An Investigation into Smartphone Addiction with Personality and Sleep Quality among University Students
Abstract
:1. Introduction
1.1. Personality and Smartphone Addiction
1.2. Smartphone Addiction and Sleep Quality
1.3. Smartphone Addiction and Gender
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.2.1. Chen’s Smartphone Addiction Inventory
2.2.2. Tri-Dimensional Personality Questionnaire (TPQ)
2.2.3. Chinese Version of the Pittsburgh Sleep Quality Index (CPSQI)
2.2.4. Statistical Analysis
3. Results
3.1. Prevalence of Smartphone Addiction
3.1.1. Comparisons between Smartphone Addiction and Non-Smartphone Addiction
3.1.2. Study of Gender Effects on the Associations among Smartphone Addiction, Personality, and Sleep Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Giedd, J.N. The digital revolution and adolescent brain evolution. J. Adolesc. Health 2012, 51, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Gemmill, E.L.; Peterson, M. Technology Use Among College Students: Implications for Student Affairs Professionals. NASPA J. 2006, 43, 280–300. [Google Scholar] [CrossRef] [Green Version]
- Alavi, S.S.; Maracy, M.R.; Jannatifard, F.; Eslami, M. The effect of psychiatric symptoms on the internet addiction disorder in Isfahan’s University students. J. Res. Med. Sci. 2011, 16, 793–800. [Google Scholar] [PubMed]
- Folaranmi, A. A Survey of Facebook Addiction Level among Selected Nigerian University Undergraduates. New Media Mass Commun. 2013, 10, 70–80. [Google Scholar]
- Kim, K.; Ryu, E.; Chon, M.-Y.; Yeun, E.-J.; Choi, S.-Y.; Seo, J.-S.; Nam, B.-W. Internet addiction in Korean adolescents and its relation to depression and suicidal ideation: A questionnaire survey. Int. J. Nurs. Stud. 2006, 43, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Shapira, N.A.; Goldsmith, T.D.; Keck, P.E., Jr.; Khosla, U.M.; McElroy, S.L. Psychiatric features of individuals with problematic internet use. J. Affect. Disord. 2000, 57, 267–272. [Google Scholar] [CrossRef]
- Andrew, O. The History and Evolution of the Smartphone: 1992–2018. 2018. Available online: https://www.textrequest.com/blog/history-evolution-smartphone/ (accessed on 15 July 2021).
- Amidtaher, M.; Saadatmand, S.; Moghadam, Z.; Fathi, G.; Afshar, R. The Relationship between Mobile Cellphone Dependency, Mental Health and Academic Achievement. Am. J. Educ. Res. 2016, 4, 408–411. [Google Scholar]
- Campbell, S.W.; Park, Y.J. Social Implications of Mobile Telephony: The Rise of Personal Communication Society. Sociol. Compass 2008, 2, 371–387. [Google Scholar] [CrossRef]
- Duke, E.; Montag, C. Smartphone addiction, daily interruptions and self-reported productivity. Addict. Behav. Rep. 2017, 6, 90–95. [Google Scholar] [CrossRef]
- Grant, J.E.; Lust, K.; Chamberlain, S.R. Problematic smartphone use associated with greater alcohol consumption, mental health issues, poorer academic performance, and impulsivity. J. Behav. Addict. 2019, 8, 335–342. [Google Scholar]
- De-Sola Gutiérrez, J.; Rodríguez de Fonseca, F.; Rubio, G. Cell-Phone Addiction: A Review. Front. Psychiatry 2016, 7, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- WHO. International Statistical Classification of Diseases and Related Health Problems; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Widyanto, L.; McMurran, M. The psychometric properties of the internet addiction test. Cyberpsychol. Behav. 2004, 7, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.S.; Ferdosi, M.; Jannatifard, F.; Eslami, M.; Alaghemandan, H.; Setare, M. Behavioral Addiction versus Substance Addiction: Correspondence of Psychiatric and Psychological Views. Int. J. Prev. Med. 2012, 3, 290–294. [Google Scholar] [PubMed]
- Lanaj, K.; Johnson, R.E.; Barnes, C.M. Beginning the workday yet already depleted? Consequences of late-night smartphone use and sleep. Organ. Behav. Hum. Decis. Process. 2014, 124, 11–23. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lin, Y.-C.; Lee, Y.-H.; Lin, P.-H.; Lin, S.-H.; Chang, L.-R.; Tseng, H.-W.; Yen, L.-Y.; Yang, C.C.H.; Kuo, T.B.J. Time distortion associated with smartphone addiction: Identifying smartphone addiction via a mobile application (App). J. Psychiatr. Res. 2015, 65, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Kardefelt-Winther, D.; Heeren, A.; Schimmenti, A.; van Rooij, A.; Maurage, P.; Carras, M.; Edman, J.; Blaszczynski, A.; Khazaal, Y.; Billieux, J. How can we conceptualize behavioural addiction without pathologizing common behaviours? Addiction 2017, 112, 1709–1715. [Google Scholar] [CrossRef]
- Hussain, Z.; Griffiths, M.D.; Sheffield, D. An investigation into problematic smartphone use: The role of narcissism, anxiety, and personality factors. J. Behav. Addict. 2017, 6, 378–386. [Google Scholar] [CrossRef] [Green Version]
- Monacis, L.; Griffiths, M.D.; Limone, P.; Sinatra, M.; Servidio, R. Selfitis Behavior: Assessing the Italian Version of the Selfitis Behavior Scale and Its Mediating Role in the Relationship of Dark Traits with Social Media Addiction. Int. J. Environ. Res. Public Health 2020, 17, 5738. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Griffiths, M.D.; Gjertsen, S.R.; Krossbakken, E.; Kvam, S.; Pallesen, S. The relationships between behavioral addictions and the five-factor model of personality. J. Behav. Addict. 2013, 2, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.F.; Cheng, S.H.; Yeh, T.L.; Shih, C.C.; Chen, K.C.; Yang, Y.C.; Yang, Y.K. The risk factors of Internet addiction—A survey of university freshmen. Psychiatry Res. 2009, 167, 294–299. [Google Scholar] [CrossRef]
- Erdem, C.; Uzun, A.M. Smartphone Addiction Among Undergraduates: Roles of Personality Traits and Demographic Factors. Technol. Knowl. Learn. 2020. [Google Scholar] [CrossRef]
- Peterka-Bonetta, J.; Sindermann, C.; Elhai, J.D.; Montag, C. Personality Associations with Smartphone and Internet Use Disorder: A Comparison Study Including Links to Impulsivity and Social Anxiety. Front. Public Health 2019, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Servidio, R.; Sinatra, M.; Griffiths, M.D.; Monacis, L. Social comparison orientation and fear of missing out as mediators between self-concept clarity and problematic smartphone use. Addict. Behav. 2021, 122, 107014. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.H.; Lee, Y.T.; Hsieh, S. Internet Interpersonal Connection Mediates the Association between Personality and Internet Addiction. Int. J. Environ. Res. Public Health 2019, 16, 3537. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lin, T.T.C. Smartphones at Work: A Qualitative Exploration of Psychological Antecedents and Impacts of Work-Related Smartphone Dependency. Int. J. Qual. Methods 2019, 18, 1609406918822240. [Google Scholar] [CrossRef] [Green Version]
- Sohn, S.Y.; Krasnoff, L.; Rees, P.; Kalk, N.J.; Carter, B. The Association between Smartphone Addiction and Sleep: A UK Cross-Sectional Study of Young Adults. Front. Psychiatry 2021, 12, 176. [Google Scholar] [CrossRef] [PubMed]
- Dworak, M.; Schierl, T.; Bruns, T.; Strüder, H.K. Impact of singular excessive computer game and television exposure on sleep patterns and memory performance of school-aged children. Pediatrics 2007, 120, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W.; Loughran, S.P.; Stough, C. Does evening exposure to mobile phone radiation affect subsequent melatonin production? Int. J. Radiat. Biol. 2006, 82, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Liu, F.; Ding, S.; Ying, X.; Wang, L.; Wen, Y. Gender differences in factors associated with smartphone addiction: A cross-sectional study among medical college students. BMC Psychiatry 2017, 17, 341. [Google Scholar] [CrossRef] [Green Version]
- Tangmunkongvorakul, A.; Musumari, P.M.; Tsubohara, Y.; Ayood, P.; Srithanaviboonchai, K.; Techasrivichien, T.; Suguimoto, S.P.; Ono-Kihara, M.; Kihara, M. Factors associated with smartphone addiction: A comparative study between Japanese and Thai high school students. PLoS ONE 2020, 15, e0238459. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, H.S. Gender Differences in Smartphone Addiction Behaviors Associated with Parent–Child Bonding, Parent–Child Communication, and Parental Mediation among Korean Elementary School Students. J. Addict. Nurs. 2018, 29, 244–254. [Google Scholar] [CrossRef]
- Taywade, A.; Khubalkar, R. Gender differences in smartphone usage patterns of adolescents. Int. J. Indian Psychol. 2019, 7, 509–515. [Google Scholar]
- Lee, S.Y.; Lee, D.; Nam, C.R.; Kim, D.Y.; Park, S.; Kwon, J.G.; Kweon, Y.S.; Lee, Y.; Kim, D.J.; Choi, J.S. Distinct patterns of Internet and smartphone-related problems among adolescents by gender: Latent class analysis. J. Behav. Addict. 2018, 7, 454–465. [Google Scholar] [CrossRef]
- Yang, W.; Morita, N.; Zuo, Z.; Kawaida, K.; Ogai, Y.; Saito, T.; Hu, W. Maladaptive Perfectionism and Internet Addiction among Chinese College Students: A Moderated Mediation Model of Depression and Gender. Int. J. Environ. Res. Public Health 2021, 18, 2748. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, P.; Hu, P. Trait Procrastination and Mobile Phone Addiction among Chinese College Students: A Moderated Mediation Model of Stress and Gender. Front. Psychol. 2020, 11, 3318. [Google Scholar] [CrossRef]
- Holden, C. ‘Behavioral’ addictions: Do they exist? Science 2001, 294, 980–982. [Google Scholar] [CrossRef]
- Roberts, J.A.; Yaya, L.H.P.; Manolis, C. The invisible addiction: Cell-phone activities and addiction among male and female college students. J. Behav. Addict. 2014, 3, 254–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloninger, C.R. A systematic method for clinical description and classification of personality variants: A proposal. Arch. Gen. Psychiatry 1987, 44, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Cloninger, C.R.; Przybeck, T.R.; Svrakic, D.M. The Tridimensional Personality Questionnaire: U.S. normative data. Psychol. Rep. 1991, 69, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.A. Personality traits, problems, and disorders: Clinical applications to substance use disorders. J. Res. Personal. 2005, 39, 84–102. [Google Scholar] [CrossRef]
- Goudriaan, A.E.; Oosterlaan, J.; de Beurs, E.; Van den Brink, W. Pathological gambling: A comprehensive review of biobehavioral findings. Neurosci. Biobehav. Rev. 2004, 28, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.H.; Yen, J.Y.; Chen, C.C.; Chen, S.H.; Wu, K.; Yen, C.F. Tridimensional personality of adolescents with internet addiction and substance use experience. Can. J. Psychiatry 2006, 51, 887–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanafi, E.; Siste, K.; Wiguna, T.; Kusumadewi, I.; Nasrun, M.W. Temperament profile and its association with the vulnerability to smartphone addiction of medical students in Indonesia. PLoS ONE 2019, 14, e0212244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monti, J.M.; Monti, D. The involvement of dopamine in the modulation of sleep and waking. Sleep Med. Rev. 2007, 11, 113–133. [Google Scholar] [CrossRef] [PubMed]
- Ursin, R. Serotonin and sleep. Sleep Med. Rev. 2002, 6, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.T.; Steer, R.A. Internal consistencies of the original and revised Beck Depression Inventory. J. Clin. Psychol. 1984, 40, 1365–1367. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Ball, R.; Ranieri, W. Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. J. Personal. Assess. 1996, 67, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-L.; Che, H.H.W.; Chang, S.; Shen, W.W. Reliability and Validity of the Chinese Version of the Beck Depression Inventory-II. Taiwan J. Psychiatry 2002, 16, 301–310. [Google Scholar]
- Che, H.-H.; Lu, M.-L.; Chen, H.-C.; Chang, S.-W.; Lee, Y.-J. Translated title of the contribution: Validation of the Chinese Version of the Beck Anxiety Inventory. J. Med. 2006, 10, 447–454. [Google Scholar]
- Matar Boumosleh, J.; Jaalouk, D. Depression, anxiety, and smartphone addiction in university students—A cross sectional study. PLoS ONE 2017, 12, e0182239. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, M. The assessment of anxiety states by rating. Br. J. Med. Psychol. 1959, 32, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, A.G. Review of State-Trait Anxiety Inventory. Prof. Psychol. 1972, 3, 389–390. [Google Scholar] [CrossRef]
- Shek, D.T. The Chinese version of the State-Trait Anxiety Inventory: Its relationship to different measures of psychological well-being. J. Clin. Psychol. 1993, 49, 349–358. [Google Scholar] [CrossRef]
- Shek, D.T.L. Reliability and factorial structure of the Chinese version of the State-Trait Anxiety Inventory. J. Psychopathol. Behav. Assess. 1988, 10, 303–317. [Google Scholar] [CrossRef]
- Franzoi, I.G.; Sauta, M.D.; Granieri, A. State and Trait Anxiety among University Students: A Moderated Mediation Model of Negative Affectivity, Alexithymia, and Housing Conditions. Front. Psychol. 2020, 11, 1255. [Google Scholar] [CrossRef]
- Xie, W.; Karan, K. Predicting Facebook addiction and state anxiety without Facebook by gender, trait anxiety, Facebook intensity, and different Facebook activities. J. Behav. Addict. 2019, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Chang, L.R.; Lee, Y.H.; Tseng, H.W.; Kuo, T.B.; Chen, S.H. Development and validation of the Smartphone Addiction Inventory (SPAI). PLoS ONE 2014, 9, e98312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.H.; Pan, Y.C.; Lin, S.H.; Chen, S.H. Development of short-form and screening cutoff point of the Smartphone Addiction Inventory (SPAI-SF). Int. J. Methods Psychiatr. Res. 2017, 26, e1525. [Google Scholar] [CrossRef]
- Chen, W.J.; Chen, H.-M.; Chen, C.-C.; Chen, C.-C.; Yu, W.-Y.; Cheng, A.T. Cloninger’s Tridimensional Personality Questionnaire: Psychometric properties and construct validity in Taiwanese adults. Compr. Psychiatry 2002, 43, 158–166. [Google Scholar] [CrossRef]
- Tsai, P.S.; Wang, S.Y.; Wang, M.Y.; Su, C.T.; Yang, T.T.; Huang, C.J.; Fang, S.C. Psychometric evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects. Qual. Life Res. 2005, 14, 1943–1952. [Google Scholar] [CrossRef]
- Cheng, S.H.; Shih, C.C.; Lee, I.H.; Hou, Y.W.; Chen, K.C.; Chen, K.T.; Yang, Y.K.; Yang, Y.C. A study on the sleep quality of incoming university students. Psychiatry Res. 2012, 197, 270–274. [Google Scholar] [CrossRef]
- Guo, S.; Sun, W.; Liu, C.; Wu, S. Structural Validity of the Pittsburgh Sleep Quality Index in Chinese Undergraduate Students. Front. Psychol. 2016, 7, 1126. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, Y.Y.; Wang, S.B.; Zhang, L.; Li, L.; Xu, D.D.; Ng, C.H.; Ungvari, G.S.; Cui, X.; Liu, Z.M.; et al. Prevalence of sleep disturbances in Chinese university students: A comprehensive meta-analysis. J. Sleep Res. 2018, 27, e12648. [Google Scholar] [CrossRef]
- Lee, H.W.; Choi, J.S.; Shin, Y.C.; Lee, J.Y.; Jung, H.Y.; Kwon, J.S. Impulsivity in internet addiction: A comparison with pathological gambling. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Robbins, T.W.; Gillan, C.M.; Smith, D.G.; de Wit, S.; Ersche, K.D. Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends Cogn. Sci. 2012, 16, 81–91. [Google Scholar] [CrossRef]
- Yucens, B.; Uzer, A. The relationship between internet addiction, social anxiety, impulsivity, self-esteem, and depression in a sample of Turkish undergraduate medical students. Psychiatry Res. 2018, 267, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Kuss, D.J.; Kanjo, E.; Crook-Rumsey, M.; Kibowski, F.; Wang, G.Y.; Sumich, A. Problematic Mobile Phone Use and Addiction Across Generations: The Roles of Psychopathological Symptoms and Smartphone Use. J. Technol. Behav. Sci. 2018, 3, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Perreta, C.; Pérez, C.; Portolés, M.; Salom, R. Tridimensional theory of personality: Applications to substance abuse disorders. Actas Esp. Psiquiatr. 2001, 29, 143–147. [Google Scholar] [PubMed]
- Kim, Y.; Jeong, J.-E.; Cho, H.; Jung, D.-J.; Kwak, M.; Rho, M.J.; Yu, H.; Kim, D.-J.; Choi, I.Y. Personality Factors Predicting Smartphone Addiction Predisposition: Behavioral Inhibition and Activation Systems, Impulsivity, and Self-Control. PLoS ONE 2016, 11, e0159788. [Google Scholar] [CrossRef]
- Moattari, M.; Moattari, F.; Kaka, G.; Kouchesfahani, H.M.; Sadraie, S.H.; Naghdi, M. Smartphone Addiction, Sleep Quality and Mechanism. Int. J. Cogn. Behav. 2017, 1. [Google Scholar]
Non-SPA (n = 163) | SPA (n = 259) | Statistics (p) | |||
---|---|---|---|---|---|
Mean | S.D | Mean | S.D | ||
Age | 21.03 | 1.35 | 20.81 | 1.41 | |
Gender (Male/Female) | 34/129 | 46/213 | 0.80 (0.37) | ||
BDI | 10.50 | 8.30 | 8.31 | 7.68 | 1.13 (0.29 |
BAI | 8.50 | 6.15 | 7.08 | 6.42 | 0.75 (0.39) |
STAI_state | 41.42 | 5.95 | 40.04 | 10.73 | 1.93 (0.17) |
STAI_trait | 37.93 | 19.43 | 37.90 | 14.77 | -- |
TPQ | |||||
Novelty Seeking_sum | 16.80 | 4.03 | 15.78 | 3.93 | 6.90 (0.009) |
Exploratory excitability | 2.84 | 1.23 | 2.71 | 1.28 | 1.13 (0.29) |
Impulsivity | 6.27 | 2.02 | 0.74 | 1.89 | 7.53 (0.006) |
Extravagance | 3.89 | 1.60 | 3.85 | 1.63 | 0.07 (0.79) |
Disorderliness | 1.56 | 1.18 | 1.22 | 1.12 | 9.12 (0.003) |
Harm Avoidance_sum | 14.3 | 1.92 | 12.92 | 4.47 | 10.72 (0.001) |
Anticipatory worry | 4.67 | 1.92 | 4.42 | 1.74 | 2.02 (0.16) |
Fear of uncertainty | 2.73 | 1.41 | 2.12 | 1.38 | 19.08 (<0.0005) |
Shyness | 2.67 | 1.26 | 2.33 | 1.36 | 6.46 (0.01) |
Fatigability and asthenia | 4.26 | 1.74 | 4.05 | 1.85 | 1.45 (0.23) |
CPSQI | |||||
C1—subjective sleep quality | 1.26 | 0.73 | 1.09 | 0.70 | 6.11 (0.01) |
C2—sleep latency | 1.75 | 0.97 | 1.59 | 0.89 | 3.31 (0.07) |
C3—sleep duration | 2.61 | 0.98 | 2.58 | 1.01 | 0.08 (0.78) |
C4—sleep efficiency | 2.71 | 0.85 | 2.64 | 0.92 | 1.59 (0.44) |
C5—sleep disturbance | 1.22 | 0.71 | 1.08 | 0.67 | 3.92 (0.048) |
C6—use of sleep medicine | 0.25 | 0.59 | 0.25 | 0.60 | -- |
C7—daytime dysfunction | 1.15 | 0.77 | 0.90 | 0.69 | 12.49 (<0.0005) |
Mean | S.D | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | 13. | 14. | 15. | 16. | 17. | 18. | 19. | 20. | 21. | 22. | 23. | 24. | 25. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | 60.21 | 13.54 | -- | ||||||||||||||||||||||||
2. | 20.44 | 4.96 | 0.94 *** | -- | |||||||||||||||||||||||
3. | 14.91 | 3.51 | 0.90 *** | 0.82 *** | -- | ||||||||||||||||||||||
4. | 7.20 | 1.87 | 0.78 *** | 0.66 *** | 0.65 *** | -- | |||||||||||||||||||||
5. | 17.66 | 4.59 | 0.92 *** | 0.81 *** | 0.74 *** | 0.68 *** | -- | ||||||||||||||||||||
6. | 9.14 | 7.93 | 0.22 | 0.27 * | 0.07 | 0.07 | 0.24 | -- | |||||||||||||||||||
7. | 7.62 | 6.31 | 0.24 | 0.26 * | 0.16 | −0.02 | 0.74 *** | 0.74 *** | -- | ||||||||||||||||||
8. | 16.18 | 4.00 | 0.17 ** | 0.16 * | 0.14 * | 0.15 * | 0.16 ** | −0.11 | −0.20 | -- | |||||||||||||||||
9. | 2.76 | 1.26 | 0.08 | 0.07 | 0.08 | 0.05 | 0.07 | −0.02 | −0.16 | 0.56 *** | -- | ||||||||||||||||
10. | 5.94 | 1.96 | 0.19 *** | 0.20 *** | 0.20 *** | 0.09 | 0.16 ** | −0.20 | −0.22 | 0.73 *** | 0.28 *** | -- | |||||||||||||||
11. | 3.86 | 1.62 | 0.06 | 0.04 | 0.03 | 0.09 | 0.07 | −0.17 | −0.18 | 0.63 *** | 0.08 | 0.27 *** | -- | ||||||||||||||
12. | 1.35 | 1.15 | 0.11 * | 10.0 * | 0.00 | 0.14 * | 0.14 * | 0.16 | 0.11 | 0.48 *** | 0.13 * | 0.14 *** | 0.21 *** | -- | |||||||||||||
13. | 13.47 | 4.38 | 0.15 * | 0.14 * | 0.13 * | 0.14 * | 0.12 * | −0.43 *** | −0.34 * | 0.36 *** | 0.22 *** | 0.33 *** | 0.17 *** | 0.18 *** | -- | ||||||||||||
14. | 4.52 | 1.82 | 0.20 | 0.02 | 0.10 | 0.07 | 0.00 | −0.45 *** | −0.37 * | 0.29 *** | 0.18 *** | 0.17 ** | 0.21 *** | 0.12 * | 0.72 *** | -- | |||||||||||
15. | 2.36 | 1.42 | 0.16 ** | 0.16 * | 0.16 ** | 0.11 * | 0.13 * | −0.10 | 0.01 | 0.29 *** | 0.16 * | 0.30 *** | 0.12 * | 0.19 *** | 0.61 *** | 0.20 *** | -- | ||||||||||
16. | 2.46 | 1.33 | 0.12 * | 0.12 * | 0.15 * | 0.13 * | 0.15 * | −0.32 * | −0.22 | 0.19 *** | 0.14 * | 0.25 *** | 0.02 | 0.04 | 0.64 *** | 0.26 *** | 0.31 *** | -- | |||||||||
17. | 4.13 | 1.81 | 0.11 * | 0.11 * | 0.08 | 0.09 | 0.08 | −0.43 *** | −0.36 * | 0.21 *** | 0.13 * | 0.20 *** | 0.10 * | 0.14 * | 0.76 *** | 0.39 *** | 0.27 *** | 0.32 *** | -- | ||||||||
18. | 9.32 | 2.02 | 0.21 *** | 0.21 *** | 0.22 *** | 0.10 * | 0.21 *** | 0.41 ** | 0.31 * | −0.03 | 0.00 | 0.07 | −0.08 | −0.10 * | −0.04 | −0.16 * | 0.08 | 0.06 | −0.05 | -- | |||||||
19. | 1.16 | 0.71 | 0.14 * | 0.14 * | 0.11 * | 0.10 * | 0.14 * | 0.54 *** | 0.36 * | −0.02 | −0.15 * | −0.00 | 0.02 | 0.09 | −0.04 | −0.06 | 0.02 | −0.01 | −0.04 | 0.49 *** | -- | ||||||
20. | 1.65 | 0.92 | 1.0 * | 10.0 * | 0.08 | 0.16 ** | 0.11 * | 0.26 * | 0.25 * | 0.03 | −0.09 | −0.01 | 0.07 | 0.16 ** | 0.06 | −0.06 | 0.12 * | 0.01 | 0.11 * | 0.45 *** | 0.33 *** | -- | |||||
21. | 2.59 | 1.00 | 0.04 | 0.04 | 10.0 * | −0.10 * | −0.00 | −0.06 | −0.22 | −0.03 | 0.15 * | 0.10 * | −0.14 * | −0.31 *** | −0.06 | −0.07 | −0.02 | 0.11 * | −0.13 * | 0.50 *** | −0.12 * | −0.13 *** | -- | ||||
22. | 2.66 | 0.89 | 0.06 | 0.06 | 0.09 | −0.07 | 0.04 | 0.09 | 0.07 | −0.08 | 0.15 * | 0.05 | −0.17 *** | −0.33 *** | −10.0 * | −0.11 * | −0.04 | 0.06 | −0.14 * | 0.55 *** | −0.12 * | −0.21 *** | 0.85 *** | -- | |||
23. | 1.14 | 0.69 | 0.16 * | 0.15 * | 0.19 *** | 0.07 | 0.14 * | −0.11 | −0.11 | 0.06 | 0.03 | 0.05 | 0.05 | −0.06 | 0.02 | 0.01 | 0.03 | 0.08 | −0.04 | 0.48 *** | 0.21 *** | −0.02 | 0.48 *** | 0.36 *** | -- | ||
24. | 0.25 | 0.60 | −0.06 | −0.08 | −0.13 * | 0.05 | −0.03 | −0.18 | −0.11 | 0.05 | −0.12 * | −0.08 | 0.18 *** | 0.30 *** | 0.08 | 0.09 | 0.03 | −0.06 | 0.13 * | −0.30 *** | 0.08 | 0.24 *** | −0.74 *** | −0.73 *** | −0.30 *** | -- | |
25. | 1.00 | 0.73 | 0.24 *** | 0.23 *** | 0.23 *** | 0.15 * | 0.24 *** | 0.28 * | 0.32 * | 0.00 | −0.01 | 0.08 | −0.07 | 0.02 | −0.02 | −0.13 * | 0.14 * | −0.01 | −0.01 | 0.59 *** | 0.22 *** | 0.14 * | 0.15 * | 0.12 * | 0.31 *** | −0.11 * | -- |
Variables/CPSQI_Total | Model 1 | F (p) | Model 2 | F (p) | Model 3 | F (p) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SEB | β | B | SEB | β | B | SEB | β | ||||
SPAI_with. | 0.13 | 0.03 | 0.22 | 21.62 (<0.0005) | 0.13 | 0.03 | 0.22 | 16.85 (<0.0005) | 0.12 | 0.03 | 0.05 | 13.01 (<0.0005) |
HA_anti. | −0.18 | 0.05 | −0.16 | −0.19 | 0.05 | −0.17 | ||||||
age | 0.16 | 0.05 | 0.07 |
Non-SPA (n = 129) | SPA (n = 214) | Statistics (p) | |||
---|---|---|---|---|---|
Mean | S.D | Mean | S.D | ||
Age | 20.81 | 1.40 | 21.02 | 1.38 | 1.92 (0.17) |
BDI | 8.44 | 8.00 | 10.90 | 8.78 | 1.14 (0.29) |
BAI | 7.24 | 6.71 | 8.95 | 6.45 | 0.88 (0.35) |
STAI_state | 39.26 | 9.54 | 40.59 | 5.48 | 1.77 (0.18) |
STAI_trait | 42.44 | 6.91 | 42.45 | 16.06 | 0.003 (0.96) |
TPQ | |||||
Novelty Seeking_sum | 15.61 | 3.93 | 16.78 | 3.97 | 7.05 (0.008) |
Exploratory excitability | 2.63 | 1.26 | 2.79 | 1.14 | 1.48 (0.23) |
Impulsivity | 5.69 | 1.87 | 6.30 | 2.03 | 8.07 (0.005) |
Extravagance | 3.86 | 1.64 | 3.92 | 1.66 | 0.10 (0.75) |
Disorderliness | 1.19 | 1.09 | 1.5 | 1.17 | 8.31 (0.004) |
Harm Avoidance_sum | 12.87 | 4.45 | 13.93 | 3.98 | 4.91 (0.03) |
Anticipatory worry | 4.34 | 1.72 | 4.47 | 1.88 | 0.47 (0.49) |
Fear of uncertainty | 2.16 | 1.37 | 2.67 | 1.42 | 11.14 (0.001) |
Shyness | 2.33 | 1.31 | 2.60 | 1.24 | 3.55 (0.06) |
Fatigability and asthenia | 4.05 | 1.85 | 4.19 | 1.76 | 0.44 (0.51) |
CPSQI | |||||
C1—subjective sleep quality | 1.10 | 0.70 | 1.27 | 0.72 | 4.61 (0.03) |
C2—sleep latency | 1.63 | 0.89 | 1.79 | 0.93 | 2.49 (0.12) |
C3—sleep duration | 2.54 | 1.06 | 2.57 | 1.01 | 2.49 (0.12) |
C4—sleep efficiency | 2.61 | 0.96 | 2.65 | 0.91 | 0.14 (0.71) |
C5—sleep disturbance | 1.11 | 0.68 | 1.22 | 0.70 | 2.15 (0.14) |
C6—use of sleep medicine | 0.25 | 0.61 | 0.28 | 0.64 | 0.15 (0.70) |
C7—daytime dysfunction | 0.93 | 0.68 | 1.20 | 0.76 | 12.07 (0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lane, H.-Y.; Chang, C.-J.; Huang, C.-L.; Chang, Y.-H. An Investigation into Smartphone Addiction with Personality and Sleep Quality among University Students. Int. J. Environ. Res. Public Health 2021, 18, 7588. https://doi.org/10.3390/ijerph18147588
Lane H-Y, Chang C-J, Huang C-L, Chang Y-H. An Investigation into Smartphone Addiction with Personality and Sleep Quality among University Students. International Journal of Environmental Research and Public Health. 2021; 18(14):7588. https://doi.org/10.3390/ijerph18147588
Chicago/Turabian StyleLane, Hsien-Yuan, Chin-Jui Chang, Chieh-Liang Huang, and Yun-Hsuan Chang. 2021. "An Investigation into Smartphone Addiction with Personality and Sleep Quality among University Students" International Journal of Environmental Research and Public Health 18, no. 14: 7588. https://doi.org/10.3390/ijerph18147588
APA StyleLane, H. -Y., Chang, C. -J., Huang, C. -L., & Chang, Y. -H. (2021). An Investigation into Smartphone Addiction with Personality and Sleep Quality among University Students. International Journal of Environmental Research and Public Health, 18(14), 7588. https://doi.org/10.3390/ijerph18147588