How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johns Hopkins Coronavirus Resource Center. COVID-19 Map. Available online: https://coronavirus.jhu.edu/map.html (accessed on 18 June 2021).
- Melegari, G.; Giuliani, E.; Maini, G.; Barbieri, L.; Baffoni, P.; Bertellini, E.; Barbieri, A. Novel coronavirus (2019-nCov): Do you have enough intensive care units? Med. Intensiva 2020, 44, 583–585. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Freedman, D.O. Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J. Travel Med. 2020, 27, 27. [Google Scholar] [CrossRef]
- Sjödin, H.; Wilder-Smith, A.; Osman, S.; Farooq, Z.; Rocklöv, J. Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020. Eurosurveillance 2020, 25, 2000280. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Chiew, C.J.; Lee, V.J. Can we contain the COVID-19 outbreak with the same measures as for SARS? Lancet Infect. Dis. 2020, 20, e102–e107. [Google Scholar] [CrossRef] [Green Version]
- Musulin, J.; Šegota, S.B.; Štifanić, D.; Lorencin, I.; Anđelić, N.; Šušteršič, T.; Blagojević, A.; Filipović, N.; Ćabov, T.; Markova-Car, E. Application of artificial intelligence-based regression methods in the problem of covid-19 spread prediction: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 4287. [Google Scholar] [CrossRef]
- Anđelić, N.; Šegota, S.B.; Lorencin, I.; Jurilj, Z.; Šušteršič, T.; Blagojević, A.; Protić, A.; Ćabov, T.; Filipović, N.; Car, Z. Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm. Int. J. Environ. Res. Public Health 2021, 18, 959. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Das, D.; Pal, S.; Paul, S.R.; Debnath, A.; Reza, M. Effect of covid-19 on digital transformations in teaching learning methodology and its consequences in society: A review. J. Phys. Conf. Ser. 2021, 1797, 012066. [Google Scholar]
- Štifanić, D.; Musulin, J.; Miočević, A.; Šegota, S.B.; Šubić, R.; Car, Z. Impact of COVID-19 on Forecasting Stock Prices: An Integration of Stationary Wavelet Transform and Bidirectional Long Short-Term Memory. Complexity 2020, 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Lorencin, I.; Šegota, S.B.; Anđelić, N.; Blagojević, A.; Šušteršić, T.; Protić, A.; Arsenijević, M.; Ćabov, T.; Filipović, N.; Car, Z. Automatic Evaluation of the Lung Condition of COVID-19 Patients Using X-ray Images and Convolutional Neural Networks. J. Pers. Med. 2021, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wu, Z.; Xu, X.; Zhan, Y.; Jin, X.; Wang, L.; Qiu, Y. Opportunities and challenges of artificial intelligence in the medical field: Current application, emerging problems, and problem-solving strategies. J. Int. Med. Res. 2021, 49, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Boulos, M.N.K.; Geraghty, E.M. Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics. Int. J. Health Geogr. 2020, 19, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Alimadadi, A.; Aryal, S.; Manandhar, I.; Munroe, P.B.; Joe, B.; Cheng, X. Artificial intelligence and machine learning to fight COVID-19. Physiol. Genom. 2020, 52, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, A.K.; Webb, J.; Salem, M.; Cruz, E.; Calad-Thomson, S.; Ghadirian, N.; Collins, J.; Diez-Cecilia, E.; Kelly, B.; Goodarzi, H.; et al. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Front. Artif. Intell. 2020, 3, 65. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.C.; Untong, N.; Aliudin, N.A.; Osili, N.; Kifli, N.; Tan, C.S.; Goh, K.W.; Ng, P.E.; Al-Worafi, Y.M.; Lee, K.S.; et al. Mobile Health Apps on COVID-19 Launched in the Early Days of the Pandemic: Content Analysis and Review. JMIR mHealth uHealth 2020, 8, e19796. [Google Scholar] [CrossRef]
- Kondylakis, H.; Katehakis, D.G.; Kouroubali, A.; Logothetidis, F.; Triantafyllidis, A.; Kalamaras, I.; Votis, K.; Tzovaras, D. COVID-19 Mobile Apps: A Systematic Review of the Literature. J. Med. Internet Res. 2020, 22, e23170. [Google Scholar] [CrossRef]
- Zaccagni, L.; Toselli, S.; Barbieri, D. Physical Activity during COVID-19 Lockdown in Italy: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6416. [Google Scholar] [CrossRef]
- Ferretti, L.; Wymant, C.; Kendall, M.; Zhao, L.; Nurtay, A.; Abeler-Dörner, L.; Parker, M.; Bonsall, D.G.; Fraser, C. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 2020, 368, eabb6936. [Google Scholar] [CrossRef] [Green Version]
- McCullough, P.A.; Eidt, J.; Rangaswami, J.; Lerma, E.; Tumlin, J.; Wheelan, K.; Katz, N.; Lepor, N.E.; Vijay, K.; Soman, S.; et al. Urgent need for individual mobile phone and institutional reporting of at home, hospitalized, and intensive care unit cases of SARS-CoV-2 (COVID-19) infection. Rev. Cardiovasc. Med. 2020, 21, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Raposo, V.L.; Wang, M. COVID-19 contact tracing apps: A technologic tower of babel and the gap for international pandemic control. JMIR mHealth uHealth 2020, 8, e23194. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Show evidence that apps for COVID-19 contact-tracing are secure and effective. Nature 2020, 580, 563. [Google Scholar] [CrossRef]
- Dantas, L.F.; Peres, I.T.; Bastos, L.S.L.; Marchesi, J.F.; de Souza, G.F.G.; Gelli, J.G.M.; Baião, F.A.; Maçaira, P.; Hamacher, S.; Bozza, F.A. App-based symptom tracking to optimize SARS-CoV-2 testing strategy using machine learning. PLoS ONE 2021, 16, e0248920. [Google Scholar] [CrossRef]
- Li, F.; Valero, M.; Shahriar, H.; Khan, R.A.; Ahamed, S.I. Wi-COVID: A COVID-19 symptom detection and patient monitoring framework using WiFi. Smart Health 2021, 19, 100147. [Google Scholar] [CrossRef] [PubMed]
- Immuni. Sito Ufficiale. Available online: https://www.immuni.italia.it/ (accessed on 18 June 2021).
- Giuliani, E.; Melegari, G.; Carrieri, F.; Barbieri, A. Overview of the main challenges in shared decision making in a multicultural and diverse society in the intensive and critical care setting. J. Eval. Clin. Pract. 2019, 26, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Légaré, F.; Ratté, S.; Stacey, D.; Turcotte, S.; Kryworuchko, J.; Graham, I.D.; Gravel, K. Interventions for improving the adoption of shared decision making by healthcare professionals. Cochrane Database Syst. Rev. 2014, CD006732. [Google Scholar] [CrossRef] [Green Version]
- Beyene, L.S.; Severinsson, E.; Hansen, B.S.; Rørtveit, K. Being in a space of sharing decision-making for dignified mental care. J. Psychiatr. Ment. Health Nurs. 2019, 26, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef]
- Barbieri, D.; Chawla, N.; Zaccagni, L.; Grgurinović, T.; Šarac, J.; Čoklo, M.; Missoni, S. Predicting Cardiovascular Risk in Athletes: Resampling Improves Classification Performance. Int. J. Environ. Res. Public Health 2020, 17, 7923. [Google Scholar] [CrossRef]
- Zaccagni, L.; Lunghi, B.; Barbieri, D.; Rinaldo, N.; Missoni, S.; Šaric, T.; Šarac, J.; Babic, V.; Rakovac, M.; Bernardi, F.; et al. Performance prediction models based on anthropometric, genetic and psychological traits of Croatian sprinters. Biol. Sport 2019, 36, 17–23. [Google Scholar] [CrossRef]
- Khan, O.; Badhiwala, J.H.; Grasso, G.; Fehlings, M.G. Use of Machine Learning and Artificial Intelligence to Drive Personalized Medicine Approaches for Spine Care. World Neurosurg. 2020, 140, 512–518. [Google Scholar] [CrossRef]
- Hofer, I.S.; Burns, M.; Kendale, S.; Wanderer, J.P. Realistically Integrating Machine Learning into Clinical Practice: A road map of opportunities, challenges, and a potential future. Anesth. Analg. 2020, 130, 1115–1118. [Google Scholar] [CrossRef]
- Halasz, G.; Sperti, M.; Villani, M.; Michelucci, U.; Agostoni, P.; Biagi, A.; Rossi, L.; Botti, A.; Mari, C.; Maccarini, M.; et al. A Machine Learning Approach for Mortality Prediction in COVID-19 Pneumonia: Development and Evaluation of the Piacenza Score. J. Med. Internet Res. 2021, 23, e29058. [Google Scholar] [CrossRef]
- Birrell, P.J.; Zhang, X.-S.; Corbella, A.; Van Leeuwen, E.; Panagiotopoulos, N.; Hoschler, K.; Elliot, A.J.; McGee, M.; De Lusignan, S.; Presanis, A.M.; et al. Forecasting the 2017/2018 seasonal influenza epidemic in England using multiple dynamic transmission models: A case study. BMC Public Health 2020, 20, 486. [Google Scholar] [CrossRef] [PubMed]
- Tizzoni, M.; Bajardi, P.; Poletto, C.; Ramasco, J.J.; Balcan, D.; Gonçalves, B.; Perra, N.; Colizza, V.; Vespignani, A. Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm. BMC Med. 2012, 10, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiura, H. Real-time forecasting of an epidemic using a discrete time stochastic model: A case study of pandemic influenza (H1N1-2009). Biomed. Eng. Online 2011, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Kabra, R.; Singh, S. Evolutionary artificial intelligence based peptide discoveries for effective Covid-19 therapeutics. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2021, 1867, 165978. [Google Scholar] [CrossRef] [PubMed]
- Ong, E.; Wong, M.U.; Huffman, A.; He, Y. COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Front. Immunol. 2020, 11, 1581. [Google Scholar] [CrossRef] [PubMed]
- Qamar, M.T.U.; Shahid, F.; Aslam, S.; Ashfaq, U.A.; Aslam, S.; Fatima, I.; Fareed, M.M.; Zohaib, A.; Chen, L.-L. Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect. Dis. Poverty 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Asgary, A.; Valtchev, S.Z.; Chen, M.; Najafabadi, M.M.; Wu, J. Artificial Intelligence Model of Drive-Through Vaccination Simulation. Int. J. Environ. Res. Public Health 2020, 18, 268. [Google Scholar] [CrossRef] [PubMed]
- Bubar, K.M.; Reinholt, K.; Kissler, S.M.; Lipsitch, M.; Cobey, S.; Grad, Y.H.; Larremore, D.B. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science 2021, 371, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodés-Guirao, L. A global database of COVID-19 vaccinations. Nat. Hum. Behav. 2021, 1–7. [Google Scholar] [CrossRef]
- Baig, M.; Alzahrani, S.J. Revisiting the Skills of a Healthcare Data Scientist as a Field Expert. Stud. Health Technol. Inform. 2019, 262, 43–46. [Google Scholar] [CrossRef]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible Electronics toward Wearable Sensing. Accounts Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-G.; Lee, S.; Park, J.-U. Recent Progress in Wireless Sensors for Wearable Electronics. Sensors 2019, 19, 4353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhalgh, T.; Wherton, J.; Shaw, S.; Morrison, C. Video consultations for covid-19. BMJ 2020, 368, m998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, F.; Boren, S.A. The role of the electronic medical record (EMR) in care delivery development in developing countries: A systematic review. Inform. Prim. Care 2008, 16, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaghy, E.; Atherton, H.; Hammersley, V.; McNeilly, H.; Bikker, A.; Robbins, L.; Campbell, J.; McKinstry, B. Acceptability, benefits, and challenges of video consulting: A qualitative study in primary care. Br. J. Gen. Pract. 2019, 69, e586–e594. [Google Scholar] [CrossRef]
- Loeb, A.E.; Rao, S.S.; Ficke, J.R.; Morris, C.D.; Riley, L.H.; Levin, A.S. Departmental Experience and Lessons Learned With Accelerated Introduction of Telemedicine During the COVID-19 Crisis. J. Am. Acad. Orthop. Surg. 2020, 28, e469–e476. [Google Scholar] [CrossRef]
- Li, H.-L.; Chan, Y.C.; Huang, J.-X.; Cheng, S.W. Pilot Study Using Telemedicine Video Consultation for Vascular Patients’ Care During the COVID-19 Period. Ann. Vasc. Surg. 2020, 68, 76–82. [Google Scholar] [CrossRef]
- Kang, S.; Thomas, P.; Sim, D.A.; Parker, R.T.; Daniel, C.; Uddin, J.M. Oculoplastic video-based telemedicine consultations: Covid-19 and beyond. Eye 2020, 34, 1193–1195. [Google Scholar] [CrossRef]
- Kongats, K.; McGetrick, J.A.; Raine, K.D.; Voyer, C.; Nykiforuk, C.I. Assessing general public and policy influencer support for healthy public policies to promote healthy eating at the population level in two Canadian provinces. Public Health Nutr. 2019, 22, 1492–1502. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, D.; Bigarelli, G. General Data Protection Regulation: A Relational Approach. J. Eur. Am. Intell. Stud. 2018, 53, 25–39. [Google Scholar]
- Gonçalves-Ferreira, D.; Sousa, M.; Bacelar-Silva, G.M.; Frade, S.; Antunes, L.F.; Beale, T.; Cruz-Correia, R. OpenEHR and General Data Protection Regulation: Evaluation of Principles and Requirements. JMIR Med. Inform. 2019, 7, e9845. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, A.; Lugi, C.; Cecannecchia, C. Apps for COVID-19 contact-tracing: Too many questions and few answers. Ethic. Med. Public Health 2020, 15, 100575. [Google Scholar] [CrossRef]
- Zhang, M.; Chow, A.; Smith, H. COVID-19 Contact-Tracing Apps: Analysis of the Readability of Privacy Policies (Preprint). J. Med. Internet Res. 2020, 22, e21572. [Google Scholar] [CrossRef]
- Bengio, Y.; Ippolito, D.; Janda, R.; Jarvie, M.; Prud’Homme, B.; Rousseau, J.-F.; Sharma, A.; Yu, Y.W. Inherent privacy limitations of decentralized contact tracing apps. J. Am. Med. Inform. Assoc. 2021, 28, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.; Haleem, A.; Vaishya, R.; Bahl, S.; Suman, R.; Vaish, A. Industry 4.0 technologies and their applications in fighting COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Rivi, V.; Melegari, G.; Blom, J.M. How to humanise the COVID-19 intensive care units. BMJ Evid. Based Med. 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbieri, D.; Giuliani, E.; Del Prete, A.; Losi, A.; Villani, M.; Barbieri, A. How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 7648. https://doi.org/10.3390/ijerph18147648
Barbieri D, Giuliani E, Del Prete A, Losi A, Villani M, Barbieri A. How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health. 2021; 18(14):7648. https://doi.org/10.3390/ijerph18147648
Chicago/Turabian StyleBarbieri, Davide, Enrico Giuliani, Anna Del Prete, Amanda Losi, Matteo Villani, and Alberto Barbieri. 2021. "How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic" International Journal of Environmental Research and Public Health 18, no. 14: 7648. https://doi.org/10.3390/ijerph18147648
APA StyleBarbieri, D., Giuliani, E., Del Prete, A., Losi, A., Villani, M., & Barbieri, A. (2021). How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 18(14), 7648. https://doi.org/10.3390/ijerph18147648