COVID-19 Inequalities: Individual and Area Socioeconomic Factors (Aragón, Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Information Sources and Study Population
2.2. Variables of the Study
2.3. Model Specification
3. Results
3.1. Aragón-COVID19 Cohort Description
3.2. Sociodemographic and Morbidity across Waves
3.3. Inequalities in the Risk of Having a Diagnosis of COVID-19
4. Discussion
4.1. Main Results
4.2. Differences Across Waves
4.3. COVID-19 Inequalities
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Description | Categories |
---|---|---|
Age | Age categorized | under 15 15–44 45–64 65–79 80 years or older |
Socioeconomic Level | Calculated on the basis of pharmacy copayment levels and Social Security benefits received, according to the type of user of the Aragón health service. From the combination of these two variables, 8 categories mutually exclusive were obtained | —Employed ≥ 18 K: employed individuals earning 18,000€ per year or more. —Employed < 18 K: employed individuals earning less than 18,000€ per year. —Unemployed: individuals receiving the unemployment allowance. —Pensioner ≥ 18 K: individuals with a contributory pension €18,000 per year or more —Pensioner < 18 K: individuals with a contributory pension less of €18,000 per year —Mutualist: individuals affiliated to the mutual insurance system for civil servants. —Free medicines: individuals receiving free medicines (people with minimum integration income or who no longer receive the unemployment allowance) —Other: other situations not previously considered |
Deprivation quartile | The deprivation index of the Basic Healthcare Area (BHA) of residence. This deprivation index combines information of four indicators from the Population and Housing Census 2011 (last available): % of unemployment, % of temporary workers, % of people between 16 and 64 years with low educational level and % of immigrants [18]. | —Q1 (least deprived). —Q2 —Q3 —Q4 (most deprived). |
Zone of residence | Classification of the zone of residence into rural or urban, according to the Aragon Government [19]. | —Urban areas: areas are those that concentrate at least 80% of the BHA population in their municipalities. —Rural areas: areas are those that do not meet this criterion. |
Weight complexity | Obtained from the morbidity adjusted groups (GMA) [17]. This source of information considers all medical diagnoses available from Primary Healthcare and hospital discharge records (CMBD). We considered GMA information from January 2020 in order to know the status prior to the COVID-19 diagnosis of the cohort individuals | Obtained from the aggregation of the patient´s different diagnoses |
Chronic morbidities and | Presence of chronic morbidities (Yes/No) Presence of respiratory illnesses (Yes/No) | |
respiratory illnesses | ||
Hospitalization | This source of information considers hospital discharge records (CMBD). | Hospitalization (Yes/No) |
Global (Number = 193,184) | No COVID-19 (Number = 153,592) | COVID-19 Confirmed (Number = 39,592) | p | |
---|---|---|---|---|
Age (years old) | 0.001 | |||
<15 | 26,409 (13.67%) | 22,320 (14.53%) | 4089 (10.33%) | |
15–44 | 70,202 (36.34%) | 55,362 (36.04%) | 14,840 (37.48%) | |
45–64 | 53,308 (27.59%) | 42,085 (27.40%) | 11,223 (28.35%) | |
65–79 | 22,002 (11.39%) | 17,955 (11.69%) | 4047 (10.22%) | |
≥80 | 21,263 (11.01%) | 15,870 (10.33%) | 5393 (13.62%) | |
Socioeconomic Level | <0.001 | |||
Employed ≥ 18 K | 43,178 (22.35%) | 35,559 (23.15%) | 7619 (19.24%) | |
Employed < 18 K | 70,445 (36.47%) | 55,236 (35.96%) | 15,209 (38.41%) | |
Unemployed | 7499 (3.88%) | 5890 (3.83%) | 1609 (4.06%) | |
Pensioner ≥ 18 K | 12,211 (6.32%) | 9936 (6.47%) | 2275 (5.75%) | |
Pensioner < 18 K | 36,570 (18.93%) | 28,585 (18.61%) | 7985 (20.17%) | |
Mutualist | 4851 (2.51%) | 4011 (2.61%) | 840 (2.12%) | |
Free medicines | 8121 (4.20%) | 6316 (4.11%) | 1805 (4.56%) | |
Other | 10,309 (5.34%) | 8059 (5.25%) | 2250 (5.68%) | |
Deprivation quartile | <0.001 | |||
Quartile 1 (least deprivation) | 53,757 (27.97%) | 43,492 (28.47%) | 10,265 (26.02%) | |
Quartile 2 | 46,764 (24.33%) | 37,551 (24.58%) | 9213 (23.35%) | |
Quartile 3 | 38,623 (20.10%) | 30,547 (20.00%) | 8076 (20.47%) | |
Quartile 4 (highest deprivation) | 53,047 (27.60%) | 41,152 (26.94%) | 11,895 (30.15%) | |
Zone of residence | 0.779 | |||
Rural | 48,548 (25.26%) | 38,561 (25.25%) | 9987 (25.32%) | |
Urban | 143,643 (74.74%) | 114,181 (74.75%) | 29,462 (74.68%) | |
Weight complexity * | 3.75 [1.72; 7.11] | 3.76 [1.74; 7.09] | 3.71 [1.65; 7.17] | 0.126 |
Presence of chronic morbidities | 137,836 (80.34%) | 111,046 (80.35%) | 26,790 (80.32%) | 0.906 |
Presence of respiratory illnesses | 18,193 (10.60%) | 15,026 (10.87%) | 3167 (9.49%) | <0.001 |
Hospitalization | 4633 (2.40%) | 223 (0.15%) | 4410 (11.14%) | <0.001 |
Global (Number = 164,805) | No COVID-19 (Number = 130,358) | COVID-19 Confirmed (Number = 34,447) | p | |
---|---|---|---|---|
Age (years old) | <0.001 | |||
<15 | 29,159 (17.69%) | 25,005 (19.18%) | 4154 (12.06%) | |
15–44 | 58,489 (35.49%) | 45,381 (34.81%) | 13,108 (38.05%) | |
45–64 | 42,354 (25.70%) | 32,255 (24.74%) | 10,099 (29.32%) | |
65–79 | 21,525 (13.06%) | 17,411 (13.36%) | 4114 (11.94%) | |
≥80 | 13,278 (8.06%) | 10,306 (7.91%) | 2972 (8.63%) | |
Socioeconomic Level | <0.001 | |||
Employed ≥ 18 K | 47,983 (29.12%) | 38,234 (29.33%) | 9749 (28.30%) | |
Employed < 18 K | 52,053 (31.58%) | 40,523 (31.09%) | 11,530 (33.47%) | |
Unemployed | 5593 (3.39%) | 4431 (3.40%) | 1162 (3.37%) | |
Pensioner ≥ 18 K | 15,401 (9.34%) | 12,396 (9.51%) | 3005 (8.72%) | |
Pensioner < 18 K | 26,389 (16.01%) | 21,034 (16.14%) | 5355 (15.55%) | |
Mutualist | 5340 (3.24%) | 4293 (3.29%) | 1047 (3.04%) | |
Free medicines | 4884 (2.96%) | 3884 (2.98%) | 1000 (2.90%) | |
Other | 7162 (4.35%) | 5563 (4.27%) | 1599 (4.64%) | |
Deprivation quartile | <0.001 | |||
Quartile 1 (least deprivation) | 44,253 (27.14%) | 35,692 (27.68%) | 8561 (25.08%) | |
Quartile 2 | 39,532 (24.24%) | 31,604 (24.51%) | 7928 (23.23%) | |
Quartile 3 | 33,917 (20.80%) | 26,704 (20.71%) | 7213 (21.13%) | |
Quartile 4 (highest deprivation) | 45,371 (27.82%) | 34,942 (27.10%) | 10,429 (30.56%) | |
Zone of residence | 0.076 | |||
Rural | 45,669 (28.01%) | 36,242 (28.11%) | 9427 (27.62%) | |
Urban | 117,404 (71.99%) | 92,700 (71.89%) | 24,704 (72.38%) | |
Weight complexity* | 3.08 [1.30; 6.19] | 3.12 [1.32; 6.25] | 2.92 [1.19; 5.96] | <0.001 |
Presence of chronic morbidities | 107,536 (75.08%) | 86,698 (75.26%) | 20,838 (74.34%) | 0.001 |
Presence of respiratory illnesses | 17,008 (11.88%) | 13,974 (12.13%) | 3034 (10.82%) | <0.001 |
Hospitalization | 5029 (3.05%) | 135 (0.10%) | 4894 (14.21%) | <0.001 |
References
- Bedford, J.; Enria, D.; Giesecke, J.; Heymann, D.L.; Ihekweazu, C.; Kobinger, G.; Lane, H.C.; Memish, Z.; Oh, M.-d.; Sall, A.A.; et al. COVID-19: Towards controlling of a pandemic. Lancet 2020, 395, 1015–1018. [Google Scholar] [CrossRef]
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef] [PubMed]
- WHO Coronavirus (COVID-19). Available online: https://covid19.who.int/ (accessed on 20 April 2021).
- Ministerio de Sanidad, Consumo y Bienestar Social—Situación Actual Coronavirus [Internet]. Available online: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/situacionActual.htm (accessed on 20 April 2021).
- Ahmed, F.; Ahmed, N.; Pissarides, C.; Stiglitz, J. Why inequality could spread COVID-19. Lancet Public Heal. 2020, 5, e240. [Google Scholar] [CrossRef]
- Kapiriri, L.; Ross, A. The Politics of Disease Epidemics: A Comparative Analysis of the SARS, Zika, and Ebola Outbreaks. Glob. Soc. Welf. 2020, 7, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, F.; Khazaei, S. Socio-economic inequality in global incidence and mortality rates from coronavirus disease 2019: An ecological study. New Microbes New Infect. 2020, 38, 100762. [Google Scholar] [CrossRef] [PubMed]
- Farmer, P. Social Inequalities and Emerging Infectious Diseases. Emerg. Infect. Dis. 1996, 2, 259–269. [Google Scholar] [CrossRef]
- Debiasi, E.; Dribe, M. SES inequalities in cause-specific adult mortality: A study of the long-term trends using longitudinal individual data for Sweden (1813–2014). Eur. J. Epidemiol. 2020, 35, 1043–1056. [Google Scholar] [CrossRef]
- Diderichsen, F.; Augusto, L.G.d.S.; Perez, B. Understanding social inequalities in Zika infection and its consequences: A model of pathways and policy entry-points. Glob. Public Health 2019, 14, 675–683. [Google Scholar] [CrossRef]
- Zhong, B.L.; Luo, W.; Li, H.M.; Zhang, Q.Q.; Liu, X.G.; Li, W.T.; Li, Y. Knowledge, attitudes, and practices towards COVID-19 among chinese residents during the rapid rise period of the COVID-19 outbreak: A quick online cross-sectional survey. Int. J. Biol. Sci. 2020, 16, 1745–1752. [Google Scholar] [CrossRef]
- Azlan, A.A.; Hamzah, M.R.; Sern, T.J.; Ayub, S.H.; Mohamad, E. Public knowledge, attitudes and practices towards COVID-19: A cross-sectional study in Malaysia. PLoS ONE 2020, 15, e0233668. [Google Scholar] [CrossRef]
- Burstrom, B.; Tao, W. Social determinants of health and inequalities in COVID-19. Eur. J. Public Health 2020, 30, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Bambra, C.; Riordan, R.; Ford, J.; Matthews, F. The COVID-19 pandemic and health inequalities. J. Epidemiol. Community Health 2020, 74, 964–968. [Google Scholar] [CrossRef]
- Harlem, G. Descriptive analysis of social determinant factors in urban communities affected by COVID-19. J. Public Health 2020, 42, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Nassif-Pires, L.; Xavier, L.d.L.; Masterson, T.; Nikiforos, M.; Rios-Avila, F. Pandemic of Inequality. Econ. Public Policy Br. Arch. 2020. Available online: https://ideas.repec.org/p/lev/levppb/ppb_149.html (accessed on 20 April 2021).
- Baena-Díez, J.M.; Barroso, M.; Cordeiro-Coelho, S.I.; Díaz, J.L.; Grau, M. Impact of COVID-19 outbreak by income: Hitting hardest the most deprived. J. Public Health 2020, 42, 698–703. [Google Scholar] [CrossRef]
- Marí-Dell’Olmo, M.; Gotsens, M.; Pasarín, M.I.; Rodríguez-Sanz, M.; Artazcoz, L.; Garcia de Olalla, P.; Rius, C.; Borrell, C. Socioeconomic Inequalities in COVID-19 in a European Urban Area: Two Waves, Two Patterns. Int. J. Environ. Res. Public Health 2021, 18, 1256. [Google Scholar] [CrossRef]
- Todd, A.; Copeland, A.; Husband, A.; Kasim, A.; Bambra, C. Access all areas? An area-level analysis of accessibility to general practice and community pharmacy services in England by urbanity and social deprivation. BMJ Open 2015, 5, e007328. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, K.; Erqou, S.; Shah, N.; Nazir, U.; Morrison, A.R.; Choudhary, G.; Wu, W.-C. Association of poor housing conditions with COVID-19 incidence and mortality across US counties. PLoS ONE 2020, 15, e0241327. [Google Scholar] [CrossRef]
- Salud Aragón Data COVID. Available online: http://datacovid.salud.aragon.es/covid/ (accessed on 20 April 2021).
- Gobierno de Aragón. Instituto Aragonés de Estadística. Available online: https://www.aragon.es/organismos/departamento-de-economia-planificacion-y-empleo/direccion-general-de-economia/instituto-aragones-de-estadistica-iaest- (accessed on 8 June 2021).
- Gobierno de Aragón. Sanitary Map. 2008. Available online: https://www.aragon.es/documents/20127/674325/MAPA_SANITARIO_ARAGON_2007.pdf/0df51a0e-7de3-b892-afeb-8eab31c76e10 (accessed on 8 June 2021).
- Monterde, D.; Vela, E.; Primaria, M.C.-A. Los Grupos de Morbilidad Ajustados: Nuevo Agrupador de Morbilidad Poblacional de Utilidad en el Ámbito de la Atención Primaria. Available online: https://www.sciencedirect.com/science/article/pii/S0212656716302104 (accessed on 15 March 2021).
- Compés Dea, M.L.; Olivan Bellido, E.; Feja Solana, C.; Aguilar Palacio, I.; García-Carpintero Romero Del Hombrebueno, G.; Adiego Sancho, B. Construcción de un índice de privación por zona básica de salud en Aragón a partir de datos de censo de 2011. Rev. Esp. Salud Publica 2018, 92, e201812087. [Google Scholar]
- Dirección General de Farmacia del Gobierno de Aragón. 2020. Available online: https://www.aragon.es/organismos/departamento-de-sanidad/servicio-aragones-de-salud/direccion-de-coordinacion-asistencial/servicio-de-farmacia (accessed on 20 April 2021).
- Bates, D.; Mächler, M.; Bolker, B.M.; Walker, S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67. [Google Scholar] [CrossRef]
- Bilal, U.; Barber, S.; Tabb, L.; Diez-Roux, A.V. Spatial inequities in COVID-19 testing, positivity, incidence and mortality in 3 US cities: A longitudinal ecological study. medRxiv 2020, 20087833. [Google Scholar] [CrossRef]
- Garcés-Mascareñas, B. Agricultural Seasonal Workers in Times of Covid-19 in Spain. Available online: https://www.researchgate.net/publication/349427832 (accessed on 18 March 2021).
- Holst, H.; Fessler, A.; Niehoff, S. Covid-19, social class and work experience in Germany: Inequalities in work-related health and economic risks. Eur. Soc. 2021, 23 (Suppl. 1), S495–S512. [Google Scholar] [CrossRef]
- Palomino, J.C.; Rodríguez, J.G.; Sebastian, R. Wage inequality and poverty effects of lockdown and social distancing in Europe. Eur. Econ. Rev. 2020, 129, 103564. [Google Scholar] [CrossRef]
- Marmot, M.; Allen, J. COVID-19: Exposing and amplifying inequalities. J. Epidemiol. Community Health 2020, 74, 681–682. [Google Scholar] [CrossRef] [PubMed]
- INEbase Economically Active Population Survey. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176918&menu=ultiDatos&idp=1254735976595 (accessed on 20 April 2021).
- Algren, M.H.; Ekholm, O.; Nielsen, L.; Ersbøll, A.K.; Bak, C.K.; Andersen, P.T. Associations between perceived stress, socioeconomic status, and health-risk behaviour in deprived neighbourhoods in Denmark: A cross-sectional study. BMC Public Health 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.A.; Nielsen, F.B.H.; Badiani, A.A.; Assi, S.; Unadkat, V.A.; Patel, B.; Ravindrane, R.; Wardle, H. Poverty, inequality and COVID-19: The forgotten vulnerable. Public Health 2020, 183, 110–111. [Google Scholar] [CrossRef]
- Merlo, J.; Chaix, B.; Ohlsson, H.; Beckman, A.; Johnell, K.; Merlo, J. A brief conceptual tutorial of multilevel analysis in social epidemiology: Using measures of clustering in multilevel logistic regression to investigate contextual phenomena. J. Epidemiol Community Heal. 2006, 60, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, K. Appropriate Assessment of Neighborhood Effects on Individual Health: Integrating Random and Fixed Effects in Multilevel Logistic Regression. Am. J. Epidemiol. 2005, 161, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tang, K. Combating COVID-19: Health equity matters. Nat. Med. 2020, 26, 458. [Google Scholar] [CrossRef] [PubMed]
- Abrams, E.M.; Szefler, S.J. COVID-19 and the impact of social determinants of health. Lancet Respir. Med. 2020, 8, 659–661. [Google Scholar] [CrossRef]
- Cash-Gibson, L.; Pericàs, J.M.; Martinez-Herrera, E.; Benach, J. Health Inequalities in the Time of COVID-19: The Globally Reinforcing Need to Strengthen Health Inequalities Research Capacities. Int. J. Heal. Serv. 2021, 51, 300–304. [Google Scholar] [CrossRef]
Wave 1 (Number = 3,514) | Wave 2 (Number = 18,739) | Wave 3 (Number = 17,339) | p | |
---|---|---|---|---|
Age (years old) | 0.000 | |||
<15 | 16 (0.46%) | 2321 (12.39%) | 1752 (10.10%) | |
15–44 | 850 (24.19%) | 7738 (41.29%) | 6252 (36.06%) | |
45–64 | 1134 (32.27%) | 4918 (26.24%) | 5171 (29.82%) | |
65–79 | 449 (12.78%) | 1739 (9.28%) | 1859 (10.72%) | |
≥80 | 1065 (30.31%) | 2023 (10.80%) | 2305 (13.29%) | |
Socioeconomic Level | <0.001 | |||
Employed ≥ €18,000 per year | 716 (20.38%) | 3237 (17.27%) | 3666 (21.14%) | |
Employed < €18,000 per year | 931 (26.49%) | 7872 (42.01%) | 6406 (36.95%) | |
Unemployed | 70 (1.99%) | 854 (4.56%) | 685 (3.95%) | |
Pensioner ≥ €18,000 per year | 296 (8.42%) | 932 (4.97%) | 1047 (6.04%) | |
Pensioner < €18,000 per year | 1210 (34.43%) | 3230 (17.24%) | 3545 (20.45%) | |
Mutualist | 101 (2.87%) | 299 (1.60%) | 440 (2.54%) | |
Free medicines | 100 (2.85%) | 1040 (5.55%) | 665 (3.84%) | |
Other | 90 (2.56%) | 1275 (6.80%) | 885 (5.10%) | |
Deprivation quartile | <0.001 | |||
Quartile 1 (least deprivation) | 1149 (32.92%) | 4324 (23.15%) | 4792 (27.74%) | |
Quartile 2 | 854 (24.47%) | 4014 (21.49%) | 4345 (25.15%) | |
Quartile 3 | 608 (17.42%) | 4051 (21.68%) | 3417 (19.78%) | |
Quartile 4 (highest deprivation) | 879 (25.19%) | 6293 (33.68%) | 4723 (27.34%) | |
Zone of residence | <0.001 | |||
Rural | 886 (25.39%) | 4226 (22.62%) | 4875 (28.22%) | |
Urban | 2604 (74.61%) | 14,456 (77.38%) | 12,402 (71.78%) | |
Weight complexity * | 5.57 [2.50; 10.48] | 3.47 [1.59; 6.61] | 3.65 [1.61; 7.17] | <0.001 |
Presence of chronic morbidities | 2977 (87.97%) | 13,862 (78.72%) | 9951 (80.50%) | <0.001 |
Presence of respiratory illnesses | 402 (11.88%) | 1580 (8.97%) | 1185 (9.59%) | <0.001 |
Wave 1 (Number = 2,473) | Wave 2 (Number = 16,846) | Wave 3 (Number = 15,128) | p | |
---|---|---|---|---|
Age (years old) | 0.000 | |||
<15 | 38 (1.54%) | 2272 (13.49%) | 1844 (12.19%) | |
15–44 | 469 (18.96%) | 7021 (41.68%) | 5618 (37.14%) | |
45–64 | 784 (31.70%) | 4709 (27.95%) | 4606 (30.45%) | |
65–79 | 536 (21.67%) | 1747 (10.37%) | 1831 (12.10%) | |
≥80 | 646 (26.12%) | 1097 (6.51%) | 1229 (8.12%) | |
Socioeconomic Level | 0.000 | |||
Employed ≥ €18,000 per year | 494 (19.98%) | 4518 (26.82%) | 4737 (31.31%) | |
Employed < €18,000 per year | 366 (14.80%) | 6370 (37.81%) | 4794 (31.69%) | |
Unemployed | 46 (1.86%) | 659 (3.91%) | 457 (3.02%) | |
Pensioner ≥ €18,000 per year | 422 (17.06%) | 1245 (7.39%) | 1338 (8.84%) | |
Pensioner < €18,000 per year | 829 (33.52%) | 2164 (12.85%) | 2362 (15.61%) | |
Mutualist | 193 (7.80%) | 381 (2.26%) | 473 (3.13%) | |
Free medicines | 53 (2.14%) | 587 (3.48%) | 360 (2.38%) | |
Other | 70 (2.83%) | 922 (5.47%) | 607 (4.01%) | |
Deprivation quartile | <0.001 | |||
Quartile 1 (least deprivation) | 724 (30.08%) | 3752 (22.42%) | 4085 (27.25%) | |
Quartile 2 | 609 (25.30%) | 3512 (20.99%) | 3807 (25.40%) | |
Quartile 3 | 499 (20.73%) | 3684 (22.01%) | 3030 (20.21%) | |
Quartile 4 (highest deprivation) | 575 (23.89%) | 5787 (34.58%) | 4067 (27.13%) | |
Zone of residence | <0.001 | |||
Rural | 738 (30.66%) | 4238 (25.32%) | 4451 (29.70%) | |
Urban | 1669 (69.34%) | 12,497 (74.68%) | 10,538 (70.30%) | |
Weight complexity * | 5.56 [2.28; 10.74] | 2.74 [1.11; 5.34] | 2.88 [1.16; 5.99] | <0.001 |
Presence of chronic morbidities | 1891 (85.53%) | 11,192 (72.16%) | 7755 (75.22%) | <0.001 |
Presence of respiratory illnesses | 368 (16.64%) | 1542 (9.94%) | 1124 (10.90%) | <0.001 |
Predictors | Global | Wave 1 | Wave 2 | Wave 3 |
---|---|---|---|---|
Odds Ratios (95% Confidence Interval) | Odds Ratios (95% Confidence Interval) | Odds Ratios (95% Confidence Interval) | Odds Ratios (95% Confidence Interval) | |
Intercept | 0.16 *** (0.15–0.17) | 0.01 *** (0.01–0.02) | 0.13 *** (0.10–0.16) | 0.30 *** (0.26–0.33) |
Age (Ref: <15) | ||||
15–44 | 1.51 *** (1.45–1.58) | 9.47 *** (5.49–16.33) | 1.63 *** (1.55–1.72) | 1.47 *** (1.36–1.59) |
45–64 | 1.61 *** (1.54–1.68) | 12.94 *** (7.51–22.30) | 1.67 *** (1.57–1.77) | 1.68 *** (1.55–1.82) |
65–79 | 1.57 *** (1.47–1.69) | 16.26 *** (9.23–28.64) | 1.55 *** (1.42–1.71) | 1.64 *** (1.46–1.86) |
≥80 | 2.50 *** (2.33–2.68) | 32.93 *** (18.71–57.94) | 2.26 *** (2.05–2.49) | 3.00 *** (2.64–3.40) |
Socioeconomic level (Ref: employed ≥ €18,000 per year) | ||||
Employed < €18,000 per year | 1.25 *** (1.21–1.30) | 1.14 * (1.03–1.27) | 1.31 *** (1.25–1.37) | 1.13 *** (1.07–1.20) |
Unemployed | 1.23 *** (1.15–1.32) | 0.91 (0.71–1.18) | 1.29 *** (1.19–1.41) | 1.10 (0.98–1.24) |
Pensioner ≥ €18,000 per year | 0.94 (0.88–1.01) | 0.82 * (0.68–1.00) | 0.95 (0.86–1.05) | 0.89 * (0.79–1.00) |
Pensioner < €18,000 per year | 1.02 (0.97–1.09) | 0.88 (0.74–1.05) | 1.02 (0.94–1.10) | 0.99 (0.90–1.10) |
Mutualist | 0.86 * (0.76–0.96) | 0.92 (0.62–1.36) | 0.71 *** (0.59–0.84) | 0.88 (0.73–1.07) |
Free medicines | 1.27 *** (1.20–1.36) | 0.87 (0.69–1.10) | 1.39 *** (1.28–1.51) | 1.20 ** (1.06–1.36) |
Other | 1.27 *** (1.20–1.35) | 0.76 * (0.60–0.96) | 1.39 *** (1.29–1.50) | 1.16 ** (1.04–1.29) |
Chronic morbidities | 0.84 *** (0.82–0.87) | 0.82 *** (0.73–0.92) | 0.85 *** (0.82–0.89) | 0.88 *** (0.83–0.94) |
Random Effects | ||||
τ00 | 0.0049 BHA deprivation | 0.0033 BHA deprivation | 0.0209 BHA deprivation | 0.0025 BHA deprivation |
0.0000 rural/urban BHA | 0.0043 rural/urban BHA | 0.0123 rural/urban BHA | 0.0021 rural/urban BHA | |
ρ (rho) | NA | 0.0023 | 0.0100 | 0.0014 |
Number of observations | 171,561 | 32,681 | 98,906 | 39,974 |
Marginal R2/Conditional R2 | 0.015/NA | 0.107/0.109 | 0.017/0.027 | 0.018/0.020 |
MOR Deprivation quartile | 1.0700 | 1.0562 | 1.1500 | 1.0484 |
MOR Zone of residence | 1.0000 | 1.0642 | 1.1100 | 1.0445 |
LR test (Prob ) | 0.000 | 0.022 | 0.000 | 0.001 |
Predictors | Global | Wave 1 | Wave 2 | Wave 3 |
---|---|---|---|---|
Odds Ratios (95% Confidence Interval) | Odds Ratios (95% Confidence Interval) | Odds Ratios (95% Confidence Interval) | Odds Ratios (95% Confidence Interval) | |
Intercept | 0.15 *** (0.14–0.17) | 0.03 *** (0.02–0.04) | 0.12 *** (0.10–0.15) | 0.31 *** (0.28–0.33) |
Age (Ref: <15) | ||||
15–44 | 1.73 *** (1.66–1.81) | 3.41 *** (2.40–4.85) | 1.95 *** (1.85–2.06) | 1.37 *** (1.27–1.48) |
45–64 | 2.05 *** (1.96–2.14) | 5.73 *** (4.05–8.10) | 2.31 *** (2.18–2.45) | 1.77 *** (1.63–1.92) |
65–79 | 1.92 *** (1.79–2.06) | 6.28 *** (4.30–9.17) | 2.20 *** (1.99–2.43) | 1.67 *** (1.47–1.89) |
≥80 | 2.52 *** (2.34–2.72) | 10.89 *** (7.44–15.94) | 2.51 *** (2.25–2.80) | 2.51 *** (2.19–2.88) |
Socioeconomic level (Ref: employed ≥ €18,000 per year) | ||||
Employed < €18,000 per year | 1.12 *** (1.08–1.16) | 0.87 (0.75–1.02) | 1.18 *** (1.13–1.24) | 1.05 (0.99–1.12) |
Unemployed | 1.03 (0.95–1.11) | 0.89 (0.64–1.24) | 1.10* (1.00–1.21) | 0.93 (0.81–1.07) |
Pensioner ≥ €18,000 per year | 0.87 *** (0.81–0.93) | 1.08 (0.89–1.32) | 0.81 *** (0.73–0.89) | 0.92 (0.82–1.03) |
Pensioner < €18,000 per year | 0.87 *** (0.82–0.93) | 1.02 (0.85–1.23) | 0.81 *** (0.74–0.88) | 0.99 (0.89–1.10) |
Mutualist | 0.86* (0.75–0.98) | 1.36 (0.95–1.94) | 0.80* (0.66–0.96) | 0.86 (0.68–1.08) |
Free medicines | 1.08 (1.00–1.17) | 0.97 (0.71–1.33) | 1.16** (1.05–1.28) | 1.15 (0.98–1.35) |
Other | 1.10** (1.03–1.18) | 1.01 (0.75–1.36) | 1.16** (1.06–1.26) | 1.11 (0.98–1.26) |
Chronic morbidities | 0.86 *** (0.83–0.88) | 0.74 *** (0.64–0.84) | 0.85 *** (0.82–0.89) | 0.92** (0.87–0.98) |
Random Effects | ||||
τ00 | 0.0069 BHA deprivation | 0.0036 BHA deprivation | 0.0255 BHA deprivation | 0.0009 BHA deprivation |
0.0004 rural/urban BHA | 0.0071 rural/urban BHA | 0.0092 rural/urban BHA | 0.0000 rural/urban BHA | |
ICC | 0.0022 | 0.0032 | 0.0104 | NA |
Number of observations | 143,222 | 22,481 | 87,156 | 33,585 |
Marginal R2/Conditional R2 | 0.018/0.021 | 0.099/0.102 | 0.027/0.038 | 0.015/NA |
MOR Deprivation quartile | 1.0800 | 1.0590 | 1.1600 | 1.0300 |
MOR Zone of residence | 1.0200 | 1.0836 | 1.1000 | 1.0000 |
LR test (Prob ) | 0.000 | 0.015 | 0.000 | 0.312 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Palacio, I.; Maldonado, L.; Malo, S.; Sánchez-Recio, R.; Marcos-Campos, I.; Magallón-Botaya, R.; Rabanaque, M.J. COVID-19 Inequalities: Individual and Area Socioeconomic Factors (Aragón, Spain). Int. J. Environ. Res. Public Health 2021, 18, 6607. https://doi.org/10.3390/ijerph18126607
Aguilar-Palacio I, Maldonado L, Malo S, Sánchez-Recio R, Marcos-Campos I, Magallón-Botaya R, Rabanaque MJ. COVID-19 Inequalities: Individual and Area Socioeconomic Factors (Aragón, Spain). International Journal of Environmental Research and Public Health. 2021; 18(12):6607. https://doi.org/10.3390/ijerph18126607
Chicago/Turabian StyleAguilar-Palacio, Isabel, Lina Maldonado, Sara Malo, Raquel Sánchez-Recio, Iván Marcos-Campos, Rosa Magallón-Botaya, and Mª José Rabanaque. 2021. "COVID-19 Inequalities: Individual and Area Socioeconomic Factors (Aragón, Spain)" International Journal of Environmental Research and Public Health 18, no. 12: 6607. https://doi.org/10.3390/ijerph18126607