Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala
Abstract
:1. Introduction
1.1. Pseudoexfoliation
1.2. Cataracts
1.3. Ocular Manifestations of Both PXF and Cataract
1.4. Underserved Populations and Eye Conditions
2. Materials and Methods
2.1. Mayan Study Cohort
2.2. Phenotyping
2.3. Epidemiological Analysis
2.4. Genetic Ascertainment
2.5. Bioinformatics
3. Results
3.1. Eye Disease and Conditions
3.2. Epidemiological Analysis and Blinding Eye Disease
3.3. Genetic Analysis
3.4. Bioinformatics
4. Discussion
4.1. Eye Disease Prevalence in Underserved Populations
4.2. Findings from Epidemiological Factors
4.3. Findings from Genetic Factors
4.4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- -
- Su edad, género y raza
- -
- Historial médico familiar
- -
- Medicamentos o terapias actuales y anteriores
- -
- Todos los otros exámenes y procedimientos que se realizarán en el estudio
- -
- Cualquier otra información personal de salud que se obtendrá de otras fuentes para que se use en el registro de investigación, incluso el historial médico anterior, exámenes o registros de otros lugares
Appendix B
Demographic | # of Missing Values Imputed |
---|---|
Married | 28 |
Smoker | 9 |
Outdoor Working Condition | 2 |
Diabetes | 1 |
Hypertension | 2 |
Heart Attack | 1 |
Asthma | 28 |
High Cholesterol | 3 |
Other Heart Condition | 27 |
Elevation (range) in meters | 17 |
Low-Resource Department | 17 |
Appendix C
References
- Tran, V.T. UBM/slit-lamp-photo imaging of pseudoexfoliation deposits in the iridocorneal angle: Imaging clues to the genesis of ocular hypertension. Int. Ophthalmol. 2008, 29, 389–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindberg, J.G. Clinical investigations on depigmentation of the pupillary border and translucency of the iris in cases of senile cataract and in normal eyes in elderly persons. Acta Ophthalmol. Suppl. 1989, 190, 1. [Google Scholar] [PubMed]
- Stafiej, J.; Hałas-Wiśniewska, M.; Izdebska, M.; Gagat, M.; Grzanka, D.; Grzanka, A.; Malukiewicz, G. Immunohistochemical analysis of microsomal glutathione S-transferase 1 and clusterin expression in lens epithelial cells of patients with pseudoexfoliation syndrome. Exp. Ther. Med. 2017, 13, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Tekin, K.; Inanc, M.; Elgin, U. Monitoring and management of the patient with pseudoexfoliation syndrome: Current perspectives. Clin. Ophthalmol. 2019, 13, 453–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaucoma, D.; Diagnosis And Management Of Pseudoexfoliation Glaucoma. American Academy of Ophthalmology. 2006. Available online: https://www.aao.org/eyenet/article/diagnosis-management-of-pseudoexfoliation-glaucoma (accessed on 21 January 2021).
- Patel, A.; Stelzner, S. Pseudoexfoliation Syndrome—Eyewiki. 2020. Available online: https://eyewiki.aao.org/Pseudoexfoliation_Syndrome (accessed on 21 January 2021).
- Haripriya, A.; Ratukondla, B.; Ramulu, P.; Shivakumar, C.; Nath, M.; Vijayaraghavan, P.; Robin, A.L. Association of Pseudoexfoliation With Systemic Vascular Diseases in a South Indian Population. JAMA Ophthalmol. 2017, 135, 348. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U.; Naumann, G.O. Ocular and Systemic Pseudoexfoliation Syndrome. Am. J. Ophthalmol. 2006, 141, 921–937.e2. [Google Scholar] [CrossRef]
- Zikou, A.K.; Kitsos, G.; Astrakas, L.G.; Xydis, V.G.; Spiliopoulos, K.; Bagli, E.; Argyropoulou, M.I. Pseudoexfoliation syndrome without glaucoma: White matter abnormalities detected by conventional MRI and diffusion tensor imaging. Eur. J. Radiol. 2018, 99, 82–87. [Google Scholar] [CrossRef]
- Plateroti, P.; Plateroti, A.M.; Abdolrahimzadeh, S.; Scuderi, G. Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma: A Review of the Literature with Updates on Surgical Management. J. Ophthalmol. 2015, 2015, 370371. [Google Scholar] [CrossRef] [Green Version]
- Andrikopoulos, G.K.; Mela, E.K.; Georgakopoulos, C.D.; Papadopoulos, G.; Damelou, A.N.; Alexopoulos, D.K.; Gartaganis, S.P. Pseudoexfoliation syndrome prevalence in Greek patients with cataract and its association to glaucoma and coronary artery disease. Eye 2007, 23, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Lamba, P.A.; Giridhar, A. Pseudoexfoliation syndrome. Indian J. Ophthalmol. 1984, 32, 169. [Google Scholar]
- Ritch, R.; Schlötzer-Schrehardt, U. Exfoliation Syndrome. Surv. Ophthalmol. 2001, 45, 265–315. [Google Scholar] [CrossRef]
- Mitchell, P.; Wang, J.J.; Hourihan, F. The relationship between glaucoma and pseudoexfoliation: The Blue Mountains Eye Study. Arch. Ophthalmol. 1999, 117, 1319–1324. [Google Scholar] [CrossRef] [Green Version]
- Schlotzer-Schrehardt, U. Genetics and genomics of pseudoexfoliation syndrome/glaucoma. Middle East Afr. J. Ophthalmol. 2011, 18, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Kozobolis, V.P.; Detorakis, E.T.; Tsilimbaris, M.; Vlachonikolis, I.G.; Tsambarlakis, I.C.; Pallikaris, I.G. Correlation Between Age-related Macular Degeneration and Pseudoexfoliation Syndrome in the Population of Crete (Greece). Arch. Ophthalmol. 1999, 117, 664–669. [Google Scholar] [CrossRef] [Green Version]
- Stein, J.D.; Pasquale, L.R.; Talwar, N.; Kim, D.S.; Reed, D.; Nan, B.; Kang, J.H.; Wiggs, J.L.; Richards, J.E. Geographic and Climatic Factors Associated with Exfoliation Syndrome. Arch. Ophthalmol. 2011, 129, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- Schlötzer-Schrehardt, U. Pseudoexfoliation Syndrome: The Puzzle Continues. J. Ophthalmic Vis. Res. 2012, 7, 187–189. [Google Scholar]
- Aparna, R.; Padhy, D.; Ramyashri, S. Diet Patterns and Environmental Correlates to Disease in Pseudo Exfoliation SyndromeA. Int. J. Curr. Adv. Res. 2019, 8, 17036–17041. [Google Scholar] [CrossRef]
- Pasquale, L.R.; Wiggs, J.L.; Willett, W.C.; Kang, J.H. The Relationship between Caffeine and Coffee Consumption and Exfoliation Glaucoma or Glaucoma Suspect: A Prospective Study in Two Cohorts. Investig. Opthalmology Vis. Sci. 2012, 53, 6427–6433. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.H.; Loomis, S.J.; Wiggs, J.L.; Willett, W.C.; Pasquale, L.R. A prospective study of folate, vitamin B6, and vitamin B12 intake in relation to exfoliation glaucoma or suspected exfoliation glaucoma. JAMA Ophthalmol. 2014, 132, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Mayro, E.L.; Ritch, R.; Pasquale, L.R. Early-onset Exfoliation Syndrome: A Literature Synthesis. J. Glaucoma 2021, 30, e164–e168. [Google Scholar] [CrossRef]
- Amini, H.; Daneshvar, R.; Eslami, Y.; Moghimi, S.; Amini, N. Early-onset Pseudoexfoliation Syndrome following Multiple Intraocular Procedures. J. Ophthalmic Vis. Res. 2012, 7, 190–196. [Google Scholar]
- Forsius, H. Prevalence of pseudoexfoliation of the lens in Finns, Lapps, Icelanders, Eskimos, and Russians. Trans. Ophthalmol. Soc. UK 1979, 99, 296–298. [Google Scholar]
- Kaimbo, D.K.W. Pseudoexfoliation syndrome in Congolese patients. J. Fr. Ophtalmol. 2012, 35, 40–45. [Google Scholar] [CrossRef]
- Lee, J.; Wong, E.P.; Ho, S.L. Pseudoexfoliation syndrome at a Singapore eye clinic. Clin. Ophthalmol. 2015, 9, 1619–1624. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, H.W. Pseudo-Exfoliation of the Lens among the Navajo Indians. Am. J. Ophthalmol. 1971, 72, 206–207. [Google Scholar] [CrossRef]
- Forsius, H. Exfoliation Syndrome in Various Ethnic Populations. Acta Ophthalmol. 2009, 66, 71–85. [Google Scholar] [CrossRef]
- Shazly, T.; Farrag, A.N.; Kamel, A.; Al-Hussaini, A.K. Prevalence of Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma in Upper Egypt. BMC Ophthalmol. 2011, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Female Life Expectancy. World Health Organization. 2010. Available online: https://www.who.int/gho/women_and_health/mortality/situation_trends_life_expectancy/en/ (accessed on 22 January 2020).
- Ginter, E.; Simko, V. Women live longer than men. Bratisl. Med. J. 2013, 114, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarulli, V.; Jones, J.A.B.; Oksuzyan, A.; Lindahl-Jacobsen, R.; Christensen, K.; Vaupel, J.W. Women live longer than men even during severe famines and epidemics. Proc. Natl. Acad. Sci. USA 2018, 115, E832–E840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Women’s Health Care Physicians. American College of Obstetricians and Gynecologists. Available online: https://www.acog.org/Clinical-Guidance-and-Publications/Committee-Opinions/Committee-on-Health-Care-for-Underserved-Women/Health-Disparities-in-Rural-Women?IsMobileSet=false (accessed on 22 January 2020).
- Tarkkanen, A.H. Exfoliation syndrome. Trans. Ophthalmol. Soc. UK 1986, 105, 233–236. [Google Scholar] [CrossRef]
- Thomas, R.; Nirmalan, P.K.; Krishnaiah, S. Pseudoexfoliation in Southern India: The Andhra Pradesh Eye Disease Study. Investig. Opthalmol. Vis. Sci. 2005, 46, 1170–1176. [Google Scholar] [CrossRef]
- Kang, J.H.; Wiggs, J.L.; Pasquale, L.R. Relation Between Time Spent Outdoors and Exfoliation Glaucoma or Exfoliation Glaucoma Suspect. Am. J. Ophthalmol. 2014, 158, 605–614.e1. [Google Scholar] [CrossRef] [Green Version]
- Pasquale, L.R.; Jiwani, A.Z.; Zehavi-Dorin, T.; Majd, A.; Rhee, D.J.; Chen, T.; Turalba, A.; Shen, L.; Brauner, S.; Grosskreutz, C.; et al. Solar Exposure and Residential Geographic History in Relation to Exfoliation Syndrome in the United States and Israel. JAMA Ophthalmol. 2014, 132, 1439–1445. [Google Scholar] [CrossRef] [Green Version]
- Sverisson, T.; Gottfredsdottir, M.S.; Stefansson, E. Chronic open angle glaucoma in monozygotic twins and their spouses. Invest. Ophthalmol. Vis. Sci. 1994, 35, 1471. [Google Scholar]
- Gottfredsdottir, M.S.; Sverrisson, T.; Musch, D.C.; Stefansson, E. Chronic Open-Angle Glaucoma and Associated Ophthalmic Findings in Monozygotic Twins and Their Spouses in Iceland. J. Glaucoma 1999, 8, 134–139. [Google Scholar] [CrossRef]
- Pasutto, F.; Zenkel, M.; Hoja, U.; Berner, D.; Uebe, S.; Ferrazzi, F.; Schödel, J.; Liravi, P.; Ozaki, M.; Paoli, D.; et al. Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nat. Commun. 2017, 8, 15466. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Jia, L.; Wang, N.; Tang, G.; Zhang, C.; Fan, S.; Liu, W.; Meng, H.; Zeng, W.; Liu, N.; et al. Evaluation of LOXL1 polymorphisms in exfoliation syndrome in a Chinese population. Mol. Vis. 2009, 15, 2349–2357. [Google Scholar]
- Mayinu; Chen, X. Evaluation of LOXL1 polymorphisms in exfoliation syndrome in the Uygur population. Mol. Vis. 2011, 17, 1734–1744. [Google Scholar]
- Lemmelä, S.; Forsman, E.; Onkamo, P.; Nurmi, H.; Laivuori, H.; Kivelä, T.; Puska, P.; Heger, M.; Eriksson, A.; Forsius, H.; et al. Association of LOXL1 gene with Finnish exfoliation syndrome patients. J. Hum. Genet. 2009, 54, 289–297. [Google Scholar] [CrossRef]
- Schlötzer-Schrehardt, U. Molecular Biology of Exfoliation Syndrome. J. Glaucoma 2018, 27, S32–S37. [Google Scholar] [CrossRef]
- Aung, T.; Chan, A.S.; Khor, C.-C. Genetics of Exfoliation Syndrome. J. Glaucoma 2018, 27, S12–S14. [Google Scholar] [CrossRef]
- Strzalka-Mrozik, B.; Prudlo, L.; Kimsa, M.W.; Kimsa, M.C.; Kapral, M.; Nita, M.; Mazurek, U. Quantitative analysis of SOD2, ALDH1A1 and MGST1 messenger ribonucleic acid in anterior lens epithelium of patients with pseudoexfoliation syndrome. Mol. Vis. 2013, 19, 1341–1349. [Google Scholar] [PubMed]
- Aung, T.; Ozaki, M.; Lee, M.C.; Schlötzer-Schrehardt, U.; Thorleifsson, G.; Mizoguchi, T.; Igo, R.P., Jr.; Haripriya, A.; Williams, S.E.; Astakhov, Y.S.; et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat. Genet. 2017, 49, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wu, C.; Singh, M.; Nair, A.; Aglyamov, S.R.; Larin, K.V. Optical coherence elastography of cold cataract in porcine lens. J. Biomed. Opt. 2019, 24, 036004-7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.C.; Wilkins, M.; Kim, T.; Malyugin, B.; Mehta, J.S. Cataracts. Lancet 2017, 390, 600–612. [Google Scholar] [CrossRef]
- Kiziltoprak, H.; Tekin, K.; Inanc, M.; Goker, Y.S. Cataract in diabetes mellitus. World J. Diabetes 2019, 10, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Mylona, I.; Dermenoudi, M.; Ziakas, N.; Tsinopoulos, I. Hypertension is the Prominent Risk Factor in Cataract Patients. Med. 2019, 55, 430. [Google Scholar] [CrossRef] [Green Version]
- Davis, G. The Evolution of Cataract Surgery. Mo. Med. 2016, 113, 58–62. [Google Scholar]
- Allen, D.; Vasavada, A. Cataract and surgery for cataract. BMJ 2006, 333, 128–132. [Google Scholar] [CrossRef]
- Lewallen, S. Poverty and Cataract—A Deeper Look at a Complex Issue. PLoS Med. 2008, 5, e245. [Google Scholar] [CrossRef] [Green Version]
- Resnikoff, S.; Pascolini, D.; Etya’Ale, D.; Kocur, I.; Pararajasegaram, R.; Pokharel, G.P.; Mariotti, S.P. Global data on visual impairment in the year 2002. Bull. World Health Organ. 2004, 82, 844–851. [Google Scholar]
- Snellingen, T.; Shrestha, B.R.; Gharti, M.P.; Shrestha, J.K.; Upadhyay, M.P.; Pokhrel, R.P. Socioeconomic barriers to cataract surgery in Nepal: The south Asian cataract management study. Br. J. Ophthalmol. 1998, 82, 1424–1428. [Google Scholar] [CrossRef]
- Mailu, E.W.; Virendrakumar, B.; Bechange, S.; Jolley, E.; Schmidt, E. Factors associated with the uptake of cataract surgery and interventions to improve uptake in low- and middle-income countries: A systematic review. PLoS ONE 2020, 15, e0235699. [Google Scholar] [CrossRef]
- Mayo Clinic. Cataracts. 2018. Available online: https://www.mayoclinic.org/diseases-conditions/cataracts/symptoms-causes/syc-20353790 (accessed on 2 July 2021).
- Porter, D. What is a Slit Lamp? American Academy of Ophthalmology. 2019. Available online: https://www.aao.org/eye-health/treatments/what-is-slit-lamp (accessed on 25 January 2021).
- InformedHealth.org. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006 Cataracts: Overview. Available online: https://www.ncbi.nlm.nih.gov/books/NBK390302/ (accessed on 10 October 2019).
- Cataracts. National Eye Institute. 2019. Available online: https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/cataracts (accessed on 25 January 2021).
- Lou, L.; Ye, X.; Xu, P.; Wang, J.; Xu, Y.; Jingyi, W.; Ye, J. Association of Sex with the Global Burden of Cataract. JAMA Ophthalmol. 2018, 136, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Zetterberg, M.; Celojevic, D. Gender and cataract–the role of estrogen. Curr. Eye Res. 2015, 40, 176–190. [Google Scholar] [CrossRef]
- Kessy, J.P.; Lewallen, S. Poverty as a barrier to accessing cataract surgery: A study from Tanzania. Br. J. Ophthalmol. 2007, 91, 1114–1116. [Google Scholar] [CrossRef] [Green Version]
- Rolnick, K.; Buck, S.; Mezu-Nnabue, K.; Eickhoff, J.; Esenwah, E.; Mezu-Ndubuisi, O.J. Influence of socio-economic status and educational achievement on cataract formation in a rural community in Imo State, South-Eastern Nigeria. Cogent Med. 2017, 4. [Google Scholar] [CrossRef]
- Wu, R.; Wang, J.J.; Mitchell, P.; Lamoureux, E.L.; Zheng, Y.; Rochtchina, E.; Tan, A.G.; Wong, T.Y. Smoking, socioeconomic factors, and age-related cataract: The Singapore Malay Eye study. Arch. Ophthalmol. 2010, 128, 1029–1035. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; He, J.; Wang, C.; Wu, H.; Shi, X.; Zhang, H.; Xie, J.; Lee, S.Y. Smoking and Risk of Age-Related Cataract: A Meta-Analysis. Investig. Opthalmol. Vis. Sci. 2012, 53, 3885–3895. [Google Scholar] [CrossRef] [Green Version]
- Pollreisz, A.; Schmidt-Erfurth, U. Diabetic Cataract—Pathogenesis, Epidemiology and Treatment. J. Ophthalmol. 2010, 2010, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.J. The environment and the eye. Eye 2004, 18, 1235–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewallen, S.; Courtright, P. Gender and use of cataract surgical services in developing countries. Bull. World Health Organ. 2002, 80, 300–303. [Google Scholar] [PubMed]
- Courtright, P.; Lewallen, S. Why are we addressing gender issues in vision loss? Community Eye Health 2009, 22, 17–19. [Google Scholar] [PubMed]
- Hicks, P.M.; Owen, L.A.; DeAngelis, M.M. Global Women’s Eye Health: A Genetic Epidemiologic Perspective. In Blepharitis; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2021; Volume 3, pp. 11–46. [Google Scholar]
- Vashist, P.; Tandon, R.; Murthy, G.V.S.; Barua, C.K.; Deka, D.; Singh, S.; Gupta, V.; Gupta, N.; Wadhwani, M.; Singh, R.; et al. Association of cataract and sun exposure in geographically diverse populations of India: The CASE study. First Report of the ICMR-EYE SEE Study Group. PLoS ONE 2020, 15, e0227868. [Google Scholar] [CrossRef] [Green Version]
- Collman, G.W.; Shore, D.L.; Shy, C.M.; Checkoway, H.; Luria, A.S. Sunlight and other risk factors for cataracts: An epidemiologic study. Am. J. Public Health 1988, 78, 1459–1462. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Gurung, A. Comparative Study of Prevalence of Cataract at High Altitude and Kathmandu Valley. J. Nepal Health Res. Counc. 2016, 14, 81–84. [Google Scholar]
- Jha, K.N. High Altitude and the Eye. Asia Pac. J. Ophthalmol. 2012, 1, 166–169. [Google Scholar] [CrossRef]
- Okano, Y.; Asada, M.; Fujimoto, A.; Ohtake, A.; Murayama, K.; Hsiao, K.-J.; Choeh, K.; Yang, Y.; Cao, Q.; Reichardt, J.K.V.; et al. A Genetic Factor for Age-Related Cataract: Identification and Characterization of a Novel Galactokinase Variant, “Osaka,” in Asians. Am. J. Hum. Genet. 2001, 68, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Shiels, A.; Bennett, T.M.; Hejtmancik, J.F. Cat-Map: Putting cataract on the map. Mol. Vis. 2010, 16, 2007–2015. [Google Scholar]
- Stambolian, D.; Scarpino-Myers, V.; Eagle, R.C.; Hodes, B.; Harris, H. Cataracts in patients heterozygous for galactokinase deficiency. Investig. Ophthalmol. Vis. Sci. 1986, 27, 429–433. [Google Scholar]
- Hejtmancik, J.; Kantorow, M. Molecular genetics of age-related cataract. Exp. Eye Res. 2004, 79, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.; Padhy, D. Pattern of Pseudoexfoliation Deposits on the Lens and Their Clinical Correlation—Clinical Study and Review of Literature. PLoS ONE 2014, 9, e113329. [Google Scholar] [CrossRef]
- Aref, A.; Pseudoexfoliative Glaucoma. EyeWiki. 2020. Available online: https://eyewiki.aao.org/Pseudoexfoliative_Glaucoma (accessed on 25 January 2021).
- Sangal, N.; Chen, T.C. Cataract Surgery in Pseudoexfoliation Syndrome. Semin. Ophthalmol. 2014, 29, 403–408. [Google Scholar] [CrossRef]
- Erkayhan, G.E.; Dogan, S. Cataract Surgery and Possible Complications in Patients with Pseudoexfoliation Syndrome. Eurasian J. Med. 2017, 49, 22–25. [Google Scholar] [CrossRef]
- Kanthan, G.L.; Mitchell, P.; Burlutsky, G.; Rochtchina, E.; Wang, J.J. Pseudoexfoliation Syndrome and the Long-Term Incidence of Cataract and Cataract Surgery: The Blue Mountains Eye Study. Am. J. Ophthalmol. 2013, 155, 83–88. [Google Scholar] [CrossRef]
- Ekström, C.; Taube, A.B. Pseudoexfoliation and cataract surgery: A population-based 30-year follow-up study. Acta Ophthalmol. 2015, 93, 774–777. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.K.; The Art of Managing PXF Glaucoma. Review of Ophthalmology. 2012. Available online: https://www.reviewofophthalmology.com/article/the-art-of-managing-pxf-glaucoma-33327 (accessed on 5 March 2021).
- Arnarsson, A.; Jonasson, F.; Sasaki, H. Twelve-year Incidence of Exfoliation Syndrome in the Reykjavik Eye Study. Acta Ophthalmol. 2012, 91, 157–162. [Google Scholar] [CrossRef]
- Morrison, M.A.; Magalhaes, T.R.; Ramke, J.; Smith, S.E.; Ennis, S.; Simpson, C.L.; Portas, L.; Murgia, F.; Ahn, J.; Dardenne, C.N.; et al. Ancestry of the Timorese: Age-related macular degeneration associated genotype and allele sharing among human populations from throughout the world. Front. Genet. 2015, 6, 238. [Google Scholar] [CrossRef] [Green Version]
- Hicks, P.M.; Haaland, B.; Feehan, M.; Crandall, A.S.; Pettey, J.H.; Nuttall, E.; Self, W.; Hartnett, M.E.; Bernstein, P.; Vitale, A.; et al. Systemic Disease and Ocular Comorbidity Analysis of Geographically Isolated Federally Recognized American Indian Tribes of the Intermountain West. J. Clin. Med. 2020, 9, 3590. [Google Scholar] [CrossRef]
- Tittman, S.M.; Harteau, C.; Beyer, K.M.M. The Effects of Geographic Isolation and Social Support on the Health of Wisconsin Women. WMJ 2016, 115, 65–69. [Google Scholar]
- National Academies of Sciences; Engineering, and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice. Roundtable on Population Health Improvement; Roundtable on the Promotion of Health Equity; National Academies Press: Washington, DC, USA, 2018. [Google Scholar]
- Klein, R.; Rios, D.; Valdez, C.G.C.; Cupp, E.; Domínguez, A.; Hassan, H.K.; de León, O.; Espinoza, C.E.D.; Monroy, Z.M. One Hundred Years after Its Discovery in Guatemala by Rodolfo Robles, Onchocerca volvulus Transmission Has Been Eliminated from the Central Endemic Zone. Am. J. Trop. Med. Hyg. 2015, 93, 1295–1304. [Google Scholar] [CrossRef] [Green Version]
- Peñuela, J.E.; Alonzo, M.D.P. Sindrome de pseudoexfoliación en la clínica de glaucoma de la unidad nacional de oftalmología. Ciudad de Guatemala. Estudio transversal. Rev. Soc. Colomb. Oftalmol. 2018, 51, 37–45. [Google Scholar]
- Barger, J.L.; Tsui, E.; Chen, K.C.; Haberman, I.; Lee, J.; Park, L. Epidemiology of pseudoexfoliation syndrome in a Guatemalan population—2-year follow-up. Invest. Ophthalmol. Vis. Sci. 2017, 58, 781. [Google Scholar]
- Guatemala. SEE International. Available online: https://www.seeintl.org/countries/guatemala/#:~:text=In%202016%2C%20Guatemala%20became%20the,cause%20of%20blindness%20is%20cataracts (accessed on 25 January 2021).
- Andersen, M.K.; Pedersen, C.-E.T.; Moltke, I.; Hansen, T.; Albrechtsen, A.; Grarup, N. Genetics of Type 2 Diabetes: The Power of Isolated Populations. Curr. Diabetes Rep. 2016, 16, 65. [Google Scholar] [CrossRef]
- Grarup, N.; Moltke, I.; Albrechtsen, A.; Hansen, T. Diabetes in Population Isolates: Lessons from Greenland. Rev. Diabet. Stud. 2015, 12, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Nair, A.K.; Baier, L.J. Complex Genetics of Type 2 Diabetes and Effect Size: What have We Learned from Isolated Populations? Rev. Diabet. Stud. 2015, 12, 299–319. [Google Scholar] [CrossRef] [Green Version]
- Cerón, A.; Ruano, A.L.; Sánchez, S.; Chew, A.S.; Díaz, D.; Hernández, A.; Flores, W. Abuse and discrimination towards indigenous people in public health care facilities: Experiences from rural Guatemala. Int. J. Equity Health 2016, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, M.; Chary, A.; Daniel, M.; Barnoya, J.; Monroe, A.; Eakin, M. Expectations of health care quality among rural Maya villagers in Sololá Department, Guatemala: A qualitative analysis. Int. J. Equity Health 2017, 16, 51. [Google Scholar] [CrossRef] [Green Version]
- PAHO. Pan American Health Organization Health Systems Profile of Guatemala; PAHO/WHO: Washington, DC, USA, 2007. [Google Scholar]
- Montenegro, R.A.; Stephens, C. Indigenous health in Latin America and the Caribbean. Lancet 2006, 367, 1859–1869. [Google Scholar] [CrossRef]
- Segeplan. Estudio Nacional de Mortalidad Materna; Secretaría General de Planificación, Ministerio de Salud Pública y Asistencia Soial: Guatemala City, Guatemala, 2011.
- Hicks, P.M.; Melendez, S.A.C.; Vitale, A.; Self, W.; Hartnett, M.E.; Bernstein, P.; Morgan, D.J.; Feehan, M.; Shakoor, A.; Kim, I.; et al. Genetic Epidemiologic Analysis of Hypertensive Retinopathy in an Underrepresented and Rare Federally Recognized Native American Population of the Intermountain West. J. Community Med. Public Health 2019, 3, 152. [Google Scholar]
- Morrison, M.A.; Silveira, A.C.; Huynh, N.; Jun, G.; Smith, S.E.; Zacharaki, F.; Sato, H.; Loomis, S.; Andreoli, M.T.; Adams, S.M.; et al. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration. Hum. Genom. 2011, 5, 538–568. [Google Scholar] [CrossRef] [Green Version]
- DeAngelis, M.M.; Ji, F.; Kim, I.; Adams, S.; Capone, A.; Ott, J.; Miller, J.W.; Dryja, T.P. Cigarette Smoking, CFH, APOE, ELOVL4, and Risk of Neovascular Age-Related Macular Degeneration. Arch. Ophthalmol. 2007, 125, 49–54. [Google Scholar] [CrossRef]
- DeAngelis, M.M.; Lane, A.M.; Shah, C.P.; Ott, J.; Dryja, T.P.; Miller, J.W. Extremely Discordant Sib-Pair Study Design to Determine Risk Factorsfor Neovascular Age-Related Macular Degeneration. Arch. Ophthalmol. 2004, 122, 575–580. [Google Scholar] [CrossRef]
- Ramke, J.; Brian, G.; Naduvilath, T.; Lee, L.; Qoqonokana, M.Q. Prevalence and Causes of Blindness and Low Vision Revisited after 5 years of Eye Care in Timor-Leste. Ophthalmic Epidemiol. 2012, 19, 52–57. [Google Scholar] [CrossRef]
- Martin, R. Cornea and anterior eye assessment with slit lamp biomicroscopy, specular microscopy, confocal microscopy, and ultrasound biomicroscopy. Indian J. Ophthalmol. 2018, 66, 195–201. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.R-project.org/ (accessed on 6 July 2019).
- Buuren, S.V.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2010, 45, 1–68. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Chow, C.; Tellier, L.; Vattikuti, S.; Purcell, S.; Lee, J. Software and supporting material for “Second-generation PLINK: Rising to the challenge of larger and richer datasets”. Gigascience 2015, 4, s13742. [Google Scholar] [CrossRef]
- Purcell, S.; Chang, C. PLINK 1.90 Beta. PLINK 1.9. 2015. Available online: http://www.cog-genomics.org/plink/1.9 (accessed on 26 January 2021).
- Marees, A.T.; De Kluiver, H.; Stringer, S.; Vorspan, F.; Curis, E.; Marie-Claire, C.; Derks, E.M. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018, 27, e1608. [Google Scholar] [CrossRef]
- Graffelman, J.; Moreno, V. The mid p-value in exact tests for Hardy-Weinberg equilibrium. Stat. Appl. Genet. Mol. Biol. 2013, 12, 433–448. [Google Scholar] [CrossRef]
- Hill, A.; Loh, P.-R.; Bharadwaj, R.B.; Pons, P.; Shang, J.; Guinan, E.; Lakhani, K.; Kilty, I.; Jelinsky, S.A. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis. GigaScience 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bream, K.D.W.; Breyre, A.; Garcia, K.; Calgua, E.; Chuc, J.M.; Taylor, L. Diabetes prevalence in rural Indigenous Guatemala: A geographic-randomized cross-sectional analysis of risk. PLoS ONE 2018, 13, e0200434. [Google Scholar] [CrossRef] [Green Version]
- Canelas, C.; Gisselquist, R.M. Human capital, labour market outcomes, and horizontal inequality in Guatemala. Heterog. Informality Costa Rica Nicaragua 2017, 46, 378–397. [Google Scholar] [CrossRef]
- Beltranena, F.; Casasola, K.; Silva, J.C.; Limburg, H. Cataract Blindness in 4 Regions of Guatemala: Results of a Population-Based Survey. Ophthalmology 2007, 114, 1558–1563. [Google Scholar] [CrossRef]
- Chávez, G.M.S.; De Barrios, A.R.S.; Pojoy, O.L.F.; Reyes, A.D.R.M.H.D.; Melgar, M.Y.; Melgar, J.F.Y.; Régil, M.D.L.; Hernandez, C.A.M.; Chanquin, V.A.M.; Diaz, E.; et al. National survey of blindness and visual impairment in Guatemala, 2015. Arq. Bras. Oftalmol. 2019, 82, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Guatemala. PAHO. Available online: https://www.paho.org/salud-en-las-americas-2017/?p=3338 (accessed on 26 January 2021).
- Fontana, L.; Coassin, M.; Iovieno, A.; Moramarco, A.; Cimino, L. Cataract surgery in patients with pseudoex-foliation syndrome: Current updates. Clin. Ophthalmol. 2017, 11, 1377. [Google Scholar] [CrossRef] [Green Version]
- Küchle, M.; Amberg, A.; Martus, P.; Nguyen, N.X.; Naumann, G.O.H. Pseudoexfoliation syndrome and secondary cataract. Br. J. Ophthalmol. 1997, 81, 862–866. [Google Scholar] [CrossRef] [Green Version]
- Kurt, A.; Yaşar, T. Complications of Phacoemulsification and Extracapsular Cataract Extraction Surgery in Eyes with Pseudoexfoliation Syndrome. Ophthalmol. Res. Int. J. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Guatemala Fact Sheet. 2018. Available online: http://www.seva.org/pdf/Seva_Country_Fact_Sheets_Guatemala.pdf (accessed on 25 January 2021).
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. OpenEpi Epidemiologic Statistics. 2013. Available online: http://www.OpenEpi.com/ (accessed on 10 February 2021).
- Dean, A.G.; Sullivan, K.M.; Soe, M.M. Epi Info and OpenEpi in epidemiology and clinical medicine. In Health Applications of Free Software; CreateSpace: Scotts Valley, CA, USA, 2010. [Google Scholar]
- Sullivan, K.M.; Dean, A.; Soe, M.M. On Academics: OpenEpi: A Web-Based Epidemiologic and Statistical Calculator for Public Health. Public Health Rep. 2009, 124, 471–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artazcoz, L.; Rueda, S. Social inequalities in health among the elderly: A challenge for public health research. J. Epidemiol. Community Health 2007, 61, 466–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macguire, F.A.S. Reducing Health Inequalities in Aging Through Policy Frameworks and Interventions. Front. Public Health 2020, 8, 315. [Google Scholar] [CrossRef] [PubMed]
- Nieblas-Bedolla, E.; Bream, K.D.W.; Rollins, A.; Barg, F.K. Ongoing challenges in access to diabetes care among the indigenous population: Perspectives of individuals living in rural Guatemala. Int. J. Equity Health 2019, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Javadi, M.-A.; Zarei-Ghanavati, S. Cataracts in Diabetic Patients: A Review Article. J. Ophthalmic Vis. Res. 2008, 3, 52–65. [Google Scholar]
- Gable, E.; Novak, L. The Prevalence of Diabetic Retinopathy in a Rural Guatemalan Eye Clinic. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2095. [Google Scholar]
- Hu, F.B. Globalization of Diabetes: The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [Green Version]
- Diabetes Atlas. International diabetes federation. In IDF Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Wang, W.; Lo, A.C.Y. Diabetic Retinopathy: Pathophysiology and Treatments. Int. J. Mol. Sci. 2018, 19, 1816. [Google Scholar] [CrossRef] [Green Version]
- Duh, E.J.; Sun, J.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight 2017, 2. [Google Scholar] [CrossRef]
- Jeng, C.-J.; Hsieh, Y.-T.; Yang, C.-M.; Yang, C.-H.; Lin, C.-L.; Wang, I.-J. Development of diabetic retinopathy after cataract surgery. PLoS ONE 2018, 13, e0202347. [Google Scholar] [CrossRef]
- Rice, J. Cataract and diabetic retinopathy. Community Eye Health 2011, 24, 9. [Google Scholar]
- Overview.worldbank.org. 2020. Available online: https://www.worldbank.org/en/country/guatemala/overview#:~:text=Measured%20by%20its%20GDP%20per,and%20the%20highest%20in%20LAC (accessed on 26 January 2021).
- Shadmi, E.; Chen, Y.; Dourado, I.; Faran-Perach, I.; Furler, J.; Hangoma, P.; Hanvoravongchai, P.; Obando, C.; Petrosyan, V.; Rao, K.D.; et al. Health equity and COVID-19: Global perspectives. Int. J. Equity Health 2020, 19, 1–6. [Google Scholar] [CrossRef]
- Ramos, E.M.; Hoffman, D.; A Junkins, H.; Maglott, D.; Phan, L.; Sherry, S.T.; Feolo, M.; Hindorff, L. Phenotype–Genotype Integrator (PheGenI): Synthesizing genome-wide association study (GWAS) data with existing genomic resources. Eur. J. Hum. Genet. 2013, 22, 144–147. [Google Scholar] [CrossRef]
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; et al. Ensembl 2020. Nucleic Acids Res. 2020, 48, D682–D688. [Google Scholar] [CrossRef]
- dbGaP Study Accession: phs000001.v3.p1. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1 (accessed on 26 January 2021).
- Pearce, L.R.; Atanassova, N.; Banton, M.C.; Bottomley, B.; Van Der Klaauw, A.A.; Revelli, J.-P.; Hendricks, A.; Keogh, J.M.; Henning, E.; Doree, D.; et al. KSR2 Mutations Are Associated with Obesity, Insulin Resistance, and Impaired Cellular Fuel Oxidation. Cell 2013, 155, 765–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020, 48, D498–D503. [Google Scholar] [CrossRef] [PubMed]
- Endres, W.; Shin, Y.S. Cataract and Metabolic Disease. Carbohydr. Glycoprotein Metab. Matern. Phenylketonuria 1990, 13, 509–516. [Google Scholar] [CrossRef]
- Sabanayagam, C.; Wang, J.J.; Mitchell, P.; Tan, A.G.; Tai, E.S.; Aung, T.; Saw, S.-M.; Wong, T.Y. Metabolic Syndrome Components and Age-Related Cataract: The Singapore Malay Eye Study. Investig. Opthalmology Vis. Sci. 2011, 52, 2397–2404. [Google Scholar] [CrossRef] [Green Version]
- Allingham, R.R.; Moroi, S.; Shields, M.B.; Damji, K. Shields’ Textbook of Glaucoma; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Lee, R.K. The molecular pathophysiology of pseudoexfoliation glaucoma. Curr. Opin. Ophthalmol. 2008, 19, 95–101. [Google Scholar] [CrossRef]
- Desai, M.; Lee, R.K. The Medical and Surgical Management of Pseudoexfoliation Glaucoma. Int. Ophthalmol. Clin. 2008, 48, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Elhawy, E.; Kamthan, G.; Dong, C.Q.; Danias, J. Pseudoexfoliation syndrome, a systemic disorder with ocular manifestations. Hum. Genom. 2012, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Hatzikotoulas, K.; Gilly, A.; Zeggini, E. Using population isolates in genetic association studies. Briefings Funct. Genom. 2014, 13, 371–377. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Community Genetics Services: Report of a WHO Consultation on Community Genetics in Low- and Middle-Income Countries; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Söchtig, J.; Álvarez-Iglesias, V.; Mosquera-Miguel, A.; Gelabert-Besada, M.; Gómez-Carballa, A.; Salas, A. Genomic insights on the ethno-history of the Maya and the ’Ladinos’ from Guatemala. BMC Genom. 2015, 16, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Demographics | Total Eye Exam Participants (n = 126) |
---|---|
PXF | 31 (24.6%) |
Cataracts | 69 (54.8%) |
Glaucoma | 5 (4.0%) |
PXF with Glaucoma | 2 (1.6%) |
PXF with Cataracts | 28 (22.2%) |
Diabetic Retinopathy | 1 (0.8%) |
Age-Related Macular Degeneration | 2 (1.6%) |
Dry AMD—AREDS3 | 1 (0.8%) |
Peripapillary Atrophy | 1 (0.8%) |
Pterygium | 4 (3.2%) |
Age (range) | 65.2 (21.6–96.1) |
Male Sex | 58 (46.0%) |
Diagnosis | Age (Range) | Male Sex |
---|---|---|
PXF (n = 31) | 74.3 (59.9–90.4) | 14 (45.2%) |
Glaucoma (n = 5) | 66.4 (53.4–79.4) | 2 (40%) |
Cataracts (n = 69) | 73.4 (42.2–96.1) | 35 (50.7%) |
PXF + Glaucoma (n = 2) | 64.6 (62.1–67.1) | 0 (0%) |
PXF + Cataracts (n = 28) | 74.8 (62.1–90.4) | 12 (42.9%) |
Demographics | Total # of Participants in Adjusted Analyses (n = 121) |
---|---|
Age (range) | 64.6 (21.6–96.1) |
Gender | |
Male | 55 (45.45%) |
Female | 66 (54.55%) |
Married * | 62 (51.24%) |
Smoker * | 26 (21.49%) |
Outdoor Working Condition * | 45 (37.19%) |
Diabetes * | 16 (13.22%) |
Hypertension * | 31 (25.62%) |
Heart Attack * | 7 (5.79%) |
Asthma * | 8 (6.61%) |
High Cholesterol * | 9 (7.44%) |
Other Heart Condition | 7 (5.79%) |
Elevation (range) in meters * | 978.62 (7–2507) |
Low-Resource Department | 76 (62.81%) |
Eye Disease/Condition | |
PXF | 29 (23.97%) |
Cataracts | 64 (52.89%) |
PXF + Cataracts | 26 (21.41%) |
Characteristic | PXF OR (95% CI) | Cataracts OR (95% CI) | Cataracts + PXF OR (95% CI) |
---|---|---|---|
Age | 1.071 (1.030–1.114) | 1.111 (1.066–1.158) | 1.075 (1.031–1.121) |
Male Sex | 1.161 (0.503–2.680) | 1.478 (0.719–3.041) | 1.037 (0.434–2.475) |
Married | 0.624 (0.250–1.561) | 0.667 (0.269–1.651) | 0.552 (0.215–1.418) |
Smoker | 0.597 (0.204–1.744) | 0.859 (0.358–2.062) | 0.683 (0.219–2.126) |
Diabetes | 1.250 (0.372–4.603) | 2.300 (0.748–7.077) | 1.478 (0.436–5.015) |
HBP | 1.222 (0.471–3.165) | 1.680 (0.731–3.858) | 1.266 (0.477–3.359) |
High Cholesterol | 0.450 (0.0044–4.603) | 0.595 (0.158–2.236) | 0.834 (0.116–6.011) |
Asthma | 2.096 (0.398–11.024) | 2.155 (0.665–6.970) | 5.08 × 10−8 (0-Inf.) |
Heart Attack | 4.212 (0.885–20.042) | 8.237 × 105 (0-inf) | 5.253 (1.089–25.332) |
Other Heart Condition | 3.417 (0.848–13.768) | 2.223 (0.601–8.296) | 2.483 (0.309–19.982) |
Outside Working Conditions | 1.204 (0.514–2.822) | 1.685 (0.800–3.55) | 1.257 (0.520–3.039) |
Elevation | 1.000 (0.999–1.000) | 1.000 (0.999–1.000) | 1.000 (0.999–1.001) |
Weight | 0.984 (0.962–1.008) | 0.995 (0.981–1.009) | 0.983 (0.960–1.007) |
Low Resource | 1.392 (0.423–4.579) | 2.659 (1.068–6.662) | 1.479 (0.414–5.277) |
Characteristic | PXF OR (95% CI) | Cataracts OR (95% CI) | PXF + Cataracts OR (95% CI) |
---|---|---|---|
Age | 1.068 (1.024–1.113) | 1.119 (1.071–1.169) | 1.069 (1.025–1.116) |
Male Sex | - | - | - |
Married | - | - | - |
Smoker | - | - | - |
Diabetes | - | - | - |
HBP | - | - | - |
High Cholesterol | - | - | - |
Asthma | - | - | - |
Heart Attack | 1.703 (0.316–9.170) | - | 2.147 (0.417–11.058) |
Other Heart Condition | 3.091 (0.628–15.206) | - | - |
Outside Working Conditions | - | - | - |
Elevation | - | - | - |
Weight | - | - | - |
Low Resource | - | 3.214 (1.096–9.424) | - |
Univariate | Odds Ratio (95% CI) | p-Value |
---|---|---|
PXF | 12.292 (3.493–43.249) | <0.001 |
Multivariate | ||
PXF | 5.866 (1.559–22.078) | 0.009 |
Age | 1.102 (1.056–1.149) | < 0.001 |
Sex | 1.072 (0.429–2.683) | 0.881 |
Phenotype | SNP | Gene | Alleles | Allele Frequency Cases | Allele Frequency Controls | p-Value |
---|---|---|---|---|---|---|
Cataracts | rs72636339 | CFAP74 | A > C | C = 0.1190 | C = 0.1915 | 4.978 × 10−8 |
Cataracts | rs12492375 | FRMD4B | C > T | T = 0.0714 | T = 0.0532 | 4.109 × 10−8 |
Cataracts | rs6762603 | FRMD4B | G > A | A = 0.0714 | A = 0.0532 | 4.109 × 10−8 |
Cataracts | rs6790753 | NAALADL2 | C > T | C = 0.2540 | C = 0.2128 | 4.449 × 10−8 |
Cataracts | rs4833139 | Intergenic | G > A | A = 0.1905 | A = 0.1170 | 4.800 × 10−8 |
Cataracts | rs79925560 | LOC105377670 | C > T | T = 0.2460 | T = 0.2340 | 4.602 × 10−8 |
Cataracts | rs2412857 | Intergenic | C > T | T = 0.2540 | T = 0.2128 | 4.139 × 10−8 |
Cataracts | rs2100686 | Intergenic | G > A | A = 0.4921 | A = 0.3936 | 4.782 × 10−8 |
Cataracts | rs4862411 | Intergenic | T > C | C = 0.3095 | C = 0.4894 | 4.203 × 10−8 |
Cataracts | rs2292899 | ACSL1 | A > G | A = 0.3254 | A = 0.5213 | 4.163 × 10−8 |
Cataracts | rs3815254 | LOC101927668 | T > C | C = 0.3968 | C = 0.5319 | 4.153 × 10−8 |
Cataracts | rs13247232 | LOC101927668 | A > C | C = 0.4048 | C = 0.5426 | 4.403 × 10−8 |
Cataracts | rs7789907 | LOC101927668 | C > A | A = 0.3968 | A = 0.5000 | 4.196 × 10−8 |
Cataracts | rs11766281 | LOC101927668 | A > C | C = 0.4048 | C = 0.5426 | 4.403 × 10−8 |
Cataracts | rs12700135 | LOC101927668 | A > G | G = 0.4048 | G = 0.5319 | 3.955 × 10−8 |
Cataracts | rs6957312 | LOC101927668 | T > C | C = 0.4286 | C = 0.5532 | 3.499 ×10−8 |
Cataracts | rs12667587 | LOC101927668 | C > T | T = 0.4365 | T = 0.5638 | 4.387 ×10−8 |
Cataracts | rs6980441 | LOC101927668 | G > A | A = 0.4127 | A = 0.5106 | 4.228 ×10−8 |
Cataracts | rs201711770 | LOC101927668 | G > A | A = 0.4365 | A = 0.5532 | 4.734 ×10−8 |
Cataracts | rs3102070 | Intergenic | G > A | T = 0.1270 | T = 0.0745 | 4.515 × 10−8 |
Cataracts | rs71519459 | LINC00968 and LOC101929415 | T > C | C = 0.1587 | C = 0.0957 | 4.343 × 10−8 |
Cataracts | rs1762004 | LOC107984170 | C > T | T = 0.1905 | T = 0.1277 | 4.786 × 10−8 |
Cataracts | rs2489633 | Intergenic | G > T | C = 0.1905 | C = 0.1277 | 4.786 × 10−8 |
Cataracts | rs12250991 | CTNNA3 | T > C | C = 0.0952 | C = 0.0319 | 4.826 × 10−8 |
Cataracts | rs12257968 | CTNNA3 | A > G | G = 0.0952 | G = 0.0319 | 4.826 × 10−8 |
Cataracts | rs12251222 | CTNNA3 | G > A | A = 0.0952 | A = 0.0319 | 4.147 × 10−8 |
Cataracts | rs1576479 | Intergenic | A > G | G = 0.2222 | G = 0.1596 | 4.724 × 10−8 |
Cataracts | rs1576480 | Intergenic | T > C | C = 0.2143 | C = 0.1383 | 4.411 × 10−8 |
Cataracts | rs7107322 | PRCP | G > A | A = 0.2460 | A = 0.1809 | 4.768 × 10−8 |
Cataracts | rs60376799 | LOC105369844 | A > G | G = 0.1587 | G = 0.2660 | 4.480 × 10−8 |
Cataracts | rs16975803 | Intergenic | C > T | T = 0.2222 | T = 0.1596 | 4.903 × 10−8 |
Cataracts | rs184403357 | ZNF423 | A > T | T = 0.0952 | T = 0.0425 | 4.381 × 10−8 |
Cataracts | rs2652921 | Intergenic | G > A | G = 0.2619 | G = 0.2065 | 0 |
PXF * | rs895471 | KSR2 | A > G | G = 0.1552 | G = 0.500 | 8.628 × 10−6 |
Phenotype | Gene | # of SNPs from GWAS | # of SNPs Used for SKAT Analysis | p-Value |
---|---|---|---|---|
Cataracts | CFAP74 | 12 | 12 | 0.16 |
Cataracts | FRMD4B | 9 | 9 | 0.19 |
Cataracts | NAALADL2 | 8 | 8 | 0.033 |
Cataracts | ACSL1 | 10 | 10 | 0.0007 |
Cataracts | CTNNA3 | 40 | 40 | 0.30 |
Cataracts | PRCP | 8 | 8 | 0.09 |
Cataracts | ZNF423 | 24 | 24 | 0.002 |
Cataracts | LOC101927668 | 12 | 12 | 0.10 |
PXF | KSR2 | 26 | 26 | 0.01 |
Phenotype | Gene(s) | Top-Level Pathways |
---|---|---|
Cataracts | ZNF423 PRCP ACSL1 CTNNA3 | DNA replication Signal transduction Metabolism Immune system |
PXF | KSR2 | Disease Signal Transduction Metabolism Gene Expression Cellular Response |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hicks, P.M.; Au, E.; Self, W.; Haaland, B.; Feehan, M.; Owen, L.A.; Siedlecki, A.; Nuttall, E.; Harrison, D.; Reynolds, A.L.; et al. Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala. Int. J. Environ. Res. Public Health 2021, 18, 7231. https://doi.org/10.3390/ijerph18147231
Hicks PM, Au E, Self W, Haaland B, Feehan M, Owen LA, Siedlecki A, Nuttall E, Harrison D, Reynolds AL, et al. Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala. International Journal of Environmental Research and Public Health. 2021; 18(14):7231. https://doi.org/10.3390/ijerph18147231
Chicago/Turabian StyleHicks, Patrice M., Elizabeth Au, William Self, Benjamin Haaland, Michael Feehan, Leah A. Owen, Adam Siedlecki, Elizabeth Nuttall, Deborah Harrison, Andrew L. Reynolds, and et al. 2021. "Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala" International Journal of Environmental Research and Public Health 18, no. 14: 7231. https://doi.org/10.3390/ijerph18147231
APA StyleHicks, P. M., Au, E., Self, W., Haaland, B., Feehan, M., Owen, L. A., Siedlecki, A., Nuttall, E., Harrison, D., Reynolds, A. L., Lillvis, J. H., Sieminski, S., Shulman, J. P., Barnoya, M., Noguera Prera, J. J., Gonzalez, O., Murtaugh, M. A., Williams, L. B., Farkas, M. H., ... DeAngelis, M. M. (2021). Pseudoexfoliation and Cataract Syndrome Associated with Genetic and Epidemiological Factors in a Mayan Cohort of Guatemala. International Journal of Environmental Research and Public Health, 18(14), 7231. https://doi.org/10.3390/ijerph18147231