The Level of Zinc, Copper and Antioxidant Status in the Blood Serum of Women with Hashimoto’s Thyroiditis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Preparation of Blood Samples for Analysis
2.3. Determination of Copper and Zinc
2.4. Determination of Antioxidant Status
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- There are no differences in the concentration of Cu and Zn in the blood of people with Hashimoto’s disease compared to the control group.
- In the blood of patients with Hashimoto’s disease, a significantly higher TBARS concentration was found, with no difference in FRAP concentration.
- The concentration of total phenolics has a significant positive effect on the value of the FRAP indicator.
6. Limitation of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pani, G.; Calavitti, R.; Bedogni, B.; Anzevino, S.; Borrello, S.; Galotti, T. A redox signaling mechanism for density dependent inhibition of cell growth. JBC 2000, 275, 38891–38899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztürk, Ü.; Vural, P.; Özderya, A.; Karadag, B. Oxidative stress parameters in serum and low density lipoproteins of Hashimoto’s thyroiditis patients with subclinical and overt hypothyroidism. Int. Immunopharmacol. 2012, 14, 349–352. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell. Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- McCord, J.M. Human disease, free radicals, and the oxidant/antioxidant balance. Clin. Biochem. 1993, 26, 351–357. [Google Scholar] [CrossRef]
- Brown, N.S.; Bicknell, R. Hypoxia and oxidative stress in breast cancer. Oxidative stress-its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res. 2001, 3, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Lassoued, S.; Mseddi, M.; Mnif, F.; Abid, M.; Guermazi, F.; Masmoudi, H.; El Feki, A.; Attia, H. A comparative study of the oxidative profile in Graves’ disease, Hashimoto’s thyroiditis, and papillary thyroid cancer. Biol. Trace Elem. Res. 2010, 138, 107–115. [Google Scholar] [CrossRef]
- Mancini, A.; Raimondo, S.; Di Segni, C.; Persano, M.; Gadotti, G.; Silvestrini, A.; Festa, R.; Tiano, L.; Pontecorvi, A.; Meucci, E. Thyroid hormones and antioxidant systems: Focus on oxidative stress in cardiovascular and pulmonary diseases. Int. J. Mol. Sci. 2013, 14, 23893–23909. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Cadenas, E. Oxidative stress: Damage to intact cells and organs. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1985, 311, 617–631. [Google Scholar]
- Włochal, M.; Kucharski, M.A.; Grzymisławski, M. The effects of vitamins and trace minerals on chronic autoimmune thyroiditis. JMS 2014, 2, 167–172. [Google Scholar] [CrossRef]
- Kandhro, G.A.; Kazi, T.G.; Afridi, H.I.; Kazi, N.; Baig, J.A.; Arain, M.B.; Sirajuddin; Shah, A.Q.; Sarfraz, R.A.; Jamali, M.K.; et al. Effect of zinc supplementation on the zinc level in serum and urine and their relation to thyroid hormone profile in male and female goitrous patients. Clin. Nutr. 2009, 28, 162–168. [Google Scholar] [CrossRef]
- Rasic-Milutinovic, Z.; Jovanovic, D.; Bogdanovic, G.; Trifunovic, J.; Mutic, J. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism. Exp. Clin. Endocrinol. Diabetes. 2017, 125, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, R.M.; Jovanovic, D.; Bogdanovic, G.; Trifunovic, J.; Mutic, J. Increased serum interleukin α37 (IL α37) levels correlate with oxidative stress parameters in Hashimoto’s thyroiditis. J. Endocrinol. Invest. 2019, 42, 199–205. [Google Scholar] [CrossRef]
- Ruggeri, R.M.; Vicchio, T.M.; Cristani, M.; Certo, R.; Caccamo, D.; Alibrandi, A.; Giovinazzo, S.; Saija, A.; Campennì, A.; Trimarchi, F.; et al. Oxidative stress and advanced Glycation End Products (AGES) in Hashimoto’s thyroiditis. Thyroid. 2016, 26, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Ates, I.; Yilmaz, F.M.; Altay, M.; Yilmaz, N.; Berker, D.; Güler, S. The Relationship between Oxidative Stress and Autoimmunity in Hashimoto’s Thyroiditis. Eur. J. Endocrinol. 2015, 173, 791–799. [Google Scholar]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front Nutr. 2018, 21, 87. [Google Scholar] [CrossRef] [Green Version]
- Baskol, G.; Atmaca, H.; Tanriverdi, F.; Baskol, M.; Kocer, D.; Bayram, F. Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism and after treatment. Exp. Clin. Endocrinol. Diabetes. 2007, 115, 522–526. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Ghosh, S.; Banerjee, S.; Mukherjee, S.; Chowdhury, S. Oxidative stress in hypothyroid patients and the role of antioxidant supplementation. Indian J. Endocrinol. Metab. 2016, 20, 674–678. [Google Scholar] [CrossRef]
- Lakshmi, L.J.; Mohapatra, E.; Doddigarla, Z.; Kumari, S. Serum lipids and oxidative stress in hypothyroidism. Int. J. Adv. Res. Biol. Sci. 2013, 5, 63–66. [Google Scholar]
- Agha, A.M.; Gad, M.Z. Lipid peroxidation and lysosomal integrity in different inflammatory models in rats: The effects of indomethacin and naftazone. Pharmacol. Res. 1995, 32, 279–285. [Google Scholar] [CrossRef]
- Banerjee, B.D.; Seth, V.; Bhattacharya, A.; Pasha, S.T.; Chakraborty, A.K. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol. Lett. 1999, 107, 33–47. [Google Scholar] [CrossRef]
- Bartsch, H. Keynote address: Exocyclic adducts as new risk markers for DNA damage in man. IARC Sci. Publ. 1999, 150, 1–16. [Google Scholar]
- Uchida, K. 4-Hydroxy-2-nonenal: A product and mediator of oxidative stress. Prog. Lipid Res. 2003, 42, 318–343. [Google Scholar] [CrossRef]
- Ajjan, A.R.; Weetman, A.P. The pathogenesis of Hashimoto’s thyroiditis: Further developments in our understanding. Horm. Metab. Res. 2015, 47, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Pop, V.; Krabbe, J.; Maret, W.; Rayman, M. Plasma mineral (selenium, zinc or copper) concentrations in the general pregnant population, adjusted for supplement intake, in relation to thyroid function. Br. J. Nutr. 2021, 125, 71–78. [Google Scholar] [CrossRef]
- Forrer, R.; Gautschi, K.; Lutz, H. Simultaneous measurement of the trace elements Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum and their reference ranges by ICP-MS. Biol. Trace Elem. Res. 2001, 80, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power: The FRAP Assay”. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of Total Phenolic Compounds with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Borawska, M.; Markiewicz-Żukowska, R.; Dziemianowicz, R.; Socha, K.; Soroczyńska, J. Wpływ nawyków żywieniowych i palenia papierosów na stężenie cynku w surowicy krwi kobiet z chorobą Hashimoto. Bromat. Chem. Toksykol. 2012, 3, 759–765. [Google Scholar]
- Turnlund, J.R.; Jacob, R.A.; Keen, C.J.; Stain, J.J.; Darshan, S.K.; Domek, J.M.; Keyes, W.R.; Ensunsa, J.L.; Lykkesfeldt, J.; Coulter, J. Long-term high copper intake: Effects on indexes of copper status, antioxidant status, and immune function in young men. Am. J. Clin. Nutr. 2004, 79, 1037–1044. [Google Scholar] [CrossRef]
- Freake, H.C.; Govoni, K.E.; Guda, K.; Huang, C.; Zinn, S.A. Actions and interactions of thyroid hormone and zinc status in growing rats. JN 2001, 131, 1135–1141. [Google Scholar] [CrossRef] [Green Version]
- Bellisola, G.; Brätter, P.; Cinque, G.; Francia, G.; Galassini, S.; Gawlik, D.; de Brätter, V.E.N.; Azzolina, L. The TSH dependent variation of the essential elements iodine, selenium and zinc within human thyroid tissues. J. Trace Elem. Med. Biol. 1998, 12, 177–182. [Google Scholar] [CrossRef]
- Jain, R.B. Thyroid function and serum copper, selenium, and zinc in general US population. Biol. Trace Elem. Res. 2014, 159, 87–98. [Google Scholar] [CrossRef]
- Kucharzewski, M.; Braziewicz, J.; Majewska, U.; Gózdz, S. Copper, Zinc, and Selenium in Whole Blood and Thyroid Tissue of People with Various Thyroid Diseases. Biol. Trace Elem. Res. 2003, 93, 9–18. [Google Scholar] [CrossRef]
- Sinha, S.; Kar, K.; Disgupta, A.; Basu, S.; Sen, S. Correlation of Serum zinc with TSH in hyperthyroidism. AJMS. 2015, 7, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Mittag, J.; Behrends, T.; Nordström, K.; Anselmo, J.; Vennström, B.; Schomburg, L. Serum copper as a novel biomarker for resistance to thyroid hormone. Biochem. J. 2012, 443, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Juboori, I.A.; Al-Ravi, R.; A-Hakeim, H.K. Estimation of Serum Copper, Manganese, Selenium, and Zinc in Hypothyroidism Patients. IUFS J. Biol. 2009, 68, 121–126. [Google Scholar]
- Khan, S.; Lungba, R.M.; Ajibawo-Aganbi, U.; Veliginti, S.; Perez Bastidas, M.V.; Saleem, S.; Cancarevic, I. Minerals: An Untapped Remedy for Autoimmune Hypothyroidism? Cureus 2020, 12, e11008. [Google Scholar] [CrossRef]
- Rostami, R.; Aghasi, M.R.; Mohammadi, A.; Nourooz-Zadeh, J. Enhanced oxidative stress in Hashimoto’s thyroiditis: Inter-relationships to biomarkers of thyroid function. Clin. Biochem. 2013, 46, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Lampka, M.; Junik, R.; Nowicka, A.; Kardymowicz, H.; Kaczorowski, P.; Tyrakowski, T. Evaluation of low density lipoprotein oxidation in a course of hypothyroidism. Pol. J. Endokrynol. 2006, 57, 116–121. [Google Scholar]
- Erdamar, H.; Demirci, H.; Yaman, H.; Erbil, M.K.; Yakar, T.; Sancak, B.; Elbeg, S.; Biberoğlu, G.; Yetkin, I.; Yaman, H. The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status. Clin. Chem. Lab. Med. 2008, 46, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Nanda, N.; Bobby, Z.; Hamide, A.; Koner, B.C.; Sridhar, M.G. Association between oxidative stress and coronary risk factors in hypothyroid women is independent of body mass index. Metabolism 2007, 56, 1350–1355. [Google Scholar] [CrossRef]
- Sarandöl, E.; Taş, S.; Dirican, M.; Serdar, Z. Oxidative stress and serum paraoxonase activity in experimental hypothyroidism: Effect of vitamin E supplementation. Cell Biochem. Funct. 2005, 23, 1–8. [Google Scholar] [CrossRef]
- Venditti, P.; Balestrieri, M.; Di Meo, S.; De Leo, T. Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J. Endocrinol. 1997, 155, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Coria, M.J.; Pastran, A.l.; Gimenez, M.S. Serum oxidative stress parameters of women with hypothyroidism. Acta Biomed. 2009, 80, 135–139. [Google Scholar]
- Resch, U.; Helsel, G.; Tatzber, F.; Sinzinger, H. Antioxidant status in thyroid dysfunction. Clin. Chem. Lab. Med. 2002, 40, 1132–1134. [Google Scholar] [CrossRef]
- Reddy, V.S.; Gouroju, S.; Suchitra, M.M.; Suresh, V.; Sachan, A.; Srinivasa Rao, P.V.; Bitla, A.R. Antioxidant defense in overt and subclinical hypothyroidism. Horm. Metab. Res. 2013, 45, 754–758. [Google Scholar] [CrossRef]
- Aslan, M.; Cosar, N.; Celik, H.; Aksoy, N.; Dulger, A.C.; Begenik, H.; Soyoral, Y.U.; Kucukoglu, M.E.; Selek, S. Evaluation of oxidative status in patients with hyperthyroidism. Endocrine 2011, 40, 285–289. [Google Scholar] [CrossRef]
- Marcocci, C.; Bartalena, L. Role of oxidative stress and selenium in Graves’ hyperthyroidism and orbitopathy. J. Endocrinol. Investig. 2013, 36, 15–20. [Google Scholar]
- Torun, A.N.; Kulaksizoglu, S.; Kulaksizoglu, M.; Pamuk, B.O.; Isbilen, E.; Tutuncu, N.B. Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clin. Endocrinol. 2009, 270, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Baser, H.; Can, U.; Baser, S.; Yerlikaya, F.H.; Aslan, U.; Hidayetoglu, B.T. Assessment of oxidative status and its association with thyroid autoantibodies in patients with euthyroid autoimmune thyroiditis. Endocrine. 2014, 48, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Nanda, N.; Bobby, Z.; Hamide, A.A. Oxidative stress and protein glycation in primary hypothyroidism. Male/female difference. Clin. Exp. Med. 2008, 8, 101–108. [Google Scholar] [CrossRef]
- Wang, D.; Feng, J.F.; Zeng, P.; Yang, Y.H.; Luo, J.; Yang, Y.W. Total oxidant/antioxidant status in sera of patients with thyroid cancers. Endocr. Relat. Cancer. 2011, 18, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Pereira, B.; Rosa, L.C.; Safi, D.A.; Bechara, E.J.H.; Curi, R. Control of superoxide dismutase, catalase and glutathione peroxidase activities in rat lymphoid organs by thyroid hormones. J. Endocrinol. 1994, 140, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, V.; Videla, L.A. Hepatic glutathione biosynthetic capacity in hyperthyroid rats. Toxicol. Lett. 1996, 89, 85–89. [Google Scholar] [CrossRef]
Median (Interquartile Range). | |||
---|---|---|---|
Parameters | Study Group (n = 42) | Control Group (n = 30) | p Value |
Age (years) | 40.0 ± 32.0–49.0 | 41.0 ± 34.0–35.0 | 0.3391 |
Body weight (kg) | 61.0 ± 55.0–70.0 | 64.5 ± 58.0–72.0 | 0.1914 |
Body height (cm) | 168.5 ± 163.0–172.0 | 168.0 ± 163.0–170.0 | 0.9905 |
BMI (kg/m2) | 23.2 ± 19.3–24.7 | 22.1 ± 20.4–26.3 | 0.2881 |
Zn (µg/dL) | 88.0 ± 82.0–95.0 | 86.5 ± 76.0–104.0 | 0.7217 |
Cu (µg/dL) | 110.5 ± 100.0–122.0 | 110.0 ± 99.0–136.0 | 0.6908 |
FRAP (μmol/L) | 694.1 ± 559.5–835.2 | 733.6 ± 617.4–855.4 | 0.4949 |
TBARS (μmol/L) | 26.3 ± 20.1–35.6 | 3.2 ± 2.6–4.4 | 0.0000 |
Total phenolics (g GAE/L) | 2.9 ± 2.6–3.2 | 3.1 ± 2.8–3.2 | 0.1857 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepanik, J.; Podgórski, T.; Domaszewska, K. The Level of Zinc, Copper and Antioxidant Status in the Blood Serum of Women with Hashimoto’s Thyroiditis. Int. J. Environ. Res. Public Health 2021, 18, 7805. https://doi.org/10.3390/ijerph18157805
Szczepanik J, Podgórski T, Domaszewska K. The Level of Zinc, Copper and Antioxidant Status in the Blood Serum of Women with Hashimoto’s Thyroiditis. International Journal of Environmental Research and Public Health. 2021; 18(15):7805. https://doi.org/10.3390/ijerph18157805
Chicago/Turabian StyleSzczepanik, Joanna, Tomasz Podgórski, and Katarzyna Domaszewska. 2021. "The Level of Zinc, Copper and Antioxidant Status in the Blood Serum of Women with Hashimoto’s Thyroiditis" International Journal of Environmental Research and Public Health 18, no. 15: 7805. https://doi.org/10.3390/ijerph18157805
APA StyleSzczepanik, J., Podgórski, T., & Domaszewska, K. (2021). The Level of Zinc, Copper and Antioxidant Status in the Blood Serum of Women with Hashimoto’s Thyroiditis. International Journal of Environmental Research and Public Health, 18(15), 7805. https://doi.org/10.3390/ijerph18157805