Physical Activity, Fitness, and Cognitive Performance of Estonian First-Grade Schoolchildren According Their MVPA Level in Kindergarten: A Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Physical Activity
2.3. Body Composition
2.4. Physical Fitness
2.5. Cognitive Skills
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Description of PA, SB, PF, and Cognitive Skills in the Transition from Preschool to School in Children Subgrouped by Their MVPA at 6.6 Years
4.2. The Associations of PA and SB with PF in the Transition from Preschool to School in Children Subgrouped by Their MVPA at 6.6 Years
4.3. The Associations of PA and SB with Cognitive Skills in the Transition from Preschool to School in Children Subgrouped by Their MVPA at 6.6 Years
4.4. The Role of Maternal Education in Determining the Relations between PA and Cognitive Skills in the Transition from Preschool to School in Children Subgrouped by Their MVPA at 6.6 Years
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janssen, I.; Leblanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, W.M.; Davis, N.; Sands, S.A.; Whittington, R.A.; Sun, L.S. Physical activity and cognitive development: A meta-analysis. J. Neurosurg. Anesthesiol. 2016, 28, 373–380. [Google Scholar] [CrossRef]
- Rodriguez-Ayllon, M.; Cadenas-Sánchez, C.; Estévez-López, F.; Muñoz, N.E.; Mora-Gonzalez, J.; Migueles, J.H.; Molina-García, P.; Henriksson, H.; Mena-Molina, A.; Martínez-Vizcaíno, V.; et al. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: A systematic review and meta-analysis. Sports Med. 2019, 49, 1383–1410. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Åvitsland, A.; Leibinger, E.; Haugen, T.; Lerum, Ø.; Solberg, R.B.; Kolle, E.; Dyrstad, S.M. The association between physical fitness and mental health in Norwegian adolescents. BMC Public Health 2020, 20, 776. [Google Scholar] [CrossRef]
- Syväoja, H.J.; Tammelin, T.H.; Ahonen, T.; Kankaanpää, A.; Kantomaa, M.T. The associations of objectively measured physical activity and sedentary time with cognitive functions in school-aged children. PLoS ONE 2014, 9, e103559. [Google Scholar] [CrossRef] [Green Version]
- Van der Niet, A.G.; Smith, J.; Scherder, E.J.; Oosterlaan, J.; Hartman, E.; Visscher, C. Associations between daily physical activity and executive functioning in primary school-aged children. J. Sci. Med. Sport 2015, 18, 673–677. [Google Scholar] [CrossRef]
- Reisberg, K.; Riso, E.-M.; Jürimäe, J. Preschool physical activity and fitness predicts conceptual, verbal and perceptual skills at school. J. Sports Sci. 2021, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Santana, C.C.A.; Azevedo, L.B.; Cattuzzo, M.T.; Hill, J.O.; Andrade, L.P.; Prado, W.L. Physical fitness and academic performance in youth: A systematic review. Scand. J. Med. Sci. Sports 2017, 27, 579–603. [Google Scholar] [CrossRef] [Green Version]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.E.; Poitras, V.J.; Chaput, J.P.; Saunders, T.J.; Katzmarzyk, P.T.; Okely, A.D.; Connor Gorber, S.; et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nutr. Metab. 2016, 41, S240–S265. [Google Scholar] [CrossRef]
- Crane, J.R.; Naylor, P.J.; Temple, V.A. The physical activity and sedentary behaviour patterns of children in kindergarten and grade 2. Children 2018, 5, 131. [Google Scholar] [CrossRef] [Green Version]
- Venckunas, T.; Emeljanovas, A.; Mieziene, B.; Volbekiene, V. Secular trends in physical fitness and body size in Lithuanian children and adolescents between 1992 and 2012. J. Epidemiol. Community Health 2017, 71, 181–187. [Google Scholar] [CrossRef]
- Hall, K.S.; Cohen, H.J.; Pieper, C.F.; Fillenbaum, G.G.; Kraus, W.E.; Huffman, K.M.; Cornish, M.A.; Shiloh, A.; Flynn, C.; Sloane, R.; et al. Physical performance across the adult life span: Correlates with age and physical activity. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Goldfield, G.S.; Harvey, A.; Grattan, K.; Adamo, K.B. Physical activity promotion in the preschool years: A critical period to intervene. Int. J. Environ. Res. Public Health 2012, 9, 1326–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.L.; Ellis, J.P.; Jones, A.M. Understanding early elementary children’s conceptual knowledge of plant structure and function through drawings. CBE Life Sci. Educ. 2014, 13, 375–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisowski, P.; Kantanista, A.; Bronikowski, M. Are there any differences between first grade boys and girls in physical fitness, physical activity, BMI, and sedentary behavior? Results of HCSC study. Int. J. Environ. Res. Public Health 2020, 17, 1109. [Google Scholar] [CrossRef] [Green Version]
- Sigmund, E.; Sigmundová, D.; El Ansari, W. Changes in physical activity in pre-schoolers and first-grade children: Longitudinal study in the Czech Republic. Child Care Health Dev. 2009, 35, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, M.H.; Henriksson, P.; Delisle Nyström, C.; Henriksson, H.; Ortega, F.B.; Pomeroy, J.; Ruiz, J.R.; Cadenas-Sanchez, C.; Löf, M. Longitudinal physical activity, body composition, and physical fitness in preschoolers. Med. Sci. Sports Exerc. 2017, 49, 2078–2085. [Google Scholar] [CrossRef] [Green Version]
- Riso, E.-M.; Kull, M.; Mooses, K.; Hannus, A.; Jürimäe, J. Objectively measured physical activity levels and sedentary time in 7- to 9- year-old Estonian schoolchildren: Independent associations with body composition parameters. BMC Public Health 2016, 16, 346. [Google Scholar] [CrossRef] [Green Version]
- Riso, E.-M.; Kull, M.; Mooses, K.; Jürimäe, J. Physical activity, sedentary time and sleep duration: Associations with body composition in 10–12-year-old Estonian schoolchildren. BMC Public Health 2018, 18, 496. [Google Scholar] [CrossRef] [Green Version]
- Reisberg, K.; Riso, E.-M.; Jürimäe, J. Associations between physical activity, body composition, and physical fitness in the transition from preschool to school. Scand. J. Med. Sci. Sports 2020, 30, 2251–2263. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Riso, E.-M.; Mägi, K.; Vaiksaar, S.; Toplaan, L.; Jürimäe, J. Conceptual skills and verbal abilities were better in children aged six to seven years who were from more highly educated families and attended sports clubs. Acta Paediatr. 2019, 108, 1624–1631. [Google Scholar] [CrossRef] [PubMed]
- Migueles, J.H.; Cadenas-Sanchez, C.; Esteban-Cornejo, I.; Torres-Lopez, L.V.; Aadland, E.; Chastin, S.F.M.; Erickson, K.I.; Catena, A.; Ortega, F.B. Associations of objectively-assessed physical activity and sedentary time with hippocampal gray matter volume in children with overweight/obesity. J. Clin. Med. 2020, 9, 1080. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Marfell-Jones, M.; Olds, T.; Stewart, A.; Carter, L.E.L. International Standards for Anthropometric Assessments.; International Society for the Advancement of Kinanthropometry—ISAK: Potchefstroom, South Africa, 2006. [Google Scholar]
- Slaughter, M.; Lohman, T.G.; Boileau, R.A.; Horswill, C.A.; Stillman, R.J.; Van Loan, M.D.; Bemben, D.A. Skinfold equations for estimation of body fatness in children and youth. Hum. Biol. 1988, 60, 709–723. [Google Scholar]
- Jiménez-Pavón, D.; Fernández-Vázquez, A.; Alexy, U.; Pedrero, R.; Cuenca-García, M.; Polito, A.; Vanhelst, J.; Manios, Y.; Kafatos, A.; Molnar, D.; et al. Association of objectively measured physical activity with body components in European adolescents. BMC Public Health 2013, 13, 667. [Google Scholar] [CrossRef] [Green Version]
- Cadenas-Sánchez, C.; Alcántara-Moral, F.; Sánchez-Delgado, G.; Mora-González, J.; Martínez-Téllez, B.; Herrador-Colmenero, M.; Jiménez-Pavón, D.; Femia, P.; Ruiz, J.R.; Ortega, F.B. Evaluación de la capacidad cardiorrespiratoria en niños de edad preescolar: Adaptación del test de 20 m de ida y vuelta. Nutr. Hosp. 2014, 30, 1333–1343. [Google Scholar] [PubMed]
- Ortega, F.B.; Cadenas-Sánchez, C.; Sánchez-Delgado, G.; Mora-González, J.; Martínez-Téllez, B.; Artero, E.G.; Castro-Piñero, J.; Labayen, I.; Chillón, P.; Löf, M.; et al. Systematic review and proposal of a field-based physical fitness-test battery in preschool children: The PREFIT battery. Sports Med. 2015, 45, 533–555. [Google Scholar] [CrossRef] [PubMed]
- Cadenas-Sanchez, C.; Martinez-Tellez, B.; Sanchez-Delgado, G.; Mora-Gonzalez, J.; Castro-Piñero, J.; Löf, M.; Ruiz, J.R.; Ortega, F.B. Assessing physical fitness in preschool children: Feasibility, reliability and practical recommendations for the PREFIT battery. J. Sci. Med. Sport 2016, 19, 910–915. [Google Scholar] [CrossRef]
- Cadenas-Sanchez, C.; Intemann, T.; Labayen, I.; Peinado, A.B.; Vidal-Conti, J.; Sanchis-Moysi, J.; Moliner-Urdiales, D.; Rodriguez Perez, M.A.; Cañete Garcia-Prieto, J.; Fernández-Santos, J.D.R.; et al. Physical fitness reference standards for preschool children: The PREFIT project. J. Sci. Med. Sport 2019, 22, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Riso, E.-M.; Toplaan, L.; Viira, P.; Vaiksaar, S.; Jürimäe, J. Physical fitness and physical activity of 6–7-year-old children according to weight status and sports participation. PLoS ONE 2019, 14, e0218901. [Google Scholar] [CrossRef]
- Reisberg, K.; Riso, E.-M.; Jürimäe, J. Physical fitness in preschool children in relation to later body composition at first grade in school. PLoS ONE 2021, 16, e0244603. [Google Scholar] [CrossRef] [PubMed]
- Sartorio, A.; Lafortuna, C.L.; Pogliaghi, S.; Trecate, L. The impact of gender, body dimension and body composition on hand-grip strength in healthy children. J. Endocrinol. Investig. 2002, 25, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoula, A.; Martin, V.; Bouchant, A.; Walrand, S.; Lavet, C.; Taillardat, M.; Maffiuletti, N.A.; Boisseau, N.; Duché, P.; Ratel, S. Knee extension strength in obese and nonobese male adolescents. Appl. Physiol. Nutr. Metab. 2012, 37, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Boehm, A.E. Assessment of basic relational concepts. In The Psychoeducational Assessment of Preschool Children, 3rd ed.; Bracken, B.A., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2004; pp. 186–203. [Google Scholar]
- Männamaa, M.; Kikas, E.; Raidvee, A. The effect of testing condition on word guessing in elementary school children. J. Psychoeduc. Assess. 2008, 26, 16–26. [Google Scholar] [CrossRef]
- Männamaa, M.; Kikas, E. Developing a test battery for assessing 6- and 7- year-old children’s cognitive skills. In Global Perspectives in Early Childhood Education: Diversity, Challenges and Possibilities; Veisson, M., Hujala, E., Waniganayake, M., Smith, P.K., Kikas, E., Eds.; Peter Lang Verlag: Frankfurt am Main, Germany, 2011; pp. 203–216. [Google Scholar]
- Rovio, S.P.; Yang, X.; Kankaanpää, A.; Aalto, V.; Hirvensalo, M.; Telama, R.; Pahkala, K.; Hutri-Kähönen, N.; Viikari, J.S.A.; Raitakari, O.T.; et al. Longitudinal physical activity trajectories from childhood to adulthood and their determinants: The Young Finns Study. Scand. J. Med. Sci. Sports 2018, 28, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Kahn, J.A.; Huang, B.; Gillman, M.W.; Field, A.E.; Austin, S.B.; Colditz, G.A.; Frazier, A.L. Patterns and determinants of physical activity in U.S. adolescents. J. Adolesc. Health 2008, 42, 369–377. [Google Scholar] [CrossRef]
- Barnett, T.A.; Gauvin, L.; Craig, C.L.; Katzmarzyk, P.T. Distinct trajectories of leisure time physical activity and predictors of trajectory class membership: A 22 year cohort study. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Chaput, J.P.; Willumsen, J.; Bull, F.; Chou, R.; Ekelund, U.; Firth, J.; Jago, R.; Ortega, F.B.; Katzmarzyk, P.T. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: Summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 141. [Google Scholar] [CrossRef]
- Riigi Teataja. Põhikooli Riiklik Õppekava. Available online: https://www.riigiteataja.ee/akt/103032021012?leiaKehtiv (accessed on 29 June 2021).
- Riigi Teataja. Gümnaasiumi Riiklik Õppekava. Available online: https://www.riigiteataja.ee/akt/129082014021?leiaKehtiv (accessed on 29 June 2021).
- Mooses, K.; Vihalemm, T.; Uibu, M.; Mägi, K.; Korp, L.; Kalma, M.; Mäestu, E.; Kull, M. Developing a comprehensive school-based physical activity program with flexible design—From pilot to national program. BMC Public Health 2021, 21, 92. [Google Scholar] [CrossRef]
- Drenowatz, C.; Greier, K.; Ruedl, G.; Kopp, M. Association between club sports participation and physical fitness across 6- to 14-year-old Austrian youth. Int. J. Environ. Res. Public. Health 2019, 16, 3392. [Google Scholar] [CrossRef] [Green Version]
- Galobardes, B.; Lynch, J.; Smith, G.D. Measuring socioeconomic position in health research. Br. Med. Bull. 2007, 81–82, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, S.A.; Traore, C.Y.; Singer, D.E.; Atlas, S.J. Evaluating area-based socioeconomic status indicators for monitoring disparities within health care systems: Results from a primary care network. Health Serv. Res. 2015, 50, 398–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadenas-Sanchez, C.; Migueles, J.H.; Esteban-Cornejo, I.; Mora-Gonzalez, J.; Henriksson, P.; Rodriguez-Ayllon, M.; Molina-García, P.; Löf, M.; Labayen, I.; Hillman, C.H.; et al. Fitness, physical activity and academic achievement in overweight/obese children. J. Sports Sci. 2020, 38, 731–740. [Google Scholar] [CrossRef]
- Drenowatz, C.; Eisenmann, J.C.; Pfeiffer, K.A.; Welk, G.; Heelan, K.; Gentile, D.; Walsh, D. Influence of socio-economic status on habitual physical activity and sedentary behavior in 8- to 11-year old children. BMC Public Health 2010, 10, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mielke, G.I.; Brown, W.J.; Nunes, B.P.; Silva, I.C.M.; Hallal, P.C. Socioeconomic correlates of sedentary behavior in adolescents: Systematic review and meta-analysis. Sports Med. 2017, 47, 61–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donoghue, G.; Kennedy, A.; Puggina, A.; Aleksovska, K.; Buck, C.; Burns, C.; Cardon, G.; Carlin, A.; Ciarapica, D.; Colotto, M.; et al. Socio-economic determinants of physical activity across the life course: A “DEterminants of DIet and Physical ACtivity” (DEDIPAC) umbrella literature review. PLoS ONE 2018, 13, e0190737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MAL-ED Network Investigators. Early childhood cognitive development is affected by interactions among illness, diet, enteropathogens and the home environment: Findings from the MAL-ED birth cohort study. BMJ Glob. Health 2018, 3, e000752. [Google Scholar] [CrossRef]
- Schwartz, A.B. Movement: How the brain communicates with the world. Cell 2016, 164, 1122–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, K.S.; Dhikav, V. Hippocampus in health and disease: An overview. Ann. Indian Acad. Neurol. 2012, 15, 239–246. [Google Scholar]
- Roig, M.; Nordbrandt, S.; Geertsen, S.S.; Nielsen, J.B. The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neurosci. Biobehav. Rev. 2013, 37, 1645–1666. [Google Scholar] [CrossRef] [PubMed]
- Most, S.B.; Kennedy, B.L.; Petras, E.A. Evidence for improved memory from 5 min of immediate, post-encoding exercise among women. Cogn. Res. Princ. Implic. 2017, 2, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanner, P.; Cheng, F.H.; Steib, S. Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis. Neurosci. Biobehav. Rev. 2020, 116, 365–381. [Google Scholar] [CrossRef]
- Pindus, D.M.; Drollette, E.S.; Scudder, M.R.; Khan, N.A.; Raine, L.B.; Sherar, L.B.; Esliger, D.W.; Kramer, A.F.; Hillman, C.H. Moderate-to-vigorous physical activity, indices of cognitive control, and academic achievement in preadolescents. J. Pediatr. 2016, 173, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzik, N.; Naylor, P.J.; Spence, J.C.; Carson, V. Movement behaviours and physical, cognitive, and social-emotional development in preschool-aged children: Cross-sectional associations using compositional analyses. PLoS ONE 2020, 15, e0237945. [Google Scholar] [CrossRef]
- Coe, D.P.; Pivarnik, J.M.; Womack, C.J.; Reeves, M.J.; Malina, R.M. Effect of physical education and activity levels on academic achievement in children. Med. Sci. Sports Exerc. 2006, 38, 1515–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhingra, R.; Manhas, S.; Kohli, N. Relationship of perceptual abilities with academic performance of children. J. Soc. Sci. 2010, 23, 143–147. [Google Scholar] [CrossRef]
- Owens, S.; Galloway, R.; Gutin, B. The case for vigorous physical activity in youth. Am. J. Lifestyle Med. 2016, 11, 96–115. [Google Scholar] [CrossRef] [PubMed]
- Raizada, R.D.; Kishiyama, M.M. Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to levelling the playing field. Front. Hum. Neurosci. 2010, 4, 3. [Google Scholar]
- Jackson, M.; Kiernan, K.; McLanahan, S. Maternal education, changing family circumstances, and children’s skill development in the United States and UK. Ann. Am. Acad. Pol. Soc. Sci. 2017, 674, 59–84. [Google Scholar] [CrossRef] [Green Version]
- Jednoróg, K.; Altarelli, I.; Monzalvo, K.; Fluss, J.; Dubois, J.; Billard, C.; Dehaene-Lambertz, G.; Ramus, F. The influence of socioeconomic status on children’s brain structure. PLoS ONE 2012, 7, e42486. [Google Scholar]
- Craig, L.; Powell, A.; Smyth, C. Towards intensive parenting? Changes in the composition and determinants of mothers’ and fathers’ time with children 1992–2006. Br. J. Sociol. 2014, 65, 555–579. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, F.J.; Gilkerson, J.; Richards, J.A.; Christakis, D.A.; Xu, D.; Gray, S.; Yapanel, U. Teaching by listening: The importance of adult-child conversations to language development. Pediatrics 2009, 124, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Kindergarten | School | |||
---|---|---|---|---|
Lower Quartile (n = 24) | Upper Quartile (n = 24) | Lower Quartile (n = 27) | Upper Quartile (n = 28) | |
Variable | ||||
Age (yr) | 6.57 ± 0.6 | 6.48 ± 0.51 | 7.67 ± 0.48 * | 7.48 ± 0.5 * |
Height (cm) | 124 ± 6.15 | 127 ± 6.4 | 131 ± 6.9 * | 134 ± 6.4 * |
Weight (kg) | 24.8 ± 5.1 | 26.24 ± 4.55 | 28.3 ± 6.75 * | 29.9 ± 5.8 * |
BMI (kg/m2) | 16.0 ± 2.33 | 16.22 ± 1.66 | 16.3 ± 2.95 | 16.6 ± 2.11 |
Overweight (%) | 25% | 20.8% | 11.1% | 10.7% |
Participating in organized sport (%) | 62.5% | 95.8% # | 63% | 75% |
SB and PA | ||||
AWT (min/day) | 803 ± 143 | 805 ± 82 | 862 ± 107 * | 837 ± 94 |
SB (min/day) | 460 ± 141 | 381 ± 72.6 # | 506 ± 103 * | 425 ± 80 *# |
Light PA (min/day) | 298 ± 55 | 325 ± 28 # | 296 ± 42 | 320 ± 39 # |
Moderate PA (min/day) | 33.3 ± 4.9 | 64 ± 12 # | 41 ± 11.4 * | 61 ± 15.1 # |
Vigorous PA (min/day) | 11.1 ± 3.8 | 34 ± 11.5 # | 17.76 ±10.87 * | 34 ± 15.5 # |
MVPA (min/day) | 44.3 ± 6.8 | 99 ± 19 # | 59 ± 20.4 * | 95 ± 28.5 # |
PF tests | ||||
20 m shuttle run (laps) | 17.1 ± 9.47 | 20.0 ± 11.5 | 20 ± 13.7 | 25.6 ± 15.1 |
Grip strength (kg) | 10.3 ± 1.93 | 11.5 ± 2.4 | 12.9 ± 2.41 * | 13.7 ± 2.6 *# |
Grip-to-BMI ratio | 0.65 ± 0.14 | 0.71 ± 0.15 | 0.8 ± 0.16 * | 0.83 ± 1.14 * |
Grip-to-FFM ratio | 0.54 ± 0.08 | 0.55 ± 0.08 | 0.58 ± 0.79 * | 0.55 ± 0.06 |
SLJ (cm) | 114 ± 18.9 | 129 ± 16.4 # | 124 ± 23.5 * | 139.1 ± 19.6 *# |
SLJ-to-BMI ratio | 7.16 ± 1.71 | 8.2 ± 1.27 # | 7.91 ± 2.32 * | 8.6 ± 1.66 * |
SLJ-to-FFM ratio | 5.96 ± 1.31 | 6.43 ± 1.07 | 5.6 ± 1.5 * | 5.81 ± 1.09 * |
4 × 10 m shuttle run (s) a | 15.6 ± 1.6 | 14.9 ± 1.11 | 15.02 ± 1.53 | 14.5 ± 0.98 |
One-leg stance (balance) (s) | 21 ± 9.87 | 22.1 ± 8.6 | 12.5 ± 9.4 * | 13.1 ± 9.04 * |
Modified Boehm-3 test | ||||
Progressive matrix (max score 10) | 6.26 ± 2.68 | 6.60 ± 2.57 | 7.70 ± 2.16 * | 7.83 ± 1.9 * |
Conceptual skills (max score 17) | 13.3 ± 2.72 | 13.8 ± 1.9 | 14.9 ± 1.41 * | 14.6 ± 1.7 * |
Verbal abilities (max score 9) | 5.58 ± 1.40 | 5.63 ± 1.54 | 6.5 ± 1.1 * | 6.8 ± 1.2 * |
Cognitive Abilities at 7.6 Years | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lower Quartile | Upper Quartile | |||||||||||
Conceptual Skills | Verbal Abilities | Perception | Conceptual Skills | Verbal Abilities | Perception | |||||||
SB and PA at 6.6 years | AdjR2 | β | AdjR2 | β | AdjR2 | β | AdjR2 | β | AdjR2 | β | AdjR2 | β |
SB | ||||||||||||
Model 1 | −0.042 | −0.057 | −0.040 | −0.075 | −0.037 | 0.088 | −0.044 | 0.043 | −0.045 | 0.016 | −0.043 | −0.048 |
Model 2 | −0.268 | −0.228 | −0.227 | −0.065 | 0.110 | −1.016 | 0.300 | −0.953 | 0.165 | 0.562 | 0.206 | 1.566 |
Model 3 | −0.768 | −0.009 | −0.026 | −0.170 | 0.131 | −1.075 | 0.475 | −3.363 | 0.932 | 2.281 * | 0.419 | 3.741 |
Model 4 | 0.395 | 2.849 | 0.188 | 4.092 | 0.948 | 0.265 | 0.729 | −4.555 | 0.918 | 2.371 * | 0.337 | 3.255 |
LPA | ||||||||||||
Model 1 | −0.043 | 0.047 | −0.039 | −0.078 | −0.044 | 0.041 | −0.038 | −0.084 | −0.041 | 0.069 | −0.045 | 0.002 |
Model 2 | −0.270 | 0.051 | −0.227 | −0.015 | 0.085 | 0.254 | 0.319 | 0.589 | 0.161 | 0.303 | 0.043 | −0.573 |
Model 3 | −0.767 | −0.024 | −0.031 | 0.012 | 0.058 | 0.271 | 0.404 | −0.679 | 0.864 | −0.281 * | 0.235 | −0.457 |
Model 4 | 0.603 | −0.894 | 0.522 | −1.262 | 0.955 | −0.100 | 0.401 | −0.517 | 0.831 | −0.278 * | 0.158 | −0.313 |
MPA | ||||||||||||
Model 1 | −0.044 | 0.037 | −0.044 | 0.041 | −0.044 | 0.041 | −0.036 | −0.093 | 0.019 | −0.249 | 0.134 | −0.415 * |
Model 2 | −0.241 | 0.154 | −0.159 | 0.227 | 0.198 | 0.376 | 0.292 | 0.288 | 0.241 | −0.314 | 0.303 | −0.573 |
Model 3 | −0.712 | 0.171 | 0.042 | 0.196 | 0.469 | 0.548 | 0.458 | 0.388 | 0.918 | −0.252 * | 0.382 | −0.416 |
Model 4 | −0.392 | 0.586 | −1.731 | 0.619 | 0.980 | 0.215 | 0.681 | 0.514 | 0.898 | −0.258 * | 0.304 | −0.358 |
VPA | ||||||||||||
Model 1 | −0.035 | −0.101 | −0.044 | 0.040 | −0.045 | 0.002 | −0.015 | −0.170 | −0.019 | −0.160 | −0.031 | −0.116 |
Model 2 | −0.273 | −0.010 | −0.226 | 0.038 | 0.066 | 0.218 | 0.205 | −0.107 | 0.197 | −0.323 | −0.072 | −0.038 |
Model 3 | −0.753 | 0.121 | 0.289 | 0.555 | 0.651 | 0.837 * | 0.455 | 0.548 | 0.895 | 0.298 * | 0.318 | 0.490 |
Model 4 | 0.792 | 1.171 | 0.404 | 1.508 | 0.998 | 0.234 * | 0.422 | 0.406 | 0.871 | 0.318 * | 0.217 | 0.375 |
MVPA | ||||||||||||
Model 1 | −0.045 | −0.015 | −0.045 | 0.013 | −0.045 | 0.030 | −0.023 | −0.147 | 0.014 | −0.238 | 0.059 | −0.316 |
Model 2 | −0.257 | 0.108 | −0.186 | 0.178 | 0.174 | 0.355 | 0.292 | 0.463 | 0.257 | −0.385 | 0.116 | −0.467 |
Model 3 | −0.725 | 0.155 | 0.100 | 0.267 | 0.566 | 0.592 | 0.635 | 0.734 | 0.850 | −0.102 * | 0.198 | −0.169 |
Model 4 | 0.034 | 0.876 | −1.042 | 1.039 | 0.994 | 0.240 | 0.750 | 0.727 | 0.815 | −0.103 * | 0.153 | −0.175 |
TPA | ||||||||||||
Model 1 | −0.044 | 0.039 | −0.041 | −0.068 | −0.044 | 0.043 | −0.025 | −0.139 | −0.036 | −0.093 | −0.011 | −0.181 |
Model 2 | −0.268 | 0.064 | −0.227 | 0.018 | 0.110 | 0.287 | −0.300 | 0.437 | 0.165 | −0.258 | 0.206 | −0.718 |
Model 3 | −0.768 | 0.003 | −0.026 | 0.052 | 0.131 | 0.325 | 0.475 | 1.403 | 0.932 | −0.952 * | 0.419 | −1.560 |
Model 4 | 0.395 | −0.906 | 0.188 | −1.302 | 0.948 | −0.084 | 0.729 | 1.900 | 0.918 | −0.989 * | 0.337 | −1.338 |
Cognitive Abilities at 7.6 Years | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lower Quartile | Upper Quartile | |||||||||||
Conceptual Skills | Verbal Abilities | Perception | Conceptual Skills | Verbal Abilities | Perception | |||||||
Physical fitness at 6.6 years | AdjR2 | β | AdjR2 | β | AdjR2 | β | AdjR2 | β | AdjR2 | β | AdjR2 | β |
Cardiorespiratory fitness | ||||||||||||
Model 1 | 0.047 | 0.307 | −0.010 | 0.200 | 0.112 | 0.395 | −0.006 | 0.224 | −0.059 | 0.008 | −0.047 | 0.104 |
Model 2 | −0.137 | 0.585 | −0.126 | 0.065 | 0.362 | 0.645 | 0.292 | 0.363 | 0.011 | 0.207 | 0.536 | 0.375 * |
Model 3 | 0.040 | 0.940 | 0.550 | −0.096 | 0.222 | 0.001 | 0.668 | 0.651 | 0.844 | −0.036 * | 0.661 | 0.048 |
Model 4 | −0.076 | 0.872 | 0.615 | −0.178 | 0.082 | 0.046 | 0.596 | 0.575 | 0.794 | −0.022 | 0.606 | 0.358 |
Grip-to-BMI ratio | ||||||||||||
Model 1 | −0.038 | −0.117 | −0.016 | −0.186 | −0.033 | 0.138 | −0.005 | −0.225 | −0.044 | 0.119 | −0.043 | −0.121 |
Model 2 | −0.394 | −0.059 | −0.108 | −0.196 | 0.189 | 0.511 | 0.125 | −0.095 | −0.004 | −0.189 | 0.389 | 0.188 |
Model 3 | −0.483 | −0.196 | 0.773 | 0.567 * | 0.261 | 0.234 | 0.178 | 0.311 | 0.857 | 0.107 * | 0.842 | 0.469 * |
Model 4 | −0.591 | −0.263 | 0.831 | 0.523 * | 0.143 | 0.268 | 0.160 | 0.195 | 0.819 | 0.130 | 0.840 | 0.521 |
Grip-to-FFM ratio | ||||||||||||
Model 1 | −0.040 | −0.145 | 0.032 | −0.298 | 0.025 | 0.287 | −0.037 | −0.155 | 0.014 | −0.269 | −0.050 | −0.109 |
Model 2 | −0.313 | 0.176 | −0.188 | −0.226 | 0.293 | 0.166 | 0.394 | −0.186 | 0.047 | −0.434 | 0.266 | 0.071 |
Model 3 | 0.927 | −0.019 | −0.498 | 0.979 | 0.713 | −0.141 | 0.194 | 0.142 | 0.801 | 0.073 | 0.931 | 0.585 * |
Model 4 | 0.910 | 0.257 | −0.002 | 0.921 | 0.976 | −0.999 | 0.194 | 0.142 | 0.801 | 0.073 | 0.931 | 0.585 * |
SLJ-to-BMI ratio | ||||||||||||
Model 1 | −0.026 | 0.158 | −0.042 | −0.101 | 0.064 | 0.333 | −0.032 | −0.170 | 0.039 | −0.150 | −0.058 | 0.063 |
Model 2 | −0.394 | 0.049 | 0.046 | −0.431 | 0.408 | 0.619 | 0.119 | −0.059 | 0.062 | −0.273 | 0.356 | 0.085 |
Model 3 | −0.391 | −0.373 | 0.568 | −0.165 | 0.467 | 0.536 | 0.065 | −0.064 | 0.874 | 0.126 * | 0.823 | 0.360 * |
Model 4 | −0.538 | −0.328 | 0.131 | −0.126 | 0.364 | 0.518 | 0.177 | 0.175 | 0.832 | 0.126 | 0.777 | 0.379 |
SLJ-to-FFM ratio | ||||||||||||
Model 1 | 0.033 | 0.300 | −0.050 | −0.109 | 0.134 | 0.430 | 0.099 | 0.394 | 0.060 | −0.345 | 0.020 | 0.285 |
Model 2 | −0.243 | 0.248 | −0.121 | −0.261 | 0.443 | 0.339 | 0.353 | −0.054 | 0.118 | −0.541 | 0.260 | 0.000 |
Model 3 | 0.927 | 0.028 | 0.281 | −0.427 | 0.789 | 0.257 | 0.192 | 0.162 | 0.806 | 0.106 | 0.885 | 0.658 * |
Model 4 | 0.902 | 0.103 | 0.983 | −0.809 | 0.629 | 0.185 | 0.192 | 0.162 | 0.806 | 0.106 | 0.885 | 0.658 * |
Speed-agility fitness a | ||||||||||||
Model 1 | 0.031 | 0.283 | 0.050 | 0.312 | 0.048 | −0.309 | 0.116 | 0.406 | 0.056 | −0.051 | −0.054 | −0.067 |
Model 2 | −0.166 | 0.532 | 0.477 | 0.862 * | 0.241 | −0.487 | 0.126 | 0.118 | 0.030 | −0.385 | 0.427 | −0.300 |
Model 3 | 0.214 | 1.058 | 0.601 | 0.296 | 0.553 | −0.715 | 0.091 | 0.217 | 0.882 | −0.233 * | 0.604 | −0.227 |
Model 4 | 0.204 | 1.675 | −0.597 | −0.146 | 0.646 | −1.362 | 0.681 | 0.994 | 0.910 | −0.447 * | 0.529 | −0.423 |
Balance | ||||||||||||
Model 1 | −0.038 | 0.118 | −0.044 | 0.090 | 0.106 | 0.388 | −0.052 | 0.080 | −0.056 | −0.052 | −0.025 | 0.178 |
Model 2 | −0.392 | 0.065 | −0.128 | 0.024 | 0.188 | 0.395 | 0.198 | −0.285 | 0.002 | −0.219 | 0.356 | −0.101 |
Model 3 | −0.448 | −0.262 | 0.568 | −0.162 | 0.329 | 0.345 | 0.069 | 0.102 | 0.850 | −0.076 * | 0.567 | 0.013 |
Model 4 | −0.331 | −0.600 | 0.753 | −0.427 | 0.365 | 0.565 | 0.292 | −0.490 | 0.800 | −0.092 | 0.429 | 0.080 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reisberg, K.; Riso, E.-M.; Jürimäe, J. Physical Activity, Fitness, and Cognitive Performance of Estonian First-Grade Schoolchildren According Their MVPA Level in Kindergarten: A Longitudinal Study. Int. J. Environ. Res. Public Health 2021, 18, 7576. https://doi.org/10.3390/ijerph18147576
Reisberg K, Riso E-M, Jürimäe J. Physical Activity, Fitness, and Cognitive Performance of Estonian First-Grade Schoolchildren According Their MVPA Level in Kindergarten: A Longitudinal Study. International Journal of Environmental Research and Public Health. 2021; 18(14):7576. https://doi.org/10.3390/ijerph18147576
Chicago/Turabian StyleReisberg, Kirkke, Eva-Maria Riso, and Jaak Jürimäe. 2021. "Physical Activity, Fitness, and Cognitive Performance of Estonian First-Grade Schoolchildren According Their MVPA Level in Kindergarten: A Longitudinal Study" International Journal of Environmental Research and Public Health 18, no. 14: 7576. https://doi.org/10.3390/ijerph18147576
APA StyleReisberg, K., Riso, E. -M., & Jürimäe, J. (2021). Physical Activity, Fitness, and Cognitive Performance of Estonian First-Grade Schoolchildren According Their MVPA Level in Kindergarten: A Longitudinal Study. International Journal of Environmental Research and Public Health, 18(14), 7576. https://doi.org/10.3390/ijerph18147576