Clinical and Laboratory Features of JAK2 V617F, CALR, and MPL Mutations in Malaysian Patients with Classical Myeloproliferative Neoplasm (MPN)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Gene | Chromosome Location | Region (Base) | Size (bp) | NCBI Reference Sequence |
---|---|---|---|---|
JAK2V617F | 9p24.1 | 93497 to 93523 | 203 | NG_009904.1 |
CALR—TYPE 1 | 19p13 | 10114 to 10135 | 302 | NG_029662.1 |
CALR—TYPE 2 | 19p13 | 10204 to 10219 | 272 | NG_029662.1 |
MPL—W515L | 1p34 | 16516 to 16535 | 124 | NG_007525.1 |
MPL—W515K | 1p34 | 16535 to 16555 | 125 | NG_007525.1 |
Primer Name | Mutant Sequences | PCR Product Size (bp) |
---|---|---|
JAK2V617F | FC 5′- ATC TAT AGT CAT GCT GAA AGT AGG AGA AAG-3′ FS 5′- AGC ATT TGG TTT TAA ATT ATG GAG TAT ATT-3′ R 5′-CTG AAT AGT CCT ACA GTG TTT TCA GTT TCA-3′ | 364 bp only (Wild-type) 203 bp |
CALR—TYPE 1 CALR—TYPE 2 | Type 1: F1 (forward primer 1) 5′-GCA GCA GAG AAA CAA ATG AAG G-3’ Type 2: F2 (forward primer 2) 5´-GCA GAG GAC AAT TGT CGG A-3´, R (reverse primer) 5´-AGA GTG GAG GAG GGG AAC AA-3´ | 357 bp only (Wild type) 302 bp (Type 1) 272 bp (Type 2) |
MPL—W515L MPL—W515K | GCC GAA GTC TGA CCC TTT TT Forward (L): GGC CTG CTG CTG CTG AAG Tt Reverse (K)TGT AGT GTG CAG GAA ACT GCtt R: ACA GAG CGA ACC AAG AAT GCC TGT TTA CA | 209 bp only (Wild-type) 124 bp (L) 125 bp (K) |
CALR | MPL | ||||
---|---|---|---|---|---|
Cycles | Temperature (°C) | Time | Temperature (°C) | Time | |
Initial denaturation | 94 | 10 min | 95 | 10 min | |
PCR (×40 cycles) | Denaturing | 94 | 30 s | 95 | 30 s |
Annealing | 65 | 30 s | 54 | 30 s | |
Extension | 72 | 30 s | 72 | 30 s | |
Final extension | 72 | 7 min | 72 | 10 min | |
Hold | 4 | ∞ | 4 | ∞ |
CALR | MPL | |||
---|---|---|---|---|
Constituents | Concentration | Volume (μL) | Concentration | Volume (μL) |
10× Gene Amp PCR Buffer II | 1× | 2.0 | 1× | 2.0 |
25 mM Gene Amp MgCl2 | 2.5 mM | 2.0 | 2.5 mM | 2.0 |
10 μM Gene Amp Dntp blend | 0.1 mM | 0.2 | 0.1 mM | 0.32 |
5 μM Primer FC | 0.2 μM | 0.5 | ||
5 μM Primer FS | 0.2 μM | 0.5 | ||
5 μM Primer R | 0.2 μM | 1.0 | ||
5 U Ampli Taq Gold | 0.025 u | 0.1 | 0.025 u | 0.19 |
PCR Water | 8.7 | 4.99 | ||
DNA (100–200 ng) | 25–50 ng/μL | 5 | 25–50 ng/μL | 5 |
References
- Mêd, A.J.; Mullally, A. Myeloproliferative neoplasm stem cells. Blood 2017, 129, 1607–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spivak, J.L. Myeloproliferative Neoplasms. N. Engl. J. Med. 2017, 376, 168–2181. [Google Scholar] [CrossRef] [Green Version]
- Grinfeld, J.; Nangalia, J.; Baxter, E.J.; Wedge, D.C.; Angelopoulos, N.; Cantrill, R.; Godfrey, A.L.; Papaemmanuil, E.; Gundem, G.; MacLean, C.; et al. Classification and Personalized Prognosis in Myeloproliferative Neoplasms. N. Engl. J. Med. 2018, 379, 1416–1430. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Hen, X.; Gao, F.; Hou, R.; Tian, T.; Zhang, Y.; Fan, L.; Hu, J.; Zhu, G.; Yang, W.; et al. Two activating mutations of MPL in triple-negative myeloproliferative neoplasms. Cancer Med. 2019, 8, 5254–5263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzi, M. Crossing the borders: An integrated approach to myeloproliferative neoplasms and mastocytoses. Cancers 2021, 13, 1492. [Google Scholar] [CrossRef] [PubMed]
- Shams, S.F.; Ayatollahi, H.; Sadeghian, M.H.; Afzalaghaee, M.; Shakeri, S.; Yazdandoust, E.; Sheikhi, M.; Amini, N.; Bakhshi, S.; Bahrami, A. Prevalence of MPL (W515K/L) Mutations in Patients with Negative-JAK2 (V617F) Myeloproliferative Neoplasm in North-East of Iran. Iran. J. Pathol. 2018, 13, 397–402. [Google Scholar]
- Zhang, S.P.; Li, H.; Lai, R.S. Detection of JAK2 V617F mutation increases the diagnosis of myeloproliferative neoplasms. Oncol. Lett. 2015, 9, 735–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, A.P.; Silva, S.N.; Reichert, A.; Lima, F.; Júnior, E.; Rueff, J. Prevalence of the janus kinase 2 V617F mutation in philadelphia-negative myeloproliferative neoplasms in a portuguese population. Biomed. Rep. 2017, 7, 370–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nangalia, J.; Green, A.R. Myeloproliferative neoplasms: From origins to outcomes. Blood 2017, 130, 2475–2483. [Google Scholar] [CrossRef]
- Machado-Neto, J.A.; Campos, P.d.; Trainaen, F. CALR (calreticulin). Atlas Genet. Cytogenet. Oncol. Haematol. 2018. [Google Scholar] [CrossRef]
- Mikic, T.B.; Pajic, T.; Sever, M. CALR mutations in a cohort of JAK2 V617F negative patients with suspected myeloproliferative neoplasms. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Grabek, J.; Straube, J.; Bywater, M.; Lane, S.W. MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells 2020, 9, 1901. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues Revised, 4th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2017. [Google Scholar]
- QIAGEN Group. QIAsymphony DNA Handbook; Forest Stewardship Council (FSC): Foster City, CA, USA, 2010. [Google Scholar]
- Zakaria, N.A.; Rosle, N.A.; Asmaa, M.J.S.; Aziee, S.; Haiyuni, M.Y.; Samat, N.A.; Husin, A.; Hassan, R.; Ramli, M.; Yusoff, S.M.; et al. Conformation sensitive gel electrophoresis for the detection of calreticulin mutations in BCR-ABL1-negative myeloproliferative neoplasms. Int. J. Lab. Hematol. 2021. [Google Scholar] [CrossRef]
- Heppner, J.; Nguyen, L.T.; Guo, M.; Naugler, C.F.; Rashid-Kolvear, F. Incidence of myeloproliferative neoplasms in Calgary, Alberta, Canada. BMC Res. Notes 2019, 12, 286. [Google Scholar] [CrossRef] [PubMed]
- Kaifie, A.; Kirschner, M.; Wolf, D.; Maintz, C.; Hänel, M.; Gattermann, N.; Gökkurt, E.; Platzbecker, U.; Hollburg, W.; Göthert, J.R.; et al. Bleeding, thrombosis, and anticoagulation in myeloproliferative neoplasms (MPN): Analysis from the German SAL-MPN-registry. J. Hematol. Oncol. 2016, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Yassin, M.A.; Taher, A.; Mathews, V.; Hou, H.-A.; Shamsi, T.; Tuglular, T.; Xiao, Z.; Kim, S.-J.; Wu, D.; Li, J.; et al. Myeloproliferative Neoplasms in Asia, Including Middle East, Turkey, and Algeria: Epidemiological Indices and Treatment Practice Patterns from the Multinational, Multicenter, Observational MERGE Registry. Blood 2018, 132, 5461. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, E.; Sun, Q.; Ma, J.; Li, Q.; Cao, Z.; Wang, J.; Jia, Y.; Zhang, H.; Song, Z.; et al. The prevalence of JAK2, MPL, and CALR mutations in Chinese patients with BCR-ABL1-Negative Myeloproliferative Neoplasms. Am. J. Clin. Pathol. 2015, 144, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, I.K.; Hassan, R.; Ali, E.W.; Omer, A. Polycythaemia vera among Sudanese patients with special emphasis on JAK2 mutations. Asian Pac. J. Cancer Prev. 2019, 20, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.H.; Cho, Y.U.; Bae, M.H.; Jang, S.; Seo, E.J.; Chi, H.S.; Choi, Y.; Kim, D.Y.; Lee, J.H.; Lee, J.H.; et al. JAK2 V617F, MPL, and CALR mutations in Korean patients with essential thrombocythemia and primary myelofibrosis. J. Korean Med. Sci. 2015, 30, 882–888. [Google Scholar] [CrossRef] [Green Version]
- Loghavi, S.; Bueso-Ramos, C.E.; Kanagal-Shamanna, R.; Ok, C.Y.; Salim, A.A.; Routbort, M.J.; Mehrotra, M.; Verstovsek, S.; Medeiros, L.J.; Luthra, R.; et al. Myeloproliferative neoplasms with calreticulin mutations exhibit distinctive morphologic features. Am. J. Clin. Pathol. 2016, 145, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Lieu, C.H.; Shen, Y.J.; Lai, W.C.; Tsai, W.H.; Hsu, H.C. Prevalence of MPL W515L/K Mutations in Taiwanese Patients With Philadelphia-negative Chronic Myeloproliferative Neoplasms. J. Chin. Med. Assoc. 2010, 73, 530–532. [Google Scholar] [CrossRef] [Green Version]
- Eldeweny, S.; Ibrahim, H.; Elsayed, G.; Samra, M. MPL W515 L/K mutations in myeloproliferative neoplasms. Egypt. J. Med. Hum. Genet. 2019, 20, 31. [Google Scholar] [CrossRef] [Green Version]
- Akpinar, T.S.; Hançer, V.S.; Nalçaci, M.; Diz-Küçükkaya, R. Kronik miyeloproliferatif neoplazmlarda MPL W515L/K mutasyonlari. Turk. J. Hematol. 2013, 30, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.; Nie, Y.; Wang, Z.; Huang, Q.; An, L.; Wang, Y.; Wufuer, G.; Maimaiti, A.; Fu, L.; Li, Y.; et al. Correlation analysis between JAK2, MPL, and CALR mutations in patients with myeloproliferative neoplasms of Chinese Uygur and Han nationality and their clinical characteristics. J. Int. Med. Res. 2018, 46, 4650–4659. [Google Scholar] [CrossRef]
- Rabade, N.; Subramanian, P.G.; Kodgule, R.; Raval, G.; Joshi, S.; Chaudhary, S.; Mascarenhas, R.; Tembhare, P.; Gujral, S.; Patkar, N. Molecular genetics of BCR-ABL1 negative myeloproliferative neoplasms in India. Indian J. Pathol. Microbiol. 2018, 61, 209–213. [Google Scholar] [CrossRef]
- Passamonti, F.; Maffioli, M. Update from the latest WHO classification of MPNs: A user’s manual. Hematology 2016, 2016, 534–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, D.; Hasserjian, R.P. Molecular testing for JAK 2, MPL, and CALR in myeloproliferative neoplasms. Am. J. Hematol. 2016, 91, 1277–1280. [Google Scholar] [CrossRef]
- Song, M.-K.; Chung, J.-S.; Lim, S.-N.; Lee, G.-n.; Lee, S.-M.; Lee, N.-K.; Choi, J.-C.; Oh, S.-Y. Usefulness of spleen volume measured by computed tomography for predicting clinical outcome in primary myelofibrosis. Int. J. Hematol. 2016, 104, 476–484. [Google Scholar] [CrossRef]
- Iurlo, A.; Cattaneo, D.; Bucelli, C.; Baldini, L. New perspectives on polycythemia vera: From diagnosis to therapy. Int. J. Mol. Sci. 2020, 21, 5805. [Google Scholar] [CrossRef] [PubMed]
- Ashorobi, D.; Gohari, P. Essential Thrombocytosis; StatPearls Publishing: New York, NY, USA, 2020. [Google Scholar]
- Alvarez-Larran, A.; Martínez, D.; Arenillas, L.; Rubio, A.; Arellano-Rodrigo, E.; Hernández Boluda, J.C.; Papaleo, N.; Caballero, G.; Martínez, C.; Ferrer-Marín, F.; et al. Essential thrombocythaemia with mutation in MPL: Clinicopathological correlation and comparison with JAK 2V617F-mutated and CALR- mutated genotypes. J. Clin. Pathol. 2018, 71, 975–980. [Google Scholar] [CrossRef]
- Labastida-Mercado, N.; Galindo-Becerra, S.; Garcés-Eisele, J.; Colunga-Pedraza, P.; Guzman-Olvera, V.; Reyes-Nuñez, V.; Ruiz-Delgado, G.J.; Ruiz-Argüelles, G.J. The mutation profile of JAK2, MPL and CALR in Mexican patients with Philadelphia chromosome-negative myeloproliferative neoplasms. Hematol. Oncol. Stem Cell Ther. 2015, 8, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Boiocchi, L.; Espinal-Witter, R.; Geyer, J.T.; Steinhilber, J.; Bonzheim, I.; Knowles, D.M.; Fend, F.; Orazi, A. Development of monocytosis in patients with primary myelofibrosis indicates an accelerated phase of the disease. Mod. Pathol. 2013, 26, 204–212. [Google Scholar] [CrossRef]
- Shah, A.; Mudireddy, M.; Lasho, T.L.; Barraco, D.; Hanson, C.A.; Ketterling, R.P.; Gangat, N.; Elliott, M.; Pardanani, A.; Tefferi, A. Monocytosis Is a Powerful and Independent Predictor of Shortened Overall and Leukemia-Free Survival in Primary Myelofibrosis. Blood 2016, 128, 4249. [Google Scholar] [CrossRef]
- Barbui, T.; Thiele, J.; Gisslinger, H.; Kvasnicka, H.M.; Vannucchi, A.M.; Guglielmelli, P.; Orazi, A.; Tefferi, A. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: Document summary and in-depth discussion. Blood Cancer J. 2018, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Beer, P.A.; Campbell, P.J.; Green, A.R. Comparison of different criteria for the diagnosis of primary myelofibrosis reveals limited clinical utility for measurement of serum lactate dehydrogenase. Haematologica 2010, 95, 1960–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busque, L.; Porwit, A.; Day, R.; Olney, H.J.; Leber, B.; Éthier, V.; Sirhan, S.; Foltz, L.; Prchal, J.; Kamel-Reid, S.; et al. Laboratory Investigation of Myeloproliferative Neoplasms (MPNs). Am. J. Clin. Pathol. 2016, 146, 408–422. [Google Scholar] [CrossRef]
- Shah, S.; Mudireddy, M.; Hanson, C.A.; Ketterling, R.P.; Gangat, N.; Pardanani, A.; Tefferi, A. Marked elevation of serum lactate dehydrogenase in primary myelofibrosis: Clinical and prognostic correlates. Blood Cancer J. 2017, 7, 657. [Google Scholar] [CrossRef] [Green Version]
- Rungjirajittranon, T.; Owattanapanich, W.; Ungprasert, P.; Siritanaratkul, N.; Ruchutrakool, T. A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms. BMC Cancer 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Aksit, M.; Bozkaya, G.; Uzuncan, N.; Bilgili, S.; Ozlu, C.; Aksit, M.Z. Relationship between JAK2-V617F mutation and hematologic parameters in Philadelphia-negative chronic myeloproliferative neoplasms. Turkish J. Biochem. 2020, 45, 899–905. [Google Scholar] [CrossRef]
- Chia, Y.C.; Ramli, M.; Woon, P.Y.; Johan, M.F.; Hassan, R.; Islam, M.A. Molecular genetics of thrombotic myeloproliferative neoplasms: Implications in precision oncology. Genes Dis. 2021. [Google Scholar] [CrossRef]
- Yap, Y.Y.; Law, K.B.; Sathar, J.; Lau, N.S.; Goh, A.S.; Chew, T.K.; Lim, S.M.; Menon, P.; Guan, Y.K.; Husin, A.B.; et al. The epidemiology and clinical characteristics of myeloproliferative neoplasms in Malaysia. Exp. Hematol. Oncol. 2018, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.; Ch, P.; Mitsidou, A. A sensitive detection method for MPLW515L or MPLW515K mutation in myeloproliferative disorders. Euro. J. Exp. Biol. 2014, 4, 33–36. [Google Scholar]
- Jeong, J.H.; Lee, H.T.; Seo, J.Y.; Seo, Y.H.; Kim, K.H.; Kim, M.J.; Lee, J.H.; Park, J.; Hong, J.S.; Park, P.W.; et al. Screening PCR versus sanger sequencing: Detection of CALR mutations in patients with thrombocytosis. Ann. Lab. Med. 2016, 36, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disease Subtype | ||||
---|---|---|---|---|
Characteristic | MPN (n = 159) | PV (n = 76) | ET (n = 41) | PMF (n = 42) |
Sex (M/F) | 89/70 | 49/27 | 19/22 | 21/21 |
Mean (SD) | ||||
Age at diagnosis | 57.18 (13.52) | 58.66 (13.90) | 53.98 (14.43) | 57.66 (11.49) |
Hb (g/dL) (Range) | 14.85 (3.79) | 17.26 (2.97) (7.7–23.4) | 13.54 (2.1) (9–18) | 11.68 (3.12) (6.5–20.2) |
Hct (%) | 46.95 (12.55) | 54.78 (10.14) | 41.74 (7.35) | 37.65 (10.67) |
WBC (×109/L) (Range) | 17.15 (14.02) | 17.22 (10) (4.02–55.57) | 15.02 (14.58) (7.18–97.7) | 17.16 (16.77) (2.7–76.4) |
Platelets (×109/L) (Range) | 645.82 (399.76) | 599.36 (375.4) (94–1752) | 901.29 (289.29) (305–1597) | 534.39 (446.3) (22–2035) |
Monocyte (×109/L) | 1.02 (1.44) | 0.78 (0.32) | 0.65 (0.34) | 1.25 (1.51) |
Basophil (×109/L) | 0.23 (0.55) | 0.24 (0.64) | 0.10 (0.08) | 0.31 (0.55) |
Eosinophil (×109/L) | 0.61 (1.69) | 0.50 (0.52) | 0.34 (0.26) | 0.58 (1.54) |
LDH (U/L) ULN > 400 | 867.45 (827.08) | 704.63 (406.24) | 624.07 (336.75) | 1141.7 (1331.01) |
Hepatomegaly * | 44 (27.7) | 17 (22.4) | 7 (17.0) | 20 (47.6) |
Splenomegaly * | 69 (43.4) | 28 (36.8) | 15 (36.6) | 26 (61.9) |
Thrombosis * | 65 (40.9) | 32 (42.1) | 15 (36.6) | 18 (42.9) |
Hemorrhage * | 2 (1.26) | 1 (1.31) | 1 (2.43) | 0 |
Transformed * | 6 (3.77) | 5 (6.57) | 1 (2.38) |
Characteristic | ET [n = 41 (%)] | PMF [n = 42 (%)] | PV [n = 76 (%)] |
---|---|---|---|
JAK2V617F | 29 (70.7) | 22 (52.3) | 66 (86.8) |
CALR exon 9+ | 3 (7.3) | 6 (14.3) | 0 |
MPL exon 10+ | 0 | 0 | 0 |
Triple negative | 9 (21.9) | 14 (33.4) | - |
Parameter | PV Mean (SD)/n (%) | ET Mean (SD)/n (%) | PMF Mean (SD)/n (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
JAK2V617F Positive n = 66 (a) | JAK2V617F Negative n = 10 | p-Value | JAK2V617F Positive n = 29 (b) | JAK2V617F Negative n = 12 | p-Value | JAK2V617F Positive n = 22 (c) | JAK2V617F Negative n = 20 | p-Value | p-Value (a vs. b) | p-Value (b vs. c) | p-Value (a vs. c) | |
† Gender, Male * | 40 (60.6) | 9 (90) | 0.087 | 12 (41.3) | 7 (58.3) | 0.322 | 8 (36.4) | 13 (65) | 0.064 | 0.117 | 0.778 | 0.778 |
‡ Age, years | 60.36 (13.49) | 47.40 (11.62) | 0.005 | 54.79 (12.77) | 52 (18.32) | 0.579 | 60.05 (10.59) | 55.45 (12.09) | 0.20 | 0.988 | 0.346 | 0.346 |
‡ Hb (g/dL) | 17.2 (3.15) | 17.7 (1.25) | 0.368 | 14.1 (2.0) | 12.2 (1.75) | 0.007 | 11.73 (3.7) | 11.54 (2.4) | 0.847 | 0.028 | 0.003 | 0.003 |
‡ HCT (%) | 55.06 (10.78) | 52.93 (3.62) | 0.231 | 43.53 (7.37) | 37.43 (5.42) | 0.14 | 36.64 (10.79) | 38.37 (10.74) | 0.607 | 0.033 | 0.054 | 0.054 |
‡ WBC (×109/L) | 18.5 (10.01) | 8.82 (3.76) | <0.001 | 16.71 (17.1) | 10.93 (1.75) | 0.253 | 20.86 (16.04) | 16.61 (17.69) | 0.42 | 0.02 | 0.672 | 0.672 |
‡ Platelets (×109/L) | 653.56 (373.15) | 241.6 (70.51) | <0.001 | 875.31 (290.3) | 964.1 (289.34) | 0.378 | 698.64 (467.57) | 426.2 (383.76) | 0.47 | 0.001 | 0.092 | 0.092 |
‡ Monocyte (×109/L) | 0.78 (0.34) | 0.76 (0.17) | 0.790 | 0.69 (0.37) | 0.57 (0.27) | 0.383 | 1.37 (1.13) | 1.42 (1.89) | 0.927 | 0.279 | 0.047 | 0.002 |
‡ Basophil (×109/L) | 0.27 (0.70) | 0.05 (0.02) | 0.347 | 0.11 (0.08) | 0.07 (0.05) | 0.154 | 0.41 (0.62) | 0.2 (0.44) | 0.256 | 0.07 | 0.054 | 0.448 |
‡ Eosinophil (×109/L) | 0.54 (0.56) | 0.28 (0.22) | 0.172 | 0.35 (0.21) | 0.34 (0.36) | 0.974 | 1.01 (2.03) | 0.17 (0.17) | 0.087 | 0.398 | 0.217 | 0.158 |
‡ LDH (U/L) ULN > 400 | 763.81 (370.73) | 670 (551.52) | 0.516 | 602.6 (267.3) | 66.8 (450.2) | 0.659 | 1162.37 (1087.03) | 1350.19 (1605.37) | 0.684 | 0.058 | 0.008 | 0.008 |
† Hepatomegaly * | 16 (24.2) | 1 (10) | 0.441 | 3 (10.3) | 4 (33.3) | 0.165 | 13 (59.1) | 7 (35) | 0.118 | 0.119 | 0.002 | <0.001 |
† Splenomegaly * | 25 (37.9) | 3 (30) | 0.737 | 10 (34.5) | 5 (41.7) | 0.73 | 17 (77.2) | 9 (45) | 0.31 | 0.752 | 0.484 | 0.002 |
† Thrombotic events, *
| 26 (39.4) 21 (80.8) 5 (19.2) | 6 (60) 6 (100) 0 | 0.306 | 12 (41.3) 11 (91.7) 1 (8.3) | 3 (25) 1 (33.3) 2 (66.7) | 0.48 | 7 (31.8) 5 (71.4) 2 (28.6) | 11 (55) 1 (9.1) 10 (90.9) | 0.129 | 0.856 | <0.001 | 0.484 |
† Transformed * | 5 (7.5) | 0 | 1 | 0 | 0 | - | 0 | 1 (Type 1) | 0.488 | - | - | - |
PMF; n = 42 | ET; n = 41 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables n(%) Median (Range) | JAK2V617F Mutation n = 22 (a) | CALR Mutation n = 6 (b) | Triple Negative n = 14 (c) | p-Value (a vs. b) | p-Value (b vs. c) | p-Value (a vs. c) | JAK2V617F Mutation n = 29 (a 1) | CALR Mutation n = 3 (b 1) | Triple Negative n = 9 (c 1) | p-Value (a 1 vs. b 1) | p-Value (b 1 vs. c 1) | p-Value (a 1 vs. c 1) |
1 Gender, Male * | 8 (36.4) | 2 (33.3) | 11 (78.6) | 1.0 | 0.122 | 0.013 | 12 (41.4) | 2 (66.7) | 5 (55.6) | 0.568 | 1.0 | 0.703 |
2 Age, years | 60 (43–79) | 61 (38–75) | 55 (32–73) | 0.779 | 0.457 | 0.177 | 51 (33–86) | 69 (41–81) | 52 (23–75) | 0.348 | 0.165 | 0.336 |
2 Hemoglobin, g/dL | 11.25 (6.5–20.20) | 11.25 (7.1–12.4) | 11.55 (7.4–16.5) | 0.695 | 0.264 | 0.537 | 14.4 (9–18) | 13.2 (9.1–14.4) | 11.8 (9.90–14.30) | 0.184 | 0.782 | 0.004 |
2 Hematocrit, % | 36.1 (18.8–60) | 36.05 (33–77. 0) | 36.55 (23.8 46.5) | 0.433 | 0.934 | 0.795 | 44.4 (18–54.6) | 39.3 (27.6–42.8) | 39.8 (30.1–43.5) | 0.065 | 0.782 | 0.003 |
2 WBC, ×109/L | 17.03 (3.6–76.4) | 14.69 (8.38–72.28) | 10.25 (2.65–61.09) | 0.654 | 0.161 | 0.035 | 11.7 (7.18–97.77) | 12.04 (9–13.89) | 10.43 (7.70–12.96) | 0.923 | 0.518 | 0.400 |
2 Platelets, n × 109/L | 639.5 (84–2035) | 723.5 (208–1532) | 254 (33–541) | 0.737 | 0.048 | 0.002 | 851 (305–1597) | 1051 (749–1129) | 1014 (472–1454) | 0.539 | 1.0 | 0.420 |
2 Monocyte ×109/L | 0.98 (0.29–3.99) | 1.39 (0.72–8.33) | 0.78 (0.28–1.22) | 0.126 | 0.012 | 0.196 | 0.58 (0.3–1.44) | 0.42 (0.32–0.61) | 0.68 (0.15–0.92) | 0.244 | 0.302 | 0.834 |
2 LDH, U/L ULN > 400 | 852 (397–4145) | 2071 (614–5842) | 530 (262–1355) | 0.056 | 0.009 | 0.060 | 534.5 (351–1459) | 616 (450–662) | 449.0 (354–1880) | 0.546 | 0.424 | 0.809 |
1 Splenomegaly * | 17 (77) | 4 (66.7) | 5 (35.7) | 0.622 | 0.336 | 0.013 | 10 (34.5) | 2 (66.7) | 3 (33.3) | 0.54 | 0.523 | 1.0 |
1 Liver * | 13 (59.1) | 2 (33.3) | 5 (35.7) | 0.372 | 1.0 | 0.171 | 3 (10.3) | 1 (33.3) | 3 (33.3) | 0.34 | 1.0 | 0.131 |
1 Thrombotic events * | 7 (31.8) | 0 | 11 (78.6) | 0.288 | 0.001 | 0.006 | 12 (41.4) | 1 (33.3) | 3 (33.3) | 1.0 | - | - |
1 Transformation * | 0 | 1 (Type 1) | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulkeflee, R.H.; Zulkafli, Z.; Johan, M.F.; Husin, A.; Islam, M.A.; Hassan, R. Clinical and Laboratory Features of JAK2 V617F, CALR, and MPL Mutations in Malaysian Patients with Classical Myeloproliferative Neoplasm (MPN). Int. J. Environ. Res. Public Health 2021, 18, 7582. https://doi.org/10.3390/ijerph18147582
Zulkeflee RH, Zulkafli Z, Johan MF, Husin A, Islam MA, Hassan R. Clinical and Laboratory Features of JAK2 V617F, CALR, and MPL Mutations in Malaysian Patients with Classical Myeloproliferative Neoplasm (MPN). International Journal of Environmental Research and Public Health. 2021; 18(14):7582. https://doi.org/10.3390/ijerph18147582
Chicago/Turabian StyleZulkeflee, Razan Hayati, Zefarina Zulkafli, Muhammad Farid Johan, Azlan Husin, Md Asiful Islam, and Rosline Hassan. 2021. "Clinical and Laboratory Features of JAK2 V617F, CALR, and MPL Mutations in Malaysian Patients with Classical Myeloproliferative Neoplasm (MPN)" International Journal of Environmental Research and Public Health 18, no. 14: 7582. https://doi.org/10.3390/ijerph18147582
APA StyleZulkeflee, R. H., Zulkafli, Z., Johan, M. F., Husin, A., Islam, M. A., & Hassan, R. (2021). Clinical and Laboratory Features of JAK2 V617F, CALR, and MPL Mutations in Malaysian Patients with Classical Myeloproliferative Neoplasm (MPN). International Journal of Environmental Research and Public Health, 18(14), 7582. https://doi.org/10.3390/ijerph18147582