It’s the Content That Counts: Longitudinal Associations between Social Media Use, Parental Monitoring, and Alcohol Use in an Australian Sample of Adolescents Aged 13 to 16 Years
Abstract
:1. Introduction
Aims of the Present Study
- (1)
- Concurrent associations between social media time, content exposure, and frequency of alcohol use at age 13.
- (2)
- Whether content exposure moderated the association between social media time and frequency of alcohol use at age 13.
- (3)
- Longitudinal associations between social media use (time and content exposure) at age 13, and frequency of alcohol use over time (up to age 16).
- (4)
- Whether adolescent perception of parental monitoring of social media use at age 13 served to moderate any of the aforementioned relationships.
2. Methods
2.1. Participants and Procedure
2.2. Measures
2.3. Covariates
2.4. Missing Data
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Cross-Sectional Results
3.3. Longitudinal Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griswold, M.G.; Fullman, N.; Hawley, C.; Arian, N.; Zimsen, S.R.M.; Tymeson, H.D.; Venkateswaran, V.; Tapp, A.D.; Forouzanfar, M.H.; Salama, J.S.; et al. Alcohol Use and Burden for 195 Countries and Territories, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef] [Green Version]
- Gore, F.M.; Bloem, P.J.; Patton, G.C.; Ferguson, J.; Joseph, V.; Coffey, C.; Sawyer, S.M.; Mathers, C.D. Global Burden of Disease in Young People Aged 10–24 Years: A Systematic Analysis. Lancet 2011, 377, 2093–2102. [Google Scholar] [CrossRef]
- Schuckit, M.A. Alcohol-Use Disorders. Lancet 2009, 373, 492–501. [Google Scholar] [CrossRef]
- Rehm, J.; Gmel, G.E.; Gmel, G.; Hasan, O.S.M.; Imtiaz, S.; Popova, S.; Probst, C.; Roerecke, M.; Room, R.; Samokhvalov, A.V.; et al. The Relationship between Different Dimensions of Alcohol Use and the Burden of Disease—An Update. Addiction 2017, 112, 968–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Government Department of Health. Alcohol Laws in Australia; Australian Government Department of Health: Canberra, Australia, 2019.
- Australian Institute of Health and Welfare. National Drug Strategy Household Survey 2019; Australian Institute of Health and Welfare: Canberra, Australia, 2020. [CrossRef]
- Guo, J.; Hawkins, J.D.; Hill, K.G.; Abbott, R.D. Childhood and Adolescent Predictors of Alcohol Abuse and Dependence in Young Adulthood. J. Stud. Alcohol 2001, 62, 754–762. [Google Scholar] [CrossRef] [Green Version]
- Hingson, R.W.; Heeren, T.; Winter, M.R. Age at Drinking Onset and Alcohol Dependence: Age at Onset, Duration, and Severity. Arch. Pediatr. Adolesc. Med. 2006, 160, 739–746. [Google Scholar] [CrossRef] [Green Version]
- McGue, M.; Iacono, W.G. The Association of Early Adolescent Problem Behavior with Adult Psychopathology. Am. J. Psychiatry 2005, 162, 1118–1124. [Google Scholar] [CrossRef]
- Moreno, M.A.; Whitehill, J.M. Influence of Social Media on Alcohol Use in Adolescents and Young Adults. ARCR 2014, 36, 91–100. [Google Scholar]
- Moreno, M.A.; D’Angelo, J.; Whitehill, J. Social Media and Alcohol: Summary of Research, Intervention Ideas and Future Study Directions. Media Commun. 2016, 4, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Australian Psychological Society. Digital Me: A Survey Exploring the Effect of Social Media and Digital Technology on Australians’ Wellbeing; APS: Melbourne, VIC, Australia, 2017. [Google Scholar]
- Australian Communications and Media Authority. Like, Post, Share: Young Australians’ Experience of Social Media; ACMA: Canberra, Australia, 2013.
- eSafety Commissioner. The Digital Lives of Aussie Teens; Australian Government: Canberra, Australia, 2021.
- Orben, A.; Przybylski, A.K. The Association between Adolescent Well-Being and Digital Technology Use. Nat. Hum. Behav. 2019, 3, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Brunborg, G.S.; Andreas, J.B.; Kvaavik, E. Social Media Use and Episodic Heavy Drinking among Adolescents. Psychol. Rep. 2017, 120, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, K.M.; Cooper, T.V. The Use of Social Networking Sites: A Risk Factor for Using Alcohol, Marijuana, and Synthetic Cannabinoids? Drug Alcohol Depend. 2016, 163, 247–250. [Google Scholar] [CrossRef]
- Boers, E.; Afzali, M.H.; Newton, N.; Conrod, P. Association of Screen Time and Depression in Adolescence. JAMA Pediatr. 2019. [Google Scholar] [CrossRef]
- Odgers, C.L.; Jensen, M.R. Annual Research Review: Adolescent Mental Health in the Digital Age: Facts, Fears, and Future Directions. J. Child Psychol. Psychiatr. 2020, 61, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Orben, A. Teenagers, Screens and Social Media: A Narrative Review of Reviews and Key Studies. Soc. Psychiatry Psychiatr. Epidemiol. 2020, 55, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Werner-Seidler, A.; Torok, M.; Mackinnon, A.J.; Christensen, H. The Relationship between Screen Time and Mental Health in Young People: A Systematic Review of Longitudinal Studies. Clin. Psychol. Rev. 2021, 86, 102021. [Google Scholar] [CrossRef]
- Huang, G.C.; Unger, J.B.; Soto, D.; Fujimoto, K.; Pentz, M.A.; Jordan-Marsh, M.; Valente, T.W. Peer Influences: The Impact of Online and Offline Friendship Networks on Adolescent Smoking and Alcohol Use. J. Adolesc. Health 2014, 54, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Rimal, R.N.; Real, K. Understanding the Influence of Perceived Norms on Behaviors. Commun. Theory 2003, 13, 184–203. [Google Scholar] [CrossRef]
- Beullens, K.; Schepers, A. Display of Alcohol Use on Facebook: A Content Analysis. Cyberpsychol. Behav. Social Netw. 2013, 16, 497–503. [Google Scholar] [CrossRef]
- Hendriks, H.; Van den Putte, B.; Gebhardt, W.A.; Moreno, M.A. Social Drinking on Social Media: Content Analysis of the Social Aspects of Alcohol-Related Posts on Facebook and Instagram. J. Med. Internet Res. 2018, 20, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.A.; Parks, M.R.; Zimmerman, F.J.; Brito, T.E.; Christakis, D.A. Display of Health Risk Behaviors on Myspace by Adolescents: Prevalence and Associations. Arch. Pediatr. Adolesc. Med. 2009, 163, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Litt, D.M.; Stock, M.L. Adolescent Alcohol-Related Risk Cognitions: The Roles of Social Norms and Social Networking Sites. Psychol. Addict. Behav. 2011, 25, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Ridout, B. Facebook, Social Media and Its Application to Problem Drinking among College Students. Curr. Opin. Psychol. 2016, 9, 83–87. [Google Scholar] [CrossRef]
- Moreno, M.A.; Briner, L.R.; Williams, A.; Walker, L.; Christakis, D.A. Real Use or “Real Cool”: Adolescents Speak out about Displayed Alcohol References on Social Networking Websites. J. Adolesc. Health 2009, 45, 420–422. [Google Scholar] [CrossRef]
- Gentile, D.A.; Nathanson, A.I.; Rasmussen, E.E.; Reimer, R.A.; Walsh, D.A. Do You See What I See? Parent and Child Reports of Parental Monitoring of Media. Fam. Relat. 2012, 61, 470–487. [Google Scholar] [CrossRef]
- Gentile, D.A.; Reimer, R.A.; Nathanson, A.I.; Walsh, D.A.; Eisenmann, J.C. Protective Effects of Parental Monitoring of Children’s Media Use: A Prospective Study. JAMA Pediatr. 2014, 168, 479. [Google Scholar] [CrossRef] [PubMed]
- Khurana, A.; Bleakley, A.; Jordan, A.B.; Romer, D. The Protective Effects of Parental Monitoring and Internet Restriction on Adolescents’ Risk of Online Harassment. J. Youth Adolesc. 2015, 44, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Fikkers, K.M.; Piotrowski, J.T.; Valkenburg, P.M. A Matter of Style? Exploring the Effects of Parental Mediation Styles on Early Adolescents’ Media Violence Exposure and Aggression. Comput. Hum. Behav. 2017, 70, 407–415. [Google Scholar] [CrossRef]
- Padilla-Walker, L.M.; Coyne, S.M.; Kroff, S.L.; Memmott-Elison, M.K. The Protective Role of Parental Media Monitoring Style from Early to Late Adolescence. J. Youth Adolesc. 2018, 47, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Nikken, P.; Jansz, J. Parental Mediation of Children’s Videogame Playing: A Comparison of the Reports by Parents and Children. Learn. Media Technol. 2006, 31, 181–202. [Google Scholar] [CrossRef]
- Newton, N.C.; Teesson, M.; Barrett, E.L.; Slade, T.; Conrod, P.J. The CAP Study, Evaluation of Integrated Universal and Selective Prevention Strategies for Youth Alcohol Misuse: Study Protocol of a Cluster Randomized Controlled Trial. BMC Psychiatry 2012, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- CASA Columbia. National Survey of American Attitudes on Substance Abuse XVII: Teens; The National Center on Addiction and Substance Abuse at Columbia University: New York, NY, USA, 2012. [Google Scholar]
- Australian Institute of Health and Welfare. National Drug Strategy Household Survey 2016 Detailed Findings; Drug Statistic Series No. 31; AIHW: Canberra, Australia, 2017.
- Guerin, N.; White, V. ASSAD 2017 Statistics & Trends: Australian Secondary Students’ Use of Tobacco, Alcohol, Over-the-Counter Drugs, and Illicit Substances; Cancer Council Victoria: Melbourne, VIC, Australia, 2018. [Google Scholar]
- Barker, V. Older Adolescents’ Motivations for Social Network Site Use: The Influence of Gender, Group Identity, and Collective Self-Esteem. Cyber Psychol. Behav. 2009, 12, 209–213. [Google Scholar] [CrossRef]
- Ehrenreich, S.E.; Underwood, M.K. Adolescents’ Internalizing Symptoms as Predictors of the Content of Their Facebook Communication and Responses Received from Peers. Transl. Issues Psychol. Sci. 2016, 2, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Ryan, N.; Conrod, P. Personality and Substance Misuse: Evidence for a Four-Factor Model of Vulnerability. In Drug Abuse and Addiction in Medical Illness; Verster, J.C., Brady, K., Galanter, M., Conrod, P., Eds.; Springer New York: New York, NY, USA, 2012; pp. 47–62. ISBN 978-1-4614-3374-3. [Google Scholar]
- Castellanos-Ryan, N.; O’Leary-Barrett, M.; Sully, L.; Conrod, P. Sensitivity and Specificity of a Brief Personality Screening Instrument in Predicting Future Substance Use, Emotional, and Behavioral Problems: 18-Month Predictive Validity of the Substance Use Risk Profile Scale. Alcohol. Clin. Exp. Res. 2013, 37, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Barry, C.T.; Sidoti, C.L.; Briggs, S.M.; Reiter, S.R.; Lindsey, R.A. Adolescent Social Media Use and Mental Health from Adolescent and Parent Perspectives. J. Adolesc. 2017, 61, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Woods, H.C.; Scott, H. #Sleepyteens: Social Media Use in Adolescence Is Associated with Poor Sleep Quality, Anxiety, Depression and Low Self-Esteem. J. Adolesc. 2016, 51, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Woicik, P.A.; Stewart, S.H.; Pihl, R.O.; Conrod, P.J. The Substance Use Risk Profile Scale: A Scale Measuring Traits Linked to Reinforcement-Specific Substance Use Profiles. Addict. Behav. 2009, 34, 1042–1055. [Google Scholar] [CrossRef]
- Krank, M.; Stewart, S.H.; O’Connor, R.; Woicik, P.B.; Wall, A.-M.; Conrod, P.J. Structural, Concurrent, and Predictive Validity of the Substance Use Risk Profile Scale in Early Adolescence. Addict. Behav. 2011, 36, 37–46. [Google Scholar] [CrossRef]
- Lammers, J.; Kuntsche, E.; Engels, R.C.M.E.; Wiers, R.W.; Kleinjan, M. Mediational Relations of Substance Use Risk Profiles, Alcohol-Related Outcomes, and Drinking Motives among Young Adolescents in the Netherlands. Drug Alcohol Depend. 2013, 133, 571–579. [Google Scholar] [CrossRef]
- Malmberg, M.; Overbeek, G.; Monshouwer, K.; Lammers, J.; Vollebergh, W.A.M.; Engels, R.C.M.E. Substance Use Risk Profiles and Associations with Early Substance Use in Adolescence. J. Behav. Med. 2010, 33, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Newton, N.C.; Barrett, E.L.; Castellanos-Ryan, N.; Kelly, E.; Champion, K.E.; Stapinski, L.; Conrod, P.J.; Slade, T.; Nair, N.; Teesson, M. The Validity of the Substance Use Risk Profile Scale (SURPS) among Australian Adolescents. Addict. Behav. 2016, 53, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Foundation for Statistical Computing. R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Lee, V.E. Using Hierarchical Linear Modeling to Study Social Contexts: The Case of School Effects. Educ. Psychol. 2000, 35, 125–141. [Google Scholar] [CrossRef]
- Grant, B.; Stinson, F.; Harford, T. Age at Onset of Alcohol Use and DSM-IV Alcohol Abuse and Dependence: A 12-Year Follow-Up. J. Subst. Abus. 2001, 13, 493–504. [Google Scholar] [CrossRef]
Overall | |
---|---|
N schools | 6 |
–Independent schools | 5 |
N participants | 441 |
–In independent school | 432/441 (98.0%) |
Age [years, M (SD)] | 13.4 (0.439) |
Female | 308/441 (69.8%) |
Born in Australia | 393/441 (89.1%) |
Ever had a full drink of alcohol | 63/440 (14.3%) |
Time | Days Drinking per Month [M (SD)] | Social Media Time (Hours per Day) [M (SD)] | Content Exposure [n (%)] | Parental Monitoring [n (%)] |
---|---|---|---|---|
Baseline (age 13) | 0.156 (1.46) | 0.765 (1.02) | 104/414 (25.1%) | 198/414 (47.8%) |
Time 2 (age 13.5) | 0.420 (3.09) | 0.932 (1.24) | 100/338 (29.6%) | 145/338 (42.9%) |
Time 3 (age 14) | 0.210 (1.56) | 0.956 (1.26) | 149/374 (39.8%) | 143/374 (38.2%) |
Time 4 (age 15) | 0.610 (2.74) | 1.17 (1.47) | 209/355 (58.9%) | 120/354 (33.9%) |
Time 5 (age 16) | 1.22 (3.74) | 1.35 (1.54) | 182/311 (58.5%) | 77/311 (24.8%) |
Predictors (n = 1727) | b | 95% CI | p |
---|---|---|---|
Model 1: Social media time and content exposure | |||
Social media time | 0.03 | 0.01 to 0.06 | 0.021 * |
Content exposure | 0.04 | −0.02 to 0.10 | 0.224 |
Model 2: Social media time × content exposure | |||
Social media time | 0.01 | −0.03 to 0.04 | 0.763 |
Content exposure | −0.05 | −0.14 to 0.04 | 0.268 |
Social media time × Content exposure | 0.08 | 0.03 to 0.14 | 0.003 * |
Model 3: Social media time × Parental monitoring | |||
Social media time | 0.06 | 0.02 to 0.09 | 0.001 |
Parental monitoring | 0.00 | −0.06 to 0.07 | 0.898 |
Social media time × Parental monitoring | −0.05 | −0.10 to 0.00 | 0.065 |
Model 4: Content exposure × Parental monitoring | |||
Social media time | 0.03 | 0.00 to 0.06 | 0.043 * |
Content exposure | 0.10 | 0.02 to 0.18 | 0.020 * |
Parental monitoring | 0.00 | −0.06 to 0.06 | 0.890 |
Content exposure × Parental monitoring | −0.15 | −0.28 to −0.02 | 0.020 * |
Predictors (n = 1727) | b | 95% CI | p |
---|---|---|---|
Model 5: Time since baseline | |||
Time since baseline | 0.30 | 0.22 to 0.39 | <0.001 * |
Model 6: Social media time | |||
Time since baseline | 0.29 | 0.16 to 0.42 | <0.001 * |
Social media time | −0.09 | −0.29 to 0.10 | 0.355 |
Time × Social media time | 0.10 | −0.01 to 0.21 | 0.075 |
Model 7: Content exposure | |||
Time since baseline | 0.30 | 0.18 to 0.42 | <0.001 * |
Content exposure | −0.04 | −0.50 to 0.41 | 0.854 |
Social media time | 0.05 | −0.10 to 0.20 | 0.545 |
Time × Content exposure | 0.29 | 0.04 to 0.53 | 0.024 * |
Model 8: Parental monitoring (controlling for social media time) | |||
Time since baseline | 0.33 | 0.18 to 0.48 | <0.001 * |
Parental monitoring | −0.02 | −0.41 to 0.36 | 0.902 |
Social media time | 0.02 | −0.13 to 0.17 | 0.769 |
Time × Parental monitoring | 0.07 | −0.15 to 0.28 | 0.542 |
Model 9: Parental monitoring (controlling for content exposure) | |||
Time since baseline | 0.32 | 0.18 to 0.46 | <0.001 * |
Parental monitoring | −0.01 | −0.37 to 0.36 | 0.970 |
Content exposure | 0.22 | −0.10 to 0.54 | 0.178 |
Time × Parental monitoring | 0.07 | −0.13 to 0.27 | 0.504 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smout, A.; Chapman, C.; Mather, M.; Slade, T.; Teesson, M.; Newton, N. It’s the Content That Counts: Longitudinal Associations between Social Media Use, Parental Monitoring, and Alcohol Use in an Australian Sample of Adolescents Aged 13 to 16 Years. Int. J. Environ. Res. Public Health 2021, 18, 7599. https://doi.org/10.3390/ijerph18147599
Smout A, Chapman C, Mather M, Slade T, Teesson M, Newton N. It’s the Content That Counts: Longitudinal Associations between Social Media Use, Parental Monitoring, and Alcohol Use in an Australian Sample of Adolescents Aged 13 to 16 Years. International Journal of Environmental Research and Public Health. 2021; 18(14):7599. https://doi.org/10.3390/ijerph18147599
Chicago/Turabian StyleSmout, Anna, Cath Chapman, Marius Mather, Tim Slade, Maree Teesson, and Nicola Newton. 2021. "It’s the Content That Counts: Longitudinal Associations between Social Media Use, Parental Monitoring, and Alcohol Use in an Australian Sample of Adolescents Aged 13 to 16 Years" International Journal of Environmental Research and Public Health 18, no. 14: 7599. https://doi.org/10.3390/ijerph18147599
APA StyleSmout, A., Chapman, C., Mather, M., Slade, T., Teesson, M., & Newton, N. (2021). It’s the Content That Counts: Longitudinal Associations between Social Media Use, Parental Monitoring, and Alcohol Use in an Australian Sample of Adolescents Aged 13 to 16 Years. International Journal of Environmental Research and Public Health, 18(14), 7599. https://doi.org/10.3390/ijerph18147599