Participants Attrition in a Longitudinal Study: The Malaysian Cohort Study Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Preparation for Home Recruitment
2.4. Home Recruitment
2.5. Statistical Analyses
3. Results
Participants’ Responses and Reasons of Attrition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seubsman, S.; Kelly, M.; Sleigh, A.; Peungson, J.; Chokkanapitak, J.; Vilainerun, D. Methods used for successful follow-up in a large scale national cohort study in Thailand. BMC Res. Notes 2011, 4, 166. [Google Scholar] [CrossRef] [Green Version]
- Ward, H.; Toledano, M.B.; Shaddick, G.; Davies, B.; Elliott, P. Oxford Handbook of Epidemiology for Clinicians; Oxford University Press: Oxford, UK, 2012; ISBN 9780198529880. [Google Scholar]
- Toledano, M.B.; Smith, R.B.; Brook, J.P.; Douglass, M.; Elliott, P. How to Establish and Follow up a Large Prospective Cohort Study in the 21st Century-Lessons from UK COSMOS. PLoS ONE 2015, 10, e0131521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babbie, E.R. Survey Research Methods; Wadsworth: Belmont, CA, USA, 1973. [Google Scholar]
- Greenland, S. Response and follow-up bias in cohort studies. Am. J. Epidemiol. 1977, 106, 184–187. [Google Scholar] [CrossRef]
- Kleinbaum, D.G.; Morgenstern, H.; Kupper, L.L. Selection bias in epidemiologic studies. Am. J. Epidemiol. 1981, 113, 452–463. [Google Scholar] [CrossRef] [Green Version]
- Hollen, P.J.; Gralla, R.J.; Cox, C.; Eberly, S.W.; Kris, M.G. A dilemma in analysis: Issues in the serial measurement of quality of life in patients with advanced lung cancer. Lung Cancer 1997, 18, 119–136. [Google Scholar] [CrossRef]
- Butler, C.W.; Snyder, M.; Wood, D.E.; Curtis, J.R.; Albert, R.K.; Benditt, J.O. Underestimation of Mortality Following Lung Volume Reduction Surgery Resulting From Incomplete Follow-up. Chest 2001, 119, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Deeg, D. Attrition in longitudinal population studies: Does it affect the generalizability of the findings?1An introduction to the series. J. Clin. Epidemiol. 2002, 55, 213–215. [Google Scholar] [CrossRef]
- Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; ISBN 0-471-18386-5. [Google Scholar]
- Kristman, V.; Manno, M.; Côté, P. Loss to Follow-Up in Cohort Studies: How Much is Too Much? Eur. J. Epidemiol. 2003, 19, 751–760. [Google Scholar] [CrossRef]
- McLean, R.R.; Hannan, M.T.; Epstein, B.E.; Bouxsein, M.L.; Cupples, L.A.; Murabito, J.; Kiel, D.P. Elderly Cohort Study Subjects Unable to Return for Follow-up Have Lower Bone Mass than Those Who Can Return. Am. J. Epidemiol. 2000, 151, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Bisgard, K.M.; Folsom, A.R.; Hong, C.-P.; Sellers, T.A. Mortality and Cancer Rates in Nonrespondents to a Prospective Study of Older Women: 5-Year Follow-up. Am. J. Epidemiol. 1994, 139, 990–1000. [Google Scholar] [CrossRef]
- Chatfield, M.D.; Brayne, C.E.; Matthews, F.E. A systematic literature review of attrition between waves in longitudinal studies in the elderly shows a consistent pattern of dropout between differing studies. J. Clin. Epidemiol. 2005, 58, 13–19. [Google Scholar] [CrossRef]
- Matthews, F.E.; Chatfield, M.; Brayne, C. An investigation of whether factors associated with short-term attrition change or persist over ten years: Data from the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS). BMC Public Health 2006, 6, 185. [Google Scholar] [CrossRef] [Green Version]
- Stange, J.P.; Connolly, S.L.; Burke, T.A.; Hamilton, J.L.; Hamlat, E.J.; Abramson, L.Y.; Alloy, L.B. Inflexible Cognition Predicts First Onset of Major Depressive Episodes in Adolescence. Depress. Anxiety 2016, 33, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Stange, J.P.; Jenkins, L.M.; Bessette, K.L.; Kling, L.R.; Bark, J.S.; Shepard, R.; Hamlat, E.J.; DelDonno, S.; Phan, K.L.; Passarotti, A.M.; et al. Predictors of Attrition in Longitudinal Neuroimaging Research: Inhibitory Control, Head Movement, and Resting-State Functional Connectivity. Brain Connect. 2018, 8, 527–536. [Google Scholar] [CrossRef]
- Gustavson, K.; von Soest, T.; Karevold, E.; Røysamb, E. Attrition and generalizability in longitudinal studies: Findings from a 15-year population-based study and a Monte Carlo simulation study. BMC Public Health 2012, 12, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamers, F.; Hoogendoorn, A.W.; Smit, J.H.; van Dyck, R.; Zitman, F.G.; Nolen, W.A.; Penninx, B.W. Sociodemographic and psychiatric determinants of attrition in the Netherlands Study of Depression and Anxiety (NESDA). Compr. Psychiatry 2012, 53, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, G.; Jones, P.B.; Goodyer, I.M. The ROOTS study: A 10-year review of findings on adolescent depression, and recommendations for future longitudinal research. Soc. Psychiatry Psychiatr. Epidemiol. 2016, 51, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Glymour, M.M.; Chene, G.; Tzourio, C.; Dufouil, C. Brain MRI markers and dropout in a longitudinal study of cognitive aging: The Three-City Dijon Study. Neurology 2012, 79, 1340–1348. [Google Scholar] [CrossRef] [Green Version]
- Dawson, E.L.; Caveney, A.F.; Meyers, K.K.; Weisenbach, S.L.; Giordani, B.; Avery, E.T.; Schallmo, M.-P.; Bahadori, A.; Bieliauskas, L.A.; Mordhorst, M.; et al. Executive Functioning at Baseline Prospectively Predicts Depression Treatment Response. Prim. Care Companion CNS Disord. 2017, 19. [Google Scholar] [CrossRef]
- Jamal, R.; Syed Zakaria, S.Z.; Kamaruddin, M.A.; Abd Jalal, N.; Ismail, N.; Mohd Kamil, N.; Abdullah, N.; Baharudin, N.; Hussin, N.H.; Othman, H.; et al. Cohort Profile: The Malaysian Cohort (TMC) project: A prospective study of non-communicable diseases in a multi-ethnic population. Int. J. Epidemiol. 2015, 44, 423–431. [Google Scholar] [CrossRef]
- Edwards, P.J.; Roberts, I.; Clarke, M.J.; DiGuiseppi, C.; Wentz, R.; Kwan, I.; Cooper, R.; Felix, L.M.; Pratap, S. Methods to increase response to postal and electronic questionnaires. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef]
- Chee, H.L. Ownership, control, and contention: Challenges for the future of healthcare in Malaysia. Soc. Sci. Med. 2008, 66, 2145–2156. [Google Scholar] [CrossRef]
- Chongsuvivatwong, V.; Phua, K.H.; Yap, M.T.; Pocock, N.S.; Hashim, J.H.; Chhem, R.; Wilopo, S.A.; Lopez, A.D. Health and healthcare systems in southeast Asia: Diversity and transitions. Lancet 2011, 377, 429–437. [Google Scholar] [CrossRef]
- Pocock, N.S.; Phua, K.H. Medical tourism and policy implications for health systems: A conceptual framework from a comparative study of Thailand, Singapore and Malaysia. Global. Health 2011, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, P. Foundations of Rational Choice under Risk; Oxford University Press: Oxford, UK, 1995; ISBN 9780198774426. [Google Scholar]
- Center of Disease Control. Behavioral Risk Factor Surveillance System (BRFSS) Summary Data Quality Report; CDC: Atlanta, GA, USA, 2000. [Google Scholar]
- Costello, H.; Hayes, G.M.; Francis, P.T. Factors affecting withdrawal and donation attrition in the brains for dementia research cohort. Int. J. Geriatr. Psychiatry 2018, 33, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Fernandez, E.; Schiaffino, A.; Borrell, C.; Marti, M.; Borras, J.M. Attrition in a population-based cohort eight years after baseline interview: The Cornella Health Interview Survey Follow-up (CHIS.FU) Study. Ann. Epidemiol. 2005, 15, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Michelet, M.; Lund, A.; Sveen, U. Strategies to recruit and retain older adults in intervention studies: A quantitative comparative study. Arch. Gerontol. Geriatr. 2014, 59, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Vega, S.; Benito-León, J.; Bermejo-Pareja, F.; Medrano, M.J.; Vega-Valderrama, L.M.; Rodríguez, C.; Louis, E.D. Several factors influenced attrition in a population-based elderly cohort: Neurological disorders in Central Spain Study. J. Clin. Epidemiol. 2010, 63, 215–222. [Google Scholar] [CrossRef]
- Mohd, S.; Senadjki, A.; Mansor, N. Trend of Poverty among Elderly: Evidence from Household Income Surveys Trend of Poverty among Elderly: Evidence from Household. J. Poverty 2018, 22, 89–107. [Google Scholar] [CrossRef]
- Benjamin, C.; Paim, L.; Masud, J.; Tengku Abdul Hamid, T. The future of the Malaysian older employees: An exploratory study. Int. J. Bus. Manag. 2010, 5, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Del Brutto, O.H.; Castillo, P.R.; Sedler, M.J.; Del Brutto, V.J.; Zambrano, M.; Mera, R.M.; Wright, C.B.; Rundek, T. Reasons for Declining Consent in a Population-Based Cohort Study Conducted in a Rural South American Community. J. Environ. Public Health 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Follow-Up Appointment Calls Responses | Frequency (%) |
---|---|
Successful appointment call: | 1226 (6.3) |
Participant agreed to come for follow-up | 1182 (6.1) |
Participants informed that they had attend the follow-up | 44 (0.2) |
Need to re-contact for an appointment via call or another platform: | 15,125 (78.3) |
The telephone call was not answered | 4468 (23.1) |
The participant was uncertain about coming/had an ambiguous response * | 4375 (22.6) |
The telephone number was not in service | 2392 (12.4) |
Wrong telephone number/changed to a different unknown number | 1140 (5.9) |
The participant unable to come due to busy/working * | 849 (4.4) |
The telephone number was not reachable | 805 (4.2) |
The participant requested to be called at another time | 370 (1.9) |
The participant unable to come due to being outside the recruitment area temporarily | 261 (1.3) |
Other reasons | 148 (0.8) |
Language barrier | 109 (0.6) |
The participant unable to come due to logistics problems * | 107 (0.6) |
The participant requested to change to another follow-up location (i.e., not at the main center) | 73 (0.4) |
The telephone call line was not clear | 28 (0.1) |
Unsuccessful appointment call: | 2992 (15.4) |
Withdrawal to participate in the study—reason: underwent treatment at another government or private health center | 1363 (7.0) |
Withdrawal to participate in the study—reason: no longer interested in the TMC project | 991 (5.1) |
The participant moved out to distant places from any TMC recruitment centers | 332 (1.7) |
Withdrawal to participate in the study—without giving any reason | 209 (1.1) |
The telephone number was not available in the database | 59 (0.3) |
The participant was deceased | 19 (0.1) |
Withdrawal to participate in the study—reason: disappointed with the TMC project | 19 (0.1) |
Baseline Characteristics | Successful Appointment Call (N = 1196) | Need to Re-contact for Appointment (N = 14,620) | Unsuccessful Appointment Call (N = 2913) | Total Participants (N = 18,729) | p-Value | |
---|---|---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | |||
Gender | Male | 516 (43.1) | 5701 (39.0) | 1190 (40.9) | 7407 (39.5) | 0.005 * |
Female | 680 (56.9) | 8919 (61.0) | 1723 (59.1) | 11,322 (60.5) | ||
Race | M’alay | 326 (27.3) | 4272 (29.2) | 672 (23.1) | 5270 (28.2) | <0.001 * |
Chinese | 597 (49.9) | 7798 (53.3) | 1914 (65.7) | 10,309 (55.0) | ||
Indian | 253 (21.2) | 2367 (16.2) | 300 (10.3) | 2920 (15.6) | ||
Others | 20 (1.7) | 183 (1.3) | 27 (0.9) | 230 (1.2) | ||
Age | <40 | 152 (12.7) | 1698 (11.6) | 242 (8.3) | 2092 (11.2) | 0.001 * |
40–49 | 518 (43.3) | 6167 (42.2) | 1107 (38.0) | 7792 (41.6) | ||
50–59 | 415 (34.7) | 5129 (35.1) | 1112 (38.2) | 6656 (35.5) | ||
>60 | 111 (9.3) | 1626 (11.1) | 452 (15.5) | 2189 (11.7) | ||
Educational Level | Primary | 244 (20.4) | 3865 (26.4) | 760 (26.1) | 4869 (26.0) | <0.001 * |
Secondary | 665 (55.6) | 7641 (52.3) | 1512 (51.9) | 9818 (52.4) | ||
Tertiary | 287 (24.0) | 3114 (21.3) | 641 (22.0) | 4042 (21.6) | ||
Employment status | Employed | 335 (28.0) | 4946 (33.8) | 1043 (35.8) | 6324 (33.8) | <0.001 * |
Unemployed | 861 (72.0) | 9674 (66.2) | 1870 (64.2) | 12,405 (66.2) | ||
Diabetes | No | 184 (15.4) | 2208 (15.1) | 500 (17.2) | 2892 (15.4) | 0.019 * |
Yes | 1012 (84.6) | 12,412 (84.9) | 2413 (82.8) | 15,837 (84.6) | ||
Hypertension | No | 504 (42.1) | 6507 (44.5) | 1512 (51.9) | 8523 (45.5) | <0.001 * |
Yes | 692 (57.9) | 8113 (55.5) | 1401 (48.1) | 10,206 (54.5) | ||
Hypercholesterolemia | No | 835 (69.8) | 10,471 (71.6) | 2183 (74.9) | 13,489 (72.0) | <0.001 * |
Yes | 361 (30.2) | 4149 (28.4) | 730 (25.1) | 5240 (28.0) | ||
Obesity | No | 209 (17.5) | 2396 (16.4) | 428 (14.7) | 3033 (16.2) | 0.035 * |
Yes | 987 (82.5) | 12,224 (83.6) | 2485 (85.3) | 15,696 (83.8) |
Baseline Characteristics | Unsuccessful Appointment Call | Crude Odds Ratio (95% CI) | p-Value | Adjusted Odds Ratio (95% CI) | p-Value |
---|---|---|---|---|---|
Gender | Male | 1 | - | ||
Female | 1.10 (0.96–1.26) | 0.176 | |||
Race | Others | 1 | 1 | ||
Malay | 1.53 (0.84–2.76) | 0.162 | 1.66 (0.91–3.02) | 0.098 | |
Chinese | 2.37 (1.32–4.26) | 0.004 * | 2.50 (1.38–4.51) | 0.002 * | |
Indian | 0.88 (0.48–1.60) | 0.673 | 0.91 (0.50–1.67) | 0.760 | |
Age | <40 | 1 | 1 | ||
40–49 | 1.34 (1.07–1.69) | 0.011 * | 1.23 (0.97–1.55) | 0.088 | |
50–59 | 1.68 (1.33–2.12) | <0.001 * | 1.38 (1.08–1.77) | 0.009 * | |
>60 | 2.56 (1.91–3.42) | <0.001 * | 1.78 (1.30–2.45) | <0.001 * | |
Educational Level | Primary | 1 | – | ||
Secondary | 0.73 (0.62–0.87) | 0.001 * | |||
Tertiary | 0.72 (0.59–0.88) | 0.833 | |||
Working status | Employed | 1 | 1 | ||
Unemployed | 1.43 (1.24–1.66) | <0.001 * | 1.20 (1.02–1.41) | 0.026 * | |
Diabetes | No | 1 | – | ||
Yes | 1.14 (0.95–1.37) | 0.164 | |||
Hypertension | No | 1 | 1 | ||
Yes | 1.48 (1.29–1.70) | <0.001 * | 1.37 (1.18–1.59) | <0.001 * | |
Hypercholesterolemia | No | 1 | 1 | ||
Yes | 1.29 (1.11–1.50) | 0.001 * | 1.19 (1.02–1.39) | 0.030* | |
Obesity | No | 1 | – | ||
Yes | 0.81 (0.68–0.97) | 0.025 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, N.; Kamaruddin, M.A.; Goh, Y.-X.; Othman, R.; Dauni, A.; Jalal, N.A.; Yusuf, N.A.M.; Kamat, S.A.; Basri, N.H.; Jamal, R. Participants Attrition in a Longitudinal Study: The Malaysian Cohort Study Experience. Int. J. Environ. Res. Public Health 2021, 18, 7216. https://doi.org/10.3390/ijerph18147216
Abdullah N, Kamaruddin MA, Goh Y-X, Othman R, Dauni A, Jalal NA, Yusuf NAM, Kamat SA, Basri NH, Jamal R. Participants Attrition in a Longitudinal Study: The Malaysian Cohort Study Experience. International Journal of Environmental Research and Public Health. 2021; 18(14):7216. https://doi.org/10.3390/ijerph18147216
Chicago/Turabian StyleAbdullah, Noraidatulakma, Mohd Arman Kamaruddin, Ying-Xian Goh, Raihannah Othman, Andri Dauni, Nazihah Abd Jalal, Nurul Ain Mhd Yusuf, Salywana A. Kamat, Nor Hazlinawati Basri, and Rahman Jamal. 2021. "Participants Attrition in a Longitudinal Study: The Malaysian Cohort Study Experience" International Journal of Environmental Research and Public Health 18, no. 14: 7216. https://doi.org/10.3390/ijerph18147216
APA StyleAbdullah, N., Kamaruddin, M. A., Goh, Y.-X., Othman, R., Dauni, A., Jalal, N. A., Yusuf, N. A. M., Kamat, S. A., Basri, N. H., & Jamal, R. (2021). Participants Attrition in a Longitudinal Study: The Malaysian Cohort Study Experience. International Journal of Environmental Research and Public Health, 18(14), 7216. https://doi.org/10.3390/ijerph18147216