao, F.; Duan, M.; Min, Q.; Gong, W.; Pan, Z.; Liu, G. Investigating the impact of haze on MODIS cloud detection. J. Geophys. Res. Atmos. 2015, 120, 12237–12247. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Tang, H.; Zhao, H. Diurnal, weekly and monthly spatial variations of air pollutants and air quality of Beijing. Atmos. Environ. 2015, 119, 21–34. [Google Scholar] [CrossRef]
- Ren, Y.; Li, H.; Meng, F.; Wang, G.; Zhang, H.; Yang, T.; Li, W.; Ji, Y.; Bi, F.; Wang, X. Impact of emission controls on air quality in Beijing during the 2015 China Victory Day Parade: Implication from organic aerosols. Atmos. Environ. 2019, 198, 207–214. [Google Scholar] [CrossRef]
- Ma, X.; Li, C.; Dong, X.; Liao, H. Empirical analysis on the effectiveness of air quality control measures during mega events: Evidence from Beijing, China. J. Clean. Prod. 2020, 271, 122536. [Google Scholar] [CrossRef]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Silver, B.; He, X.; Arnold, S.R.; Spracklen, D.V. The impact of COVID-19 control measures on air quality in China. Environ. Res. Lett. 2020, 15, 084021. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2020, nwaa137. [Google Scholar] [CrossRef]
- Ming, W.; Zhou, Z.; Ai, H.; Bi, H.; Zhong, Y. COVID-19 and Air Quality: Evidence from China. Emerg. Mark. Financ. Trade 2020, 56, 2422–2442. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Xie, M.; Li, S.; Zhuang, B.; Fu, Q.; Zhao, M.; Wu, H.; Liu, J.; Saikawa, E.; et al. Drivers for the poor air qual-ity conditions in north China Plain during the COVID-19 outbreak. Atmos. Environ. 2020, 246, 118103. [Google Scholar] [CrossRef]
- Tian, H.; Liu, Y.; Li, Y.; Wu, C.-H.; Chen, B.; Kraemer, M.U.G.; Li, B.; Cai, J.; Xu, B.; Yang, Q.; et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science 2020, 368, 638–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Kong, S.; Chen, N.; Yan, Y.; Liu, D.; Zhu, B.; Xu, K.; Cao, W.; Ding, Q.; Lan, B.; et al. Significant changes in the chemical compositions and sources of PM2.5 in Wuhan since the city lockdown as COVID-19. Sci. Total Environ. 2020, 739, 140000. [Google Scholar] [CrossRef] [PubMed]
- Faridi, S.; Yousefian, F.; Niazi, S.; Ghalhari, M.R.; Naddafi, K. Impact of SARS-CoV-2 on ambient air particulate matter in Tehran. Aerosol Air Qual. Res. 2020, 20, 1805–1811. [Google Scholar] [CrossRef]
- Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. J. Environ. Sci. 2021, 99, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Beijing Municipal Bureau Statistics. Economic Operation of the Beijing-Tianjin-Hebei Region in the First Quarter. 2020. Available online: http://tjj.beijing.gov.cn/zxfbu/202005/t20200511_1894088.html (accessed on 12 June 2020). (In Chinese)
- China News. The Rate of Resumption of Work and Production of Beijing Enterprises Rebounded to the Level of Early June. 2020. Available online: http://www.chinanews.com/cj/2020/07-18/9242071.shtml (accessed on 16 August 2020). (In Chinese).
- Kang, S.H.; Islam, F.; Tiwari, A.K. The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model. Struct. Chang. Econ. Dyn. 2019, 50, 90–101. [Google Scholar] [CrossRef]
- Wu, L.; Fu, G. RMB Exchange Rate, Short-Turn Capital Flows and Stock Price. Econ. Res. J. 2014, 49, 72–86. (In Chinese) [Google Scholar]
- Antonakakis, N.; Gabauer, D.; Gupta, R. International monetary policy spillovers: Evidence from a time-varying parameter vector autoregression. Int. Rev. Financ. Anal. 2019, 65, 101382. [Google Scholar] [CrossRef]
- Balli, E.; Çatık, A.N.; Nugent, J.B. Time-varying impact of oil shocks on trade balances: Evidence using the TVP-VAR model. Energy 2021, 217, 119377. [Google Scholar] [CrossRef]
- Antonakakis, N.; Gabauer, D.; Gupta, R.; Plakandaras, V. Dynamic connectedness of uncertainty across developed economies: A time-varying approach. Econ. Lett. 2018, 166, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Gabauer, D.; Gupta, R. On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach. Econ. Lett. 2018, 171, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, J.; Kasuya, M.; Watanabe, T. Bayesian analysis of time-varying parameter vector autoregressive model for the Jap-anese economy and monetary policy. J. Jpn. Int. Econ. 2011, 25, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Primiceri, G.E. Time Varying Structural Vector Autoregressions and Monetary Policy. Rev. Econ. Stud. 2005, 72, 821–852. [Google Scholar] [CrossRef]
- Beijing Transport Institute. Beijng Transport Development Annual Report. 2020. Available online: http://www.bjtrc.org.cn/List/index/cid/7.html (accessed on 12 July 2020). (In Chinese).
- Schwert, G.W. Tests for unit roots: A Monte Carlo investigation. J. Bus. Econ. Stat. 1988, 20, 5–17. [Google Scholar] [CrossRef]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Berlin, Germany, 2005. [Google Scholar]
- Sabbagh, F.; Muhamad, I.I. Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew. Sustain. Energy Rev. 2017, 72, 95–104. [Google Scholar] [CrossRef]
- Muhamad, I.I.; Sabbagh, F.; Karim, N.A. Polyhydroxyalkanoates: A valuable secondary metabolite produced in microorganisms and plants. In Plant Secondary Metabolites; Apple Academic Press, Inc.: New York, NY, USA, 2017; Volume 3, p. 185. [Google Scholar]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef]
- Singh, R.P.; Chauhan, A. Impact of lockdown on air quality in India during COVID-19 pandemic. Air Qual. Atmos. Health 2020, 13, 921–928. [Google Scholar] [CrossRef]
- Stratoulias, D.; Nuthammachot, N. Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Sci. Total Environ. 2020, 746, 141320. [Google Scholar] [CrossRef]
- Nadzir, M.S.M.; Ooi, M.C.G.; Alhasa, K.M.; Abu Bakar, M.A.; Mohtar, A.A.A.; Nor, M.F.F.M.; Latif, M.T.; Hamid, H.H.A.; Ali, S.H.M.; Ariff, N.M.; et al. The Impact of Movement Control Order (MCO) during Pandemic COVID-19 on Local Air Quality in an Urban Area of Klang Valley, Malaysia. Aerosol Air Qual. Res. 2020, 20, 1237–1248. [Google Scholar] [CrossRef]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Ma, C.-J.; Kang, G.-U. Air Quality Variation in Wuhan, Daegu, and Tokyo during the Explosive Outbreak of COVID-19 and Its Health Effects. Int. J. Environ. Res. Public Health 2020, 17, 4119. [Google Scholar] [CrossRef]
- Donzelli, G.; Cioni, L.; Cancellieri, M.; Llopis-Morales, A.; Morales-Suárez-Varela, M. Relations between Air Quality and Covid-19 Lockdown Measures in Valencia, Spain. Int. J. Environ. Res. Public Health 2021, 18, 2296. [Google Scholar] [CrossRef] [PubMed]
Variables | N | Mean | Min | Max | Std. Dev. |
---|---|---|---|---|---|
new | 242 | 3.967 | 0 | 36 | 7.603 |
pas | 242 | −481.235 | −850 | 170 | 231.252 |
pek | 242 | −2.018 | −49 | 153 | 33.308 |
Variables | Without Constant and Drift | With Drift | With Constant and Drift | |
---|---|---|---|---|
At Level | new | −3.046 *** | −3.915 *** | −4.301 *** |
pas | −0.526 *** | −3.069 *** | −4.232 *** | |
pek | −2.870 *** | −2.837 *** | −2.837 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, C.; Diao, G.; Cheng, B. The Dynamic Impact of the COVID-19 Pandemic on Air Quality: The Beijing Lessons. Int. J. Environ. Res. Public Health 2021, 18, 6478. https://doi.org/10.3390/ijerph18126478
Tao C, Diao G, Cheng B. The Dynamic Impact of the COVID-19 Pandemic on Air Quality: The Beijing Lessons. International Journal of Environmental Research and Public Health. 2021; 18(12):6478. https://doi.org/10.3390/ijerph18126478
Chicago/Turabian StyleTao, Chenlu, Gang Diao, and Baodong Cheng. 2021. "The Dynamic Impact of the COVID-19 Pandemic on Air Quality: The Beijing Lessons" International Journal of Environmental Research and Public Health 18, no. 12: 6478. https://doi.org/10.3390/ijerph18126478
APA StyleTao, C., Diao, G., & Cheng, B. (2021). The Dynamic Impact of the COVID-19 Pandemic on Air Quality: The Beijing Lessons. International Journal of Environmental Research and Public Health, 18(12), 6478. https://doi.org/10.3390/ijerph18126478